Home · Teaching · Students · Publications

Ricardo Ruiz Baier


Mathematical Institute, University of Oxford
Office S2.34, Andrew Wiles Building
Radcliffe Observatory Quarter, Woodstock Road
OX2 6GG Oxford, United Kingdom
E-mail: ruizbaier@maths.ox.ac.uk, phone: +44 1865 615168


PUBLICATIONS


Under review (submitted preprints)

Under review (submitted preprints)

[9] N. Verma, B. Gómez-Vargas, L. M. De Oliveira Vilaca, S. Kumar, and R. Ruiz-Baier
On the modelling, linear stability, and numerical simulation for advection-diffusion-reaction in poroelastic media.
2020. [ http ]
[8] R. Bürger, S. Kumar, D. Mora, R. Ruiz-Baier, and N. Verma
Virtual element methods for the three-field formulation of time-dependent linear poroelasticity.
2019. [ http ]
[7] G. N. Gatica, B. Gómez-Vargas, and R. Ruiz-Baier
A posteriori error analysis of mixed finite element methods for stress-assisted diffusion problems.
2019. [ http ]
[6] R. Bürger, P. E. Méndez, and R. Ruiz-Baier
Convergence of H(div)-conforming schemes for a new model of sedimentation in circular clarifiers with a rotating rake.
2019. [ http ]
[5] E. Colmenares, G. N. Gatica, S. Moraga, and R. Ruiz-Baier
A fully-mixed finite element method for the steady-state Oberbeck-Boussinesq system.
2019. [ http ]
[4] N. Verma, B. Gómez-Vargas, L. M. De Oliveira Vilaca, S. Kumar, and R. Ruiz-Baier
Well-posedness and discrete analysis for advection-diffusion-reaction in poroelastic media.
2019. [ http ]
[3] G. Baird, R. Bürger, P. E. Méndez, and R. Ruiz-Baier
Second-order schemes for axisymmetric Navier-Stokes-Brinkman and transport equations modelling water filters.
2019. [ http ]
[2] N. Barnafi, G. N. Gatica, D. E. Hurtado, W. Miranda, and R. Ruiz-Baier
A posteriori error estimates for primal and mixed finite element approximations of the deformable image registration problem.
2018. [ http ]
[1] J. Almonacid, G. N. Gatica, R. Oyarzúa, and R. Ruiz-Baier
A new mixed finite element method for the n-dimensional Boussinesq problem with temperature-dependent viscosity.
2018. [ http ]
In press (accepted for publication)

In press (accepted for publication)

[5] M. Alvarez, G. N. Gatica, and R. Ruiz-Baier
A mixed-primal finite element method for the coupling of Brinkman-Darcy flow and nonlinear transport.
IMA Journal of Numerical Analysis, 2020.
bib | DOI | .pdf ]
[4] V. Anaya, Z. De Wijn, B. Gómez-Vargas, D. Mora, and R. Ruiz-Baier
Rotation-based mixed formulations for an elasticity-poroelasticity interface problem.
SIAM Journal of Scientific Computing, 2020.
bib | DOI | .pdf ]
[3] S. Kumar, R. Oyarzúa, R. Ruiz-Baier, and R. Sandilya
Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity.
ESAIM: Mathematical Modelling and Numerical Analysis, 2020.
bib | DOI | .pdf ]
[2] F. Levrero-Florencio, F. Margara, E. Zacur, A. Bueno-Orovio, Z. J. Wang, A. Santiago, J. Aguado-Sierra, G. Houzeaux, V. Grau, D. Kay, M. Vazquez, R. Ruiz-Baier, and B. Rodriguez
Sensitivity analysis of a strongly-coupled human-based electromechanical cardiac model: effect of mechanical parameters on physiologically relevant biomarkers.
Computer Methods in Applied Mechanics and Engineering, 2020.
bib | DOI | .pdf ]
[1] A. Propp, A. Gizzi, F. Levrero-Florencio, and R. Ruiz-Baier
An orthotropic electro-viscoelastic model for the heart with stress-assisted diffusion.
Biomechanics and Modeling in Mechanobiology, 2020.
bib | DOI | .pdf ]
Published in refereed international journals

Published in refereed international journals

[72] J. Almonacid, G. N. Gatica, and R. Ruiz-Baier
Ultra-weak symmetry of stress for augmented mixed finite element formulations in continuum mechanics.
Calcolo, 57:2(1–25), 2020.
bib | DOI | .pdf ]
[71] R. Ruiz-Baier, A. Gizzi, A. Loppini, C. Cherubini, and S. Filippi
Modelling thermo-electro-mechanical effects in orthotropic cardiac tissue.
Communications in Computational Physics, 27(1):87–115, 2020.
bib | DOI | .pdf ]
[70] M. Alvarez, G. N. Gatica, B. Gómez-Vargas, and R. Ruiz-Baier
New mixed finite element methods for natural convection with phase-change in porous media.
Journal of Scientific Computing, 80(1):141–174, 2019.
bib | DOI | .pdf ]
[69] V. Anaya, A. Bouharguane, D. Mora, C. Reales, R. Ruiz-Baier, N. Seloula, and H. Torres
Analysis and approximation of a vorticity-velocity-pressure formulation for the Oseen equations.
Journal of Scientific Computing, 80(3):1577–1606, 2019.
bib | DOI | .pdf ]
[68] V. Anaya, Z. De Wijn, D. Mora, and R. Ruiz-Baier
Mixed displacement-rotation-pressure formulations for linear elasticity.
Computer Methods in Applied Mechanics and Engineering, 344:71–94, 2019.
bib | DOI | .pdf ]
[67] V. Anaya, B. Gómez-Vargas, D. Mora, and R. Ruiz-Baier
Incorporating variable viscosity in vorticity-based formulations for Brinkman equations.
Comptes Rendus Mathématiques, 357(6):552–560, 2019.
bib | DOI | .pdf ]
[66] V. Anaya, D. Mora, C. Reales, and R. Ruiz-Baier
A vorticity-pressure finite element formulation for the Brinkman-Darcy coupled problem.
Numerical Methods for Partial Differential Equations, 35(2):528–544, 2019.
bib | DOI | .pdf ]
[65] R. Bürger, P. E. Méndez, and R. Ruiz-Baier
On H(div)-conforming methods for double-diffusion equations in porous media.
SIAM Journal on Numerical Analysis, 57(3):1318–1343, 2019.
bib | DOI | .pdf ]
[64] L. M. De Oliveira Vilaca, M. C. Milinkovitch, and R. Ruiz-Baier
Numerical approximation of a 3D mechanochemical interface model for skin patterning.
Journal of Computational Physics, 384:383–404, 2019.
bib | DOI | .pdf ]
[63] G. N. Gatica, B. Gómez-Vargas, and R. Ruiz-Baier
Formulation and analysis of fully-mixed finite element methods for stress-assisted diffusion problems.
Computers & Mathematics with Applications, 77(5):1312–1330, 2019.
bib | DOI | .pdf ]
[62] S. Kumar, R. Ruiz-Baier, and R. Sandilya
Error bounds for discontinuous finite volume discretisations of Brinkman optimal control problems.
Journal of Scientific Computing, 78(1):74–93, 2019.
bib | DOI | .pdf ]
[61] J. Woodfield, M. Alvarez, B. Gómez-Vargas, and R. Ruiz-Baier
Stability and finite element approximation of phase change models for natural convection in porous media.
Journal of Computational and Applied Mathematics, 360:117–137, 2019.
bib | DOI | .pdf ]
[60] M. Alvarez, G. N. Gatica, and R. Ruiz-Baier
A posteriori error estimation for an augmented mixed-primal method applied to sedimentation-consolidation systems.
Journal of Computational Physics, 367:332–346, 2018.
bib | DOI | .pdf ]
[59] V. Anaya, M. Bendahmane, D. Mora, and R. Ruiz-Baier
On a vorticity-based formulation for reaction-diffusion-Brinkman systems.
Networks and Heterogeneous Media, 13(1):69–94, 2018.
bib | DOI | .pdf ]
[58] R. Bürger, S. Kumar Kenettinkara, R. Ruiz-Baier, and H. Torres
Coupling of discontinuous Galerkin schemes for viscous flow in porous media with adsorption.
SIAM Journal of Scientific Computing, 40(2):B637–B662, 2018.
bib | DOI | .pdf ]
[57] J. Camaño, R. Oyarzúa, R. Ruiz-Baier, and G. Tierra
Error analysis of an augmented mixed method for the Navier-Stokes problem with mixed boundary conditions.
IMA Journal of Numerical Analysis, 38(3):1452–1484, 2018.
bib | DOI | .pdf ]
[56] G. N. Gatica, B. Gómez-Vargas, and R. Ruiz-Baier
Analysis and mixed-primal finite element discretisations for stress-assisted diffusion problems.
Computer Methods in Applied Mechanics and Engineering, 337:411–438, 2018.
bib | DOI | .pdf ]
[55] S. Kumar, R. Ruiz-Baier, and R. Sandilya
Mixed and discontinuous finite volume element schemes for the optimal control of immiscible flow in porous media.
Computers & Mathematics with Applications, 76(4):923–937, 2018.
bib | DOI | .pdf ]
[54] A. Loppini, A. Gizzi, R. Ruiz-Baier, C. Cherubini, F. H. Fenton, and S. Filippi
Competing mechanisms of stress-assisted diffusivity and stretch-activated currents in cardiac electromechanics.
Frontiers in Physiology, 9(1714):1–16, 2018.
bib | DOI | .pdf ]
[53] M. Alvarez, G. N. Gatica, and R. Ruiz-Baier
A posteriori error analysis of a fully-mixed formulation for the Brinkman-Darcy problem.
Calcolo, 54(4):1491–1519, 2017.
bib | DOI | .pdf ]
[52] V. Anaya, D. Mora, C. Reales, and R. Ruiz-Baier
Mixed methods for a stream-function–vorticity formulation of the axisymmetric Brinkman equations.
Journal of Scientific Computing, 71(1):348–364, 2017.
bib | DOI | .pdf ]
[51] V. Anaya, D. Mora, and R. Ruiz-Baier
Pure vorticity formulation and Galerkin discretization for the Brinkman equations.
IMA Journal of Numerical Analysis, 37(4):2020–2041, 2017.
bib | DOI | http ]
[50] R. Bürger, R. Ruiz-Baier, and C. Tian
Stability analysis and finite volume element discretization for delay-driven spatio-temporal patterns in a predator-prey model.
Mathematics and Computers in Simulation, 132:28–52, 2017.
bib | DOI | .pdf ]
[49] J. Camaño, R. Oyarzúa, G. N. Gatica, and R. Ruiz-Baier
An augmented stress-based mixed finite element method for the steady state Navier-Stokes equations with nonlinear viscosity.
Numerical Methods for Partial Differential Equations, 33(5):1692–1725, 2017.
bib | DOI | .pdf ]
[48] C. Cherubini, S. Filippi, A. Gizzi, and R. Ruiz-Baier
A note on stress-driven anisotropic diffusion and its role in active deformable media.
Journal of Theoretical Biology, 430(7):221–228, 2017.
bib | DOI | .pdf ]
[47] A. Gizzi, A. Loppini, R. Ruiz-Baier, A. Ippolito, A. Camassa, A. La Camera, E. Emmi, L. Di Perna, V. Garofalo, C. Cherubini, and S. Filippi
Nonlinear diffusion and thermo-electric coupling in a two-variable model of cardiac action potential.
Chaos, 27:093919–11, 2017.
bib | DOI | .pdf ]
[46] P. Lenarda, M. Paggi, and R. Ruiz-Baier
Partitioned coupling of advection-diffusion-reaction systems and Brinkman flows.
Journal of Computational Physics, 344:281–302, 2017.
bib | DOI | .pdf ]
[45] A. Quarteroni, T. Lassila, S. Rossi, and R. Ruiz-Baier
Integrated Heart – Coupled multiscale and multiphysics models for the simulation of the cardiac function.
Computer Methods in Applied Mechanics and Engineering, 314:345–407, 2017.
bib | DOI | .pdf ]
[44] M. Alvarez, G. N. Gatica, and R. Ruiz-Baier
A vorticity-based fully-mixed formulation for the 3D Brinkman-Darcy problem.
Computer Methods in Applied Mechanics and Engineering, 307:68–95, 2016.
bib | DOI | .pdf ]
[43] M. Alvarez, G. N. Gatica, and R. Ruiz-Baier
A posteriori error analysis for a viscous flow – transport problem.
ESAIM: Mathematical Modelling and Numerical Analysis, 50(6):1789–1816, 2016.
bib | DOI | .pdf ]
[42] M. Alvarez, G. N. Gatica, and R. Ruiz-Baier
Mixed-primal finite element approximation of a steady sedimentation-consolidation system.
Mathematical Models and Methods in Applied Sciences, 26(5):867–900, 2016.
bib | DOI | .pdf ]
[41] V. Anaya, D. Mora, R. Oyarzúa, and R. Ruiz-Baier
A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem.
Numerische Mathematik, 133(4):781–817, 2016.
bib | DOI | .pdf ]
[40] M. Bendahmane, R. Ruiz-Baier, and C. Tian
Turing pattern dynamics and adaptive discretization of a superdiffusive Lotka-Volterra system.
Journal of Mathematical Biology, 72:1441–1465, 2016.
bib | DOI | .pdf ]
[39] R. Bürger, S. Kumar, S. Kumar Kenettinkara, and R. Ruiz-Baier
Discontinuous approximation of viscous two-phase flow in heterogeneous porous media.
Journal of Computational Physics, 321:126–150, 2016.
bib | DOI | .pdf ]
[38] G. N. Gatica, R. Ruiz-Baier, and G. Tierra
A mixed finite element method for the Darcy equations with pressure-dependent porosity.
Mathematics of Computation, 85(297):1–33, 2016.
bib | DOI | .pdf ]
[37] G. N. Gatica, R. Ruiz-Baier, and G. Tierra
A posteriori error analysis of an augmented mixed method for the Navier-Stokes equations with nonlinear viscosity.
Computers & Mathematics with Applications, 72(9):2289–2310, 2016.
bib | DOI | .pdf ]
[36] R. Oyarzúa and R. Ruiz-Baier
Locking-free finite element methods for poroelasticity.
SIAM Journal on Numerical Analysis, 54(5):2951–2973, 2016.
bib | DOI | .pdf ]
[35] R. Ruiz-Baier and I. Lunati
Mixed finite element – discontinuous finite volume element discretization of a general class of multicontinuum models.
Journal of Computational Physics, 322:666–688, 2016.
bib | DOI | .pdf ]
[34] M. Alvarez, G. N. Gatica, and R. Ruiz-Baier
An augmented mixed–primal finite element method for a coupled flow–transport problem.
ESAIM: Mathematical Modelling and Numerical Analysis, 49(5):1399–1427, 2015.
bib | DOI | .pdf ]
[33] V. Anaya, G. N. Gatica, D. Mora, and R. Ruiz-Baier
An augmented velocity-vorticity-pressure formulation for the Brinkman equations.
International Journal for Numerical Methods in Fluids, 79(3):109–137, 2015.
bib | DOI | .pdf ]
[32] V. Anaya, D. Mora, C. Reales, and R. Ruiz-Baier
Stabilized mixed approximation of axisymmetric Brinkman flows.
ESAIM: Mathematical Modelling and Numerical Analysis, 49(3):855–874, 2015.
bib | DOI | .pdf ]
[31] B. Andreianov, M. Bendahmane, A. Quarteroni, and R. Ruiz-Baier
Solvability analysis and numerical approximation of linearized cardiac electromechanics.
Mathematical Models and Methods in Applied Sciences, 25(05):959–993, 2015.
bib | DOI | .pdf ]
[30] R. Bürger, S. Kumar, and R. Ruiz-Baier
Discontinuous finite volume element discretization for coupled flow–transport problems arising in models of sedimentation.
Journal of Computational Physics, 299:446–471, 2015.
bib | DOI | .pdf ]
[29] J. Camaño, R. Oyarzúa, G. N. Gatica, R. Ruiz-Baier, and P. Venegas
New fully-mixed finite element methods for the Stokes-Darcy coupling.
Computer Methods in Applied Mechanics and Engineering, 295:362–395, 2015.
bib | DOI | .pdf ]
[28] M. Dupraz, S. Filippi, A. Gizzi, A. Quarteroni, and R. Ruiz-Baier
Finite element and finite volume-element simulation of pseudo-ECGs and cardiac alternans.
Mathematical Methods in the Applied Sciences, 38(6):1046–1058, 2015.
bib | DOI | .pdf ]
[27] S. Kumar and R. Ruiz-Baier
Equal order discontinuous finite volume element methods for the Stokes problem.
Journal of Scientific Computing, 65(3):956–978, 2015.
bib | DOI | .pdf ]
[26] R. Ruiz-Baier
Primal-mixed formulations for reaction-diffusion systems on deforming domains.
Journal of Computational Physics, 299:320–338, 2015.
bib | DOI | .pdf ]
[25] R. Ruiz-Baier and H. Torres
Numerical solution of a multidimensional sedimentation problem using finite volume-element methods.
Applied Numerical Mathematics, 95:280–291, 2015.
bib | DOI | .pdf ]
[24] Z. Lin, R. Ruiz-Baier, and C. Tian
Finite volume element approximation of an inhomogeneous Brusselator model with cross-diffusion.
Journal of Computational Physics, 256:806–823, 2014.
bib | DOI | .pdf ]
[23] S. Rossi, T. Lassila, R. Ruiz-Baier, A. Sequeira, and A. Quarteroni
Thermodynamically consistent orthotropic activation model capturing ventricular systolic wall thickening in cardiac electromechanics.
European Journal of Mechanics: A/Solids, 48:129–142, 2014.
bib | DOI | .pdf ]
[22] R. Ruiz-Baier, A. Gizzi, S. Rossi, C. Cherubini, A. Laadhari, S. Filippi, and A. Quarteroni
Mathematical modeling of active contraction in isolated cardiomyocytes.
Mathematical Medicine and Biology, 31(3):259–283, 2014.
bib | DOI | .pdf ]
[21] V. Anaya, D. Mora, and R. Ruiz-Baier
An augmented mixed finite element method for the vorticity-velocity-pressure formulation of the Stokes equations.
Computer Methods in Applied Mechanics and Engineering, 267:261–274, 2013.
bib | DOI | .pdf ]
[20] D. Baroli, A. Quarteroni, and R. Ruiz-Baier
Convergence of a stabilized discontinuous Galerkin method for incompressible nonlinear elasticity.
Advances in Computational Mathematics, 39(2):425–443, 2013.
bib | DOI | .pdf ]
[19] A. Laadhari, R. Ruiz-Baier, and A. Quarteroni
Fully Eulerian finite element approximation of a fluid-structure interaction problem in cardiac cells.
International Journal for Numerical Methods in Engineering, 96(11):712–738, 2013.
bib | DOI | .pdf ]
[18] R. Ruiz-Baier and C. Tian
Mathematical analysis and numerical simulation of pattern formation under cross-diffusion.
Nonlinear Analysis: Real World Applications, 14(1):601–612, 2013.
bib | DOI | .pdf ]
[17] B. Ainseba, M. Bendahmane, and R. Ruiz-Baier
Analysis of an optimal control problem for the tridomain model in cardiac electrophysiology.
Journal of Mathematical Analysis and Applications, 388(1):231–247, 2012.
bib | DOI | .pdf ]
[16] R. Bürger, R. Ruiz-Baier, K. Schneider, and H. Torres
A multiresolution method for the simulation of sedimentation in inclined channels.
International Journal of Numerical Analysis & Modeling, 9(3):479–504, 2012.
bib | DOI | .pdf ]
[15] R. Bürger, R. Ruiz-Baier, and H. Torres
A stabilized finite volume element formulation for sedimentation-consolidation processes.
SIAM Journal of Scientific Computing, 34(3):B265–B289, 2012.
bib | DOI | .pdf ]
[14] F. Nobile, A. Quarteroni, and R. Ruiz-Baier
An active strain electromechanical model for cardiac tissue.
International Journal for Numerical Methods in Biomedical Engineering, 28(1):52–71, 2012.
bib | DOI | .pdf ]
[13] S. Rossi, R. Ruiz-Baier, L. F. Pavarino, and A. Quarteroni
Orthotropic active strain models for the numerical simulation of cardiac biomechanics.
International Journal for Numerical Methods in Biomedical Engineering, 28(6–7):761–788, 2012.
bib | DOI | .pdf ]
[12] B. Andreianov, M. Bendahmane, and R. Ruiz-Baier
Analysis of a finite volume method for a cross-diffusion model in population dynamics.
Mathematical Models and Methods in Applied Sciences, 21(02):307–344, 2011.
bib | DOI | .pdf ]
[11] S. Berres and R. Ruiz-Baier
A fully adaptive numerical approximation for a two-dimensional epidemic model with nonlinear cross-diffusion.
Nonlinear Analysis: Real World Applications, 12(5):2888–2903, 2011.
bib | DOI | .pdf ]
[10] S. Berres, R. Ruiz-Baier, H. Schwandt, and E. M. Tory
An adaptive finite-volume method for a model of two-phase pedestrian flow.
Networks and Heterogeneous Media, 6(3):401–423, 2011.
bib | DOI | .pdf ]
[9] A. Quarteroni and R. Ruiz-Baier
Analysis of a finite volume element method for the Stokes problem.
Numerische Mathematik, 118(4):737–764, 2011.
bib | DOI | .pdf ]
[8] M. Bendahmane, R. Bürger, and R. Ruiz-Baier
A multiresolution space-time adaptive scheme for the bidomain model in electrocardiology.
Numerical Methods for Partial Differential Equations, 26(6):1377–1404, 2010.
bib | DOI | .pdf ]
[7] M. Bendahmane, R. Bürger, and R. Ruiz-Baier
A finite volume scheme for cardiac propagation in media with isotropic conductivities.
Mathematics and Computers in Simulation, 80(9):1821–1840, 2010.
bib | DOI | .pdf ]
[6] R. Bürger, R. Ruiz-Baier, and K. Schneider
Adaptive multiresolution methods for the simulation of waves in excitable media.
Journal of Scientific Computing, 43(2):261–290, 2010.
bib | DOI | .pdf ]
[5] M. Bendahmane, R. Bürger, R. Ruiz-Baier, and K. Schneider
Adaptive multiresolution schemes with local time stepping for two- dimensional degenerate reaction-diffusion systems.
Applied Numerical Mathematics, 59(7):1668–1692, 2009.
bib | DOI | .pdf ]
[4] M. Bendahmane, R. Bürger, R. Ruiz-Baier, and J. M. Urbano
On a doubly nonlinear diffusion model of chemotaxis with prevention of overcrowding.
Mathematical Methods in the Applied Sciences, 32(13):1704–1737, 2009.
bib | DOI | .pdf ]
[3] R. Bürger and R. Ruiz-Baier
Multiresolution simulation of reaction-diffusion systems with strong degeneracy.
SeMA Journal: Boletín de la Sociedad Española de Matemática Aplicada, 47:73–80, 2009.
bib | DOI | .pdf ]
[2] R. Bürger, R. Ruiz, K. Schneider, and M. Sepúlveda
Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension.
ESAIM: Mathematical Modelling and Numerical Analysis, 42(4):535–563, 2008.
bib | DOI | .pdf ]
[1] R. Bürger, R. Ruiz, K. Schneider, and M. Sepúlveda
Fully adaptive multiresolution schemes for strongly degenerate parabolic equations with discontinuous flux.
Journal of Engineering Mathematics, 60(3-4):365–385, 2008.
bib | DOI | .pdf ]
Conference proceedings and book chapters

Conference proceedings and book chapters

[17] A. Gizzi, A. Propp, and R. Ruiz-Baier
Mixed formulations for stress-assisted diffusion problems in cardiac biomechanics.
In M. Mallayya, editor, ICNumACA'18: Proceedings of the International Conference on Numerical Analysis, Computing and Applications, volume 1, pages 1–18. Mohandas College of Engineering, Kerala - India, 2019.
bib | DOI | .pdf ]
[16] M. Alvarez, B. Gómez-Vargas, R. Ruiz-Baier, and J. Woodfield
Stability of a second-order method for phase change in porous media flow.
Proceedings in Applied Mathematics and Mechanics, 18(1):e201800021–2, 2018.
bib | DOI | .pdf ]
[15] R. Bürger, J. Careaga, S. Diehl, C. Mejías, and R. Ruiz-Baier
Convection-diffusion-reaction and transport-flow problems motivated by models of sedimentation: some recent advances.
In B. Sirakov, P. de Souza, and M. Viana, editors, Proceedings of the International Congress of Mathematicians, volume IV: Invited Lectures, pages 3489–3514. World Scientific, Singapore, 2018.
bib | DOI | .pdf ]
[14] R. Bürger, S. Kumar Kenettinkara, R. Ruiz-Baier, and H. Torres
Discontinuous approximation of flow in porous media with adsorption.
Proceedings in Applied Mathematics and Mechanics, 18(1):e201800064–5, 2018.
bib | DOI | .pdf ]
[13] S. Kumar, R. Ruiz-Baier, and R. Sandilya
Discontinuous finite volume element methods for the optimal control of Brinkman equations.
In C. Cancès and P. Omnes, editors, Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems, volume 200 of Springer Proc. Math. Stat., pages 307–315. Springer International Publishing, 2017.
bib | DOI | .pdf ]
[12] R. Bürger, S. Kumar, S. K. Kumar Kenettinkara, and R. Ruiz-Baier
A discontinuous method for oil-water flow in heterogeneous porous media.
Proceedings in Applied Mathematics and Mechanics, 16:763–764, 2016.
bib | DOI | .pdf ]
[11] A. Gizzi, R. Ruiz-Baier, S. Rossi, A. Laadhari, C. Cherubini, and S. Filippi
A three-dimensional continuum model of active contraction in single cardiomyocytes.
In A. Quarteroni, editor, Modeling the Heart and the Circulatory System, pages 157–176. Springer-Verlag, Milano, 2015.
bib | DOI | .pdf ]
[10] F. Betancourt, R. Bürger, R. Ruiz-Baier, H. Torres, and C. A. Vega
On numerical methods for hyperbolic conservation laws and related equations modelling sedimentation of solid-liquid suspensions.
In G.-Q. G. Chen, H. Holden, and K. H. Karlsen, editors, Hyperbolic conservation laws and related analysis with applications, volume 49 of Springer Proc. Math. Stat., pages 23–68. Springer, Heidelberg, 2014.
bib | DOI | .pdf ]
[9] R. Ruiz-Baier, D. Ambrosi, S. Pezzuto, S. Rossi, and A. Quarteroni
Activation models for the numerical simulation of cardiac electromechanical interactions.
In G. Holzapfel and E. Kuhl, editors, Computer Models in Biomechanics: From Nano to Macro, pages 189–201. Springer, Netherlands, 2013.
bib | DOI | .pdf ]
[8] S. Berres and R. Ruiz-Baier
Simulation of an epidemic model with nonlinear cross-diffusion.
In E. Vázquez-Cendón, A. Hidalgo, P. García-Navarro, and L. Cea, editors, Numerical Methods for Hyperbolic Equations, pages 331–338. CRC Press/Balkema, Leiden, 2012.
bib | DOI | .pdf ]
[7] S. Berres, R. Ruiz-Baier, H. Schwandt, and E. M. Tory
A two-dimensional model of pedestrian flow generating pattern formation.
In T. Li and S. Jiang, editors, Hyperbolic problems–theory, numerics and applications. Volume 1, volume 17–18 of Ser. Contemp. Appl. Math. CAM, pages 304–311. World Sci. Publishing, Singapore, 2012.
bib | DOI ]
[6] R. Bürger, R. Ruiz-Baier, and H. Torres
A finite volume element method for simulating secondary settling tanks.
Proceedings in Applied Mathematics and Mechanics, 12(1):667–668, 2012.
bib | DOI | .pdf ]
[5] A. Quarteroni, S. Rossi, and R. Ruiz-Baier
On some numerical aspects of an active strain model in cardiac mechanics.
In P. Nithiarasu, editor, CMBE11: 2nd International Conference on Computational & Mathematical Biomedical Engineering, volume 1, pages 328–331. Swansea University, UK, 2011.
bib | DOI ]
[4] S. Rossi, R. Ruiz-Baier, L. F. Pavarino, and A. Quarteroni
Active strain and activation models in cardiac electromechanics.
Proceedings in Applied Mathematics and Mechanics, 11(1):119–120, 2011.
bib | DOI | .pdf ]
[3] R. Bürger and R. Ruiz-Baier
Adaptive multiresolution simulation of waves in electrocardiology.
In G. Kreiss, P. Lötstedt, A. Målqvist, and M. Neytcheva, editors, Numerical Mathematics and Advanced Applications, number 2 in Springer Proc. Math. Stat., pages 199–207. Springer, Heidelberg, 2010.
bib | DOI | .pdf ]
[2] M. Bendahmane, R. Bürger, R. Ruiz-Baier, and K. Schneider
Adaptive multiresolution schemes for reaction-diffusion systems.
Proceedings in Applied Mathematics and Mechanics, 8(1):10969–10970, 2008.
bib | DOI | .pdf ]
[1] R. Bürger, R. Ruiz, K. Schneider, and M. Sepúlveda
Multiresolution schemes for an extended clarifier-thickener model.
Proceedings in Applied Mathematics and Mechanics, 7(1):1041803–1041804, 2007.
bib | DOI | .pdf ]
Theses

Theses

[2] R. Ruiz-Baier
Numerical Methods and Analysis of Degenerate Parabolic Equations and Reaction-Diffusion Systems.
PhD thesis in Applied Sciences with mention in Mathematical Engineering, Universidad de Concepción, Chile, December 2008.
bib | http | .pdf ]
[1] R. Ruiz-Baier
Métodos de Multiresolución y su Aplicación a un Modelo de Ingeniería.
Mathematical Engineering thesis, Universidad de Concepción, Chile, March 2005.
bib | http | .pdf ]

This file was generated by bibtex2html 1.98.