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A note on the ramification of torsion points lying

on curves of genus at least two

par Damian RÖSSLER

Résumé. Soit C une courbe de genre g > 2 définie sur le corps
de fractions K d’un anneau de valuation discret R dont le corps
résiduel est algébriquement clos. On suppose que char(K) = 0 et
que la caractéristique résiduelle p de R n’est pas 2. On suppose
aussi que la jacobienne Jac(C) de C a réduction semi-stable sur
R. On plonge C dans Jac(C) via a un point K-rationnel. Nous
montrons que les coordonnées des points de torsion de Jac(C) qui
se trouvent dans C(K) sont dans l’unique extension modérément
ramifiée du corps engendré par les coordonnées des points de p-
torsion de Jac(C).

Abstract. Let C be a curve of genus g > 2 defined over the
fraction field K of a complete discrete valuation ring R with alge-
braically closed residue field. Suppose that char(K) = 0 and that
the characteristic p of the residue field is not 2. Suppose that the
Jacobian Jac(C) has semi-stable reduction over R. Embed C in
Jac(C) using a K-rational point. We show that the coordinates of
the torsion points lying on C lie in the unique tamely ramified qua-
dratic extension of the field generated over K by the coordinates of
the p-torsion points on Jac(C).

1. Introduction

Let R be a complete discrete valuation ring. Suppose that the residue
field k of R is algebraically closed and of characteristic p > 0. Suppose that
p 6= 2. Let K be the fraction field of R and suppose that char(K) = 0. Let
C be a curve of genus g > 2 defined over K. Let j : C → Jac(C) be the
closed immersion of C into its Jacobian defined by a K-rational point. Let
A := Jac(C). Let A be the Néron model of A over R.

Let L := K(A[p](K̄)) be the extension of K generated by the coordinates
of the p-torsion points of A(K̄). In particular, L = K if p = 0. Let L′ be
the unique tamely ramified quadratic extension of L.

Finally, let K1 ⊆ K̄ be the field generated over K by the coordinates
of the elements of Tor(A(K̄)) ∩ C(K̄). Here Tor(A(K̄)) is the subgroup of
A(K̄) consisting of elements of finite order.

The aim of this note is to prove the following statement :

Theorem 1.1. Suppose that the connected component of the special fiber
Ak of A is a semi-abelian variety (i.e. A has semi-stable reduction over R).
Then we have

(a) K1 ⊆ L′;
(b) if C is not hyperelliptic then we have K1 ⊆ L.
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Corollary 1.2. If p > 3, the inequality

[K1 : K] 6 2 ·#GL2g(Z/3Z) ·#GL2g(Z/pZ)

is verified.

Corollary 1.2 is an immediate consequence of Theorem 1.1 and of Ray-
naud’s criterion of semi-stable reduction. Recall that according to this cri-
terion, A will have semi-stable reduction over K if the l-torsion points of A
are K-rational, for some prime number l such that l 6= p and l > 2 (see [6,
IX]).

For the convenience of the reader, we recall the formula

#GL2g(Z/lZ) = (l2g − 1) · (l2g − l) · · · (l2g − l2g−1),

which is valid for any prime number l.
Theorem 1.1 should be understood as a complement to some results of

Tamagawa (see [10]), Baker-Ribet (see [2]) and Coleman (see [5]).
For instance, with the present notation, suppose that p > 0, that R is

the maximal unramified extension of Qp and that the abelian part of the
connected component of Ak is an ordinary abelian variety. Tamagawa then
proves that K1 is contained in the extension of K generated by the p-th roots
of unity (see [10] or [2, Th. 4.1]). Another example is the following result of
Coleman : if p > max(2g, 5), R is the maximal unramified extension of Qp

and Ak is an abelian variety, then K1 ⊆ K (see [5, Conj. B]).
All these results restrict the size of K1 under various hypotheses on the

special fiber Ak and on the order of absolute ramification of K. The interest
of Theorem 1.1 and its corollary is that they provide a limit for the size of
K1 with no assumption on the absolute ramification of K and little or no
assumptions on the special fiber Ak.

Remark. (1) The avoidance of the prime p = 2 is critical. It appears
in both Lemma 2.4 and Lemma 2.6 and this is exploited at the end of the
proof of Theorem 1.1. It would be interesting to extend the method used in
this note to the case p = 2.

(2) A closer examination of the proof of Theorem 1.1 (b) shows that the
following statement holds. Let x ∈ Tor(A(K)) ∩ C(K). Suppose that C is
hyperelliptic. If x is not a fixed point of the uniquely defined hyperelliptic
involution of C, then the field generated over K by the coordinates of x is
included in L.

Notations. If l is a prime number and G is an abelian group, we write
Torl(G) for the set of elements of Tor(G) whose order is prime to l and
Torl(G) for the set of elements of Tor(G) whose order is a power of l. The
expression Tor0(G) will stand for Tor(G). We shall denote by + the group
law on A(L̄). We shall write divisors on CL̄ in the form

n1P1 ⊕ n2P2 ⊕ · · · ⊕ nrPR

where ni ∈ Z. The symbol ∼ will be used to denote linear equivalence of
divisors.

Ackowledgments. I am grateful to M. Baker and J. Boxall for their
feedback and for some useful comments.
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2. Proof of Theorem 1.1

Let Lt be the maximal tamely ramified extension of L. Let I := Gal(L̄|L),
Iw := Gal(L̄|Lt) and It := Gal(Lt|L). Recall that Iw = 0 if char(k) = 0 and
that there is a non-canonical isomorphism It ' ⊕l 6=p, l prime Zl (see [9, chap.
IV]). Furthermore, the group Iw is a pro-p-group if p > 0.

We shall need the following five results.

Theorem 2.1 (monodromy theorem). For any x ∈ Torp(A(L̄)) and any
σ ∈ I, the equation σ2(x)− 2σ(x) + x = 0 is satisfied.

Proof. See [6, IX, 5.12.2] �

Lemma 2.2. The action of Iw on Torp(A(L̄)) is trivial.

Proof. This is a direct consequence of Theorem 2.1. See for instance [2,
Appendix, Lemma A.1]. �

Lemma 2.3. The action of It on Torp(A(Lt)) is trivial.

Proof. We may restrict ourselves to the case where p > 0. Let T ⊆ Torp(A(Lt))
be a finite It-invariant subgroup. We have to show that the action of It on
T is trivial. The action of It on T preserves the order of elements, hence
T is an inner direct sum of Gt-invariants subgroups of the form (Z/pr)s.
Hence we might suppose without loss of generality that T ' (Z/pr)s for
some r, s 6 1. Let Tp be the subgroup of p-torsion elements of T . The fact
that the p-torsion points in A(L̄) are L-rational implies that the action of
Gt on Tp is trivial. Hence the image of Gt in Aut(T ) lies in the kernel of the
natural group map

Aut(T )→ Aut(Tp)
Under the above isomorphism T ' (Z/pr)s, this corresponds to s×s-matrices
of the form Id + pM , where M is an s × s-matrices with coefficients in
Z/prZ. This last fact is a consequence of the fact that multiplication by
pr−1 induces an It-equivariant isomorphism T/pT → Tp. The calculation
(Id + pM)p

r−1
= Id now shows that the image of It in Aut(T ) is a p-group.

On the other hand, It is a direct sum of pro-l-groups, with l 6= p. The order
of the image of It is thus prime to p. This image is thus trivial. �

Lemma 2.4 (Boxall). Let B be an abelian variety over a field F of char-
acteristic 0. Let l > 2 be a prime number and let L := F (B[l]) be the
extension of K generated by the l-torsion points of B. Let P ∈ Torl(B(L̄))
and suppose that P 6∈ B(L). Then there exists σ ∈ Gal(L̄|L) such that
σ(P )− P ∈ B[l](L̄) \ {0}.

Proof. See [4, Lemme 1] or [8, Prop. 3]. �

Lemma 2.5. Let P ⊕ Q and P ′ ⊕ Q′ be two divisors of degree 2 on CL̄.
Suppose that P ⊕Q and P ′ ⊕Q′ are linearly equivalent.

If C is not hyperelliptic, then the two divisors coincide.
If C is hyperelliptic, then either the two divisors coincide or we have

Q = ι(P ) and Q′ = ι(P ′).

Here ι : C → C is the uniquely defined hyperelliptic involution.

Proof. See [7, IV, Prop. 5.3]. �
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Lemma 2.6. Let x ∈ A(L̄) and suppose that x 6= 0. The inequality

(1) #(C(L̄) ∩ (C(L̄) + x)) 6 2

is then verified. If C is not hyperelliptic, we even have

(2) #(C(L̄) ∩ (C(L̄) + x)) 6 1.

This Lemma is a consequence of [1, Prop. 4]. For the convenience of the
reader, we provide the following proof.

Proof. We shall write O for the K-rational point on C, which is used to
embed C in A.

Let a1, . . . , ar ∈ C(L̄) be pairwise distinct points such that a1 + x, a2 +
x, . . . , ar + x ∈ C(L̄). Let bi := ai + x (i = 1, . . . , r).

Suppose first that r > 1 and that C is not hyperelliptic. We then have a
linear equivalence

(3) b1 ⊕ a2 ∼ b2 ⊕ a1

Hence either b1 = b2 or b1 = a1, either of which are ruled out. So we conclude
that if C is not hyperelliptic, then r 6 1. This proves the inequality (2).

Now suppose that C is hyperelliptic and that r > 2. Let ι : C → C be
the corresponding hyperelliptic involution. On top of (3), we then have the
further linear equivalence

b2 ⊕ a3 ∼ a2 ⊕ b3
Lemma 2.5 now implies that a2 = ι(b1) and a2 = ι(b3). Hence b1 = b3,
which is impossible. Thus we conclude that r 6 2, if C is hyperelliptic. This
proves the first inequality (1). �

We can now start with the proof of Theorem 1.1.
The monodromy theorem 2.1 says that for any x ∈ Torp(A(L̄)) and any

σ ∈ I the equation (σ − Id)2(x) = 0 is satisfied (remember that Torp(·) =
Tor(·) if p = 0). On the other hand, Lemma 2.2 says that Torp(A(L̄)) ⊆
Torp(A(Lt)) and Lemma 2.3 implies that σ(x) = x for any x ∈ Torp(A(Lt))
and any σ ∈ It. Hence the equation

(4) (σ − Id)2(x) = 0

is verified for any x ∈ Tor(A(Lt)) and any σ ∈ It. Let x ∈ Tor(A(Lt))∩C(L̄)
and σ ∈ It. The equation (4) implies the linear equivalence

(5) σ2(x)⊕ x ∼ 2σ(x)

of divisors of degree 2 on CL̄.
First suppose that C is not hyperelliptic; then any two linearly equivalent

divisors of degree 2 on CL̄ coincide (see Lemma 2.5) and the relation (5)
thus implies that x = σ(x).1

Summing up, there is an inclusion

Tor(A(Lt)) ∩ C(L̄) ⊆ A(L)

if C is not hyperelliptic.

1This calculation is partly the motivation for Ribet’s definition of an ”almost rational point”

(see [2, Lemma 2.7]) and is the starting point of Tamagawa’s article [10] (see Prop. 0.2 in that
reference).
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Now suppose that C is hyperelliptic and let ι : C → C be the uniquely
defined hyperelliptic involution. Lemma 2.5 then implies that either x =
σ(x) as above or that the equations ι(σ(x)) = σ(x) and ι(x) = σ2(x) hold.
Suppose the latter. Since ι is defined over L, the equation ι(σ(x)) = σ(x)
implies that ι(x) = x. This together with the equation ι(x) = σ2(x) implies
that σ2(x) = x.

Now notice that since the group It is abelian, the set (It)2 of squares of
elements is a normal subgroup of It. Let J ′ be the Galois extension of L
defined by (It)2. Since It ' ⊕l 6=p, l prime Zl, we see that [J ′ : L] = 2. In
the last paragraph, we showed that Tor(A(Lt)) ∩ C(L̄) is fixed by (It)2. In
other words, we have shown that Tor(A(Lt)) ∩ C(L̄) ⊆ A(J ′) where J ′ is
the unique tamely ramified quadratic extension of L. In the notation of the
introduction, J ′ = L′.

Summing up, we see that

Tor(A(Lt)) ∩ C(L̄) ⊆ A(L′)

if C is hyperelliptic.
If p = 0, then Lt = K̄ so this completes the proof of Theorem 1.1 in that

case.
Now let x ∈ Tor(A(L̄)) ∩ C(L̄)\C(Lt). Let x = xp + xp be the decompo-

sition of x into its components of prime-to-p torsion and p-primary torsion,
respectively. Lemma 2.3 implies that xp ∈ A(L̄))\A(Lt). Also, using Box-
all’s lemma 2.4 and the fact that L contains the coordinates of the p-torsion
points, we see that there exists σx ∈ Iw such that σx(x)−x = σx(xp)−xp ∈
A[p](L)\{0}. Hence

(6) σx(x) ∈
⋃

τ∈A[p](L)\{0}

C(L̄) ∩ (C(L̄) + τ).

Lemma 2.6 now implies that

(7) #(C(L̄) ∩ (C(L̄) + τ)) 6 2

for all τ ∈ A[p](L)\{0}. Notice that if σx(x) ∈ C(L̄) ∩ (C(L̄) + τ0) for a
particular τ0 ∈ A[p](L)\{0}, then we have

{σx(x), σ2
x(x), . . . , σpx(x)} ⊆ C(L̄) ∩ (C(L̄) + τ0)

(remember that by construction τ0 is fixed by Iw). On the other hand

{σx(x), σ2
x(x), . . . , σpx(x)} = {x+ τ0, x+ 2τ0, . . . , x+ pτ0 = x}.

Since p > 2 and τ0 has exact order p in A(K̄), this leads to a contradiction.
Thus we have

Tor(A(L̄)) ∩ C(L̄) ⊆ A(Lt).
Now remember that we have shown above (see the italicized sentences) that
Tor(A(Lt)) ∩ C(L̄) ⊆ A(L) if C is not hyperelliptic and that Tor(A(Lt)) ∩
C(L̄) ⊆ A(L′) if C is hyperelliptic. This concludes the proof of (a) and (b).
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