Product structure of graphs with an excluded minor

Freddie Illingworth ${ }^{\dagger} \quad$ Alex Scott ${ }^{\dagger}$ David R. Wood ${ }^{\ddagger}$

Abstract

This paper shows that K_{t}-minor-free (and $K_{s, t}$-minor-free) graphs G are subgraphs of products of a tree-like graph H (of bounded treewidth) and a complete graph K_{m}. Our results include optimal bounds on the treewidth of H and optimal bounds (to within a constant factor) on m in terms of the number of vertices of G and the treewidth of G. These results follow from a more general theorem whose corollaries include a strengthening of the celebrated separator theorem of Alon, Seymour, and Thomas [J. Amer. Math. Soc. 1990] and the Planar Graph Product Structure Theorem of Dujmović et al. [J. ACM 2020].

1 Introduction

Graph Product Structure Theory is a body of research which describes complicated graphs as subgraphs of products of simpler graphs. Typically, the simpler graphs are tree-like, in the sense that they have bounded treewidth, which is the standard measure of how similar a graph is to a tree. (We postpone the definition of treewidth and other standard graph-theoretic concepts until Section 2.) This area has recently received a lot of attention $[3,8,9,12,17,19,21,27,28,42,44]$ with highlights including the Planar Graph Product Structure Theorem of Dujmović et al. [17]; see Theorem 7 below.

Our main contribution is a powerful general result, Theorem 12, that essentially converts a tree-decomposition of a graph excluding a particular minor into a product that inherits some of the properties of the decomposition. Its applications include a strengthening of the celebrated Alon-Seymour-Thomas separator theorem as well as the Planar Graph Product Structure Theorem.

[^0]Throughout the paper we work with strong products of graphs. The strong product $A \boxtimes B$ of graphs A and B has vertex-set $V(A) \times V(B)$, where distinct vertices $(v, x),(w, y)$ are adjacent if $v=w$ and $x y \in E(B)$, or $x=y$ and $v w \in E(A)$, or $v w \in E(A)$ and $x y \in E(B)$. This paper focuses on products of the form $H \boxtimes K_{m}$ and $H \boxtimes P \boxtimes K_{m}$ where H is a graph of bounded treewidth, P is a path and m is some function of the original graph. An alternative view of the product $H \boxtimes K_{m}$ is as a 'blow-up' of the graph H, obtained by replacing each vertex of H be a copy of the complete graph K_{m} and each edge of H by a copy of the complete bipartite graph $K_{m, m}$.

In one of the cornerstone results of Graph Minor Theory, Alon, Seymour, and Thomas [1] proved that every K_{t}-minor-free graph has a balanced separator of size at most $t^{3 / 2} n^{1 / 2}$. In fact, they proved the following stronger result. ${ }^{1}$
Theorem 1 ([1]). Every n-vertex K_{t}-minor-free graph G has treewidth $\operatorname{tw}(G)<t^{3 / 2} n^{1 / 2}$.
Our first result is the following strengthening of Theorem 1 that describes K_{t}-minor-free graphs as blow-ups of simpler graphs, namely graphs with bounded treewidth.

Theorem 2. For any integer $t \geqslant 4$, every n-vertex K_{t}-minor-free graph G is
(a) isomorphic to a subgraph of $H \boxtimes K_{\lfloor m\rfloor}$, where $\operatorname{tw}(H) \leqslant t-1$ and $m:=\sqrt{(t-3) n}$;
(b) isomorphic to a subgraph of $H \boxtimes K_{\lfloor m\rfloor}$, where $\operatorname{tw}(H) \leqslant t-2$ and $m:=2 \sqrt{(t-3) n}$.

Theorem 2(a) immediately implies Theorem 1, since

$$
\operatorname{tw}(G) \leqslant \operatorname{tw}\left(H \boxtimes K_{\lfloor m\rfloor}\right) \leqslant(\operatorname{tw}(H)+1) m-1<t \sqrt{(t-3) n}
$$

The dependence on n in the blow-up factor m is best possible since the $n^{1 / 2} \times n^{1 / 2}$ planar grid graph G is K_{5}-minor-free and has treewidth $n^{1 / 2}$. If G is isomorphic to a subgraph of $H \boxtimes K_{m}$ where H has bounded treewidth, then $n^{1 / 2} \leqslant \operatorname{tw}(G) \leqslant(\operatorname{tw}(H)+1) m-1$ and so $m=\Omega\left(n^{1 / 2}\right)$.

While our proof of Theorem 2 uses some ideas from the proof of Theorem 1 (in particular, Lemma 10 below), it is in fact significantly simpler, avoiding the use of havens or any form of treewidth duality. Instead, the proof directly constructs an isomorphism from G to $H \boxtimes K_{\lfloor m\rfloor}$ where H is a graph obtained by repeated clique-sums (which implies the desired treewidth bound).

We also prove the following analogous theorem for excluded complete bipartite minors. Let $K_{s, t}^{*}$ be the graph whose vertex-set can be partitioned $A \cup B$, where $|A|=s,|B|=t$, A is a clique, and every vertex in A is adjacent to every vertex in B, that is, $K_{s, t}^{*}$ is obtained from $K_{s, t}$ by adding all the edges inside the part of size s.

[^1]Theorem 3. For all integers $s, t \geqslant 2$, every n-vertex $K_{s, t}^{*}$-minor-free graph G is isomorphic to a subgraph of $H \boxtimes K_{\lfloor m\rfloor}$, where $\operatorname{tw}(H) \leqslant s$ and $m:=2 \sqrt{(s-1)(t-1) n}$.

Again the $n^{1 / 2} \times n^{1 / 2}$ planar grid (which is $K_{3,3}$-minor-free) shows the dependence on n in the blow-up factor is best possible - we must have $m=\Omega\left(n^{1 / 2}\right)$.

In light of Theorem 1, it is natural to try to qualitatively strengthen Theorems 2 and 3 by bounding the blow-up factor by a function of the treewidth of G, and ideally by a linear function of $\operatorname{tw}(G)$ since if $G \subseteq H \boxtimes K_{m}$ and $\operatorname{tw}(H)=\mathcal{O}(1)$, then $m=\Omega(\operatorname{tw}(G))$. In this direction, Campbell et al. [9, Thm. 18] proved that every K_{t}-minor-free graph G is isomorphic to a subgraph of $H \boxtimes K_{m}$ where $\operatorname{tw}(H) \leqslant t-2$ and $m=\mathcal{O}_{t}\left(\operatorname{tw}(G)^{2}\right)$. Similarly, they proved [9, Thm. 19] that every $K_{s, t}$-minor-free graph G is isomorphic to a subgraph of $H \boxtimes K_{m}$ where $\operatorname{tw}(H) \leqslant s$ and $m=\mathcal{O}_{s, t}\left(\operatorname{tw}(G)^{2}\right)$. Here $\mathcal{O}_{s, t}(\cdot)$ and $\Omega_{s, t}(\cdot)$ hide dependence on s and t.

We achieve a blow-up factor that is linear in $\operatorname{tw}(G)$, and is independent of t for $K_{t^{-}}$ minor-free graphs.

Theorem 4. For any integer $t \geqslant 2$, every K_{t}-minor-free graph G is isomorphic to a subgraph of $H \boxtimes K_{m}$, where $\mathrm{tw}(H) \leqslant t-2$ and $m:=\operatorname{tw}(G)+1$.

The value of m in Theorem 4 is within a factor $t-1$ of best possible, since

$$
\operatorname{tw}(G) \leqslant \operatorname{tw}\left(H \boxtimes K_{m}\right) \leqslant(\operatorname{tw}(H)+1) m-1<(t-1) m
$$

Furthermore, the $t-2$ bound on the treewidth of H is best possible, since Campbell et al. [9, Thm. 18] proved that, for any function f and for all t, there is a K_{t}-minor-free graph G that is not a subgraph of $H \boxtimes K_{f(\operatorname{tw}(G))}$ for any graph H with treewidth at most $t-3$.

For $K_{s, t}^{*}$-minor-free graphs we also obtain a blow-up factor that is linear in $\operatorname{tw}(G)$.
Theorem 5. For all integers $s, t \geqslant 2$, every $K_{s, t}^{*}$-minor-free graph G is isomorphic to a subgraph of $H \boxtimes K_{m}$, where $\operatorname{tw}(H) \leqslant s$ and $m:=(t-1)(\operatorname{tw}(G)+1)$.

Here the value of m is within a factor $(s+1)(t-1)$ of best possible and the $\operatorname{tw}(H) \leqslant s$ bound is best possible [9, Thm. 19].

An attraction of Theorems 3 and 5 is that $\operatorname{tw}(H)$ depends on s and not on the size of the excluded minor. This is particularly relevant for graphs of Euler genus ${ }^{2} g$, since these contain no $K_{3,2 g+3}$-minor. Thus the next result follow from Theorems 3 and 5 .

[^2]Corollary 6. For any integer $g \geqslant 0$, every n-vertex graph G of Euler genus g is isomorphic to a subgraph of $H \boxtimes K_{\lfloor m\rfloor}$, where $\operatorname{tw}(H) \leqslant 3$ and

$$
m:=\min \{4 \sqrt{(g+1) n}, 2(g+1)(\operatorname{tw}(G)+1)\}
$$

Corollary 6 is a product strengthening of results about balanced separators (equivalently, about treewidth) in graphs embeddable on surfaces of genus g, independently due to Djidjev [13] and Gilbert, Hutchinson, and Tarjan [25]. In particular, Corollary 6 implies that $\operatorname{tw}(G) \leqslant(\operatorname{tw}(H)+1) m-1=4 m-1<16 \sqrt{(g+1) n}$ and that G has a balanced separator of size at most $4 m \leqslant 16 \sqrt{(g+1) n}$. Both these bounds are tight up to the multiplicative constant.

Theorems 4 and 5 are in fact special cases of a more general result, Theorem 12, that essentially converts any tree-decomposition of a graph excluding a particular minor into a strong product. The starting tree-decomposition may be chosen to suit one's needs. Making use of this flexibility, we deduce the Planar Graph Product Structure Theorem, Theorem 7(b).

Theorem 7 ([17]). Every planar graph is isomorphic to a subgraph of:
(a) $H \boxtimes P$ for some graph H of treewidth 8 and for some path P.
(b) $H \boxtimes P \boxtimes K_{3}$ for some graph H of treewidth 3 and for some path P.

Theorem 7 has been the key tool to resolve several open problems regarding queue layouts [17], nonrepetitive colouring [16], p-centered colouring [14], adjacency labelling [5, $15,23]$, infinite graphs [29], twin-width [3, 6], and comparable box dimension [20].

The bound of 3 on the treewidth of H in (b) is tight [17] even if K_{3} is replaced by any constant-sized complete graph. Note that $\mathrm{tw}\left(H \boxtimes K_{3}\right) \leqslant 3 \mathrm{tw}(H)+2$ for any graph H, so (b) implies (a) but with 8 replaced by 11. Our proof of Theorem 7(b) removes much of the topology from the original proof, avoiding the use of Sperner's planar triangulation lemma. This allows us to prove a more general $H \boxtimes P \boxtimes K_{m}$ structure theorem, Theorem 16, which we apply in the more general setting of apex-minor-free graphs, Theorem 20. This in turn has applications for p-centred colourings.

2 Preliminaries

We consider simple finite undirected graphs G with vertex-set $V(G)$ and edge-set $E(G)$. For each vertex $v \in V(G)$, let $N_{G}(v)=\{w \in V(G): v w \in E(G)\}$. For $S \subseteq V(G)$, let $N_{G}(S)=\bigcup\left\{N_{G}(v): v \in S\right\} \backslash S$.

A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from a subgraph of G by contracting edges. Say G is H-minor-free if H is not a minor of G. A K_{r}-model in a graph G consists of pairwise-disjoint vertex-sets $\left(U_{1}, \ldots, U_{r}\right)$ such that, for each i, the induced subgraph $G\left[U_{i}\right]$ is connected and, for all distinct i, j, there is an edge between U_{i} and U_{j}. Clearly K_{r} is a minor of a graph G if and only if G contains a K_{r}-model.

2.1 Tree-decompositions and treewidth

A tree-decomposition (T, \mathcal{W}) of a graph G consists of a collection $\mathcal{W}=\left(W_{x}: x \in V(T)\right)$ of subsets of $V(G)$, called bags, indexed by the nodes of a tree T, such that:

- for each vertex $v \in V(G)$, the set $\left\{x \in V(T): v \in W_{x}\right\}$ induces a non-empty (connected) subtree of T; and
- for each edge $v w \in E(G)$, there is a node $x \in V(T)$ for which $v, w \in W_{x}$.

The width of such a tree-decomposition is $\max \left\{\left|W_{x}\right|: x \in V(T)\right\}-1$. The treewidth, $\operatorname{tw}(G)$, of a graph G is the minimum width of a tree-decomposition of G. Treewidth is the standard measure of how similar a graph is to a tree. Indeed, a connected graph has treewidth 1 if and only if it is a tree. Treewidth is of fundamental importance in structural and algorithmic graph theory; see [4, 26, 39] for surveys.

We use the following property to prove treewidth upper bounds. A graph G is a clique-sum of graphs G_{1} and G_{2}, if for some clique $\left\{v_{1}, \ldots, v_{k}\right\}$ in G_{1} and for some clique $\left\{w_{1}, \ldots, w_{k}\right\}$ in G_{2}, G is obtained from the disjoint union of G_{1} and G_{2} by identifying v_{i} and w_{i} for each i. In this case, it is well known and easily seen that $\operatorname{tw}(G)=\max \left\{\operatorname{tw}\left(G_{1}\right), \operatorname{tw}\left(G_{2}\right)\right\}$.

2.2 Partitions

Instead of working with products, it is convenient to present our proofs using the following definition. A partition of a graph G is a graph H such that:

- each vertex of H is a set of vertices of G,
- each vertex of G is in exactly one vertex of H, and
- for each edge $v w$ of G, if $v \in X \in V(H)$ and $w \in Y \in V(H)$ then $X Y \in E(H)$ or $X=Y$.

We call the vertices of H the parts of the partition. The width of a partition is the size of its largest part. The treewidth of a partition H is $\operatorname{tw}(H)$. The next observation follows
from the definitions and gives a useful characterisation of when a graph is isomorphic to a subgraph of a product of the form $H \boxtimes K_{m}$.

Observation 8. A graph G has a partition H of width at most m if and only if G is isomorphic to a subgraph of $H \boxtimes K_{\lfloor m\rfloor}$.

In light of Observation 8, to prove our results it suffices to find a suitable partition. The following definition enables inductive proofs. A partition H of a graph G is rooted at a K_{r}-model $\left(U_{1}, \ldots, U_{r}\right)$ in G if U_{1}, \ldots, U_{r} are vertices of H. Note that U_{1}, \ldots, U_{r} must be the vertices of an r-clique in H.

Finally, it will be useful to measure the 'complexity' of a vertex-set with respect to a tree-decomposition (T, \mathcal{W}) of G. For a vertex-set $S \subseteq V(G)$, the \mathcal{W}-width of S is the minimum number of bags of \mathcal{W} whose union contains S. The \mathcal{W}-width of a collection of vertex-sets is the maximum \mathcal{W}-width of one of its sets. In a slight abuse of terminology, the \mathcal{W}-width of a partition H of G is the maximum \mathcal{W}-width of one of the vertices of H.

2.3 Hitting sets

Our proofs use results that say a collection of connected subgraphs of a graph (satisfying certain conditions) either has a small 'hitting set' (a small set of vertices that meets every subgraph in the collection) or contains some suitable graphs. The following lemma is folklore (see $[41,(8.7)]$). We include the proof for completeness. The independence number $\alpha(G)$ of a graph G is the size of a largest set $S \subseteq V(G)$ such that no edge of G has both its end-vertices in S.

Lemma 9. For any integer $\ell \geqslant 0$ and any collection \mathcal{F} of subtrees of a tree T, either:
(a) there are $\ell+1$ vertex-disjoint trees in \mathcal{F}, or
(b) there is set S of at most ℓ vertices such that $S \cap V\left(T^{\prime}\right) \neq \varnothing$ for all $T^{\prime} \in \mathcal{F}$.

Proof. Let I be the intersection graph of \mathcal{F}. Since T is a tree, I is chordal and thus perfect. If $\alpha(I) \geqslant \ell+1$, then (a) occurs. Otherwise $\alpha(I) \leqslant \ell$. Since I is perfect, it has a partition X_{1}, \ldots, X_{r} into cliques where $r \leqslant \ell$. For each i, the subtrees in X_{i} are pairwise intersecting. By the Helly property, there is a node $x_{i} \in V(T)$ in every subtree in X_{i}. Then $S:=\left\{x_{1}, \ldots, x_{r}\right\}$ meets every subtree in \mathcal{F}.

In the setting of $\mathcal{O}(\sqrt{n})$ blow-ups we need the following hitting set lemma due to Alon, Seymour, and Thomas [1]. Let \mathcal{F} be the collection of connected subgraphs of G that intersect all of A_{1}, \ldots, A_{k}. Lemma 10 says that \mathcal{F} either contains a small graph or has a small hitting set.

Lemma 10 ([1, (1.2)]). Let G be a graph, A_{1}, \ldots, A_{k} be non-empty subsets of $V(G)$, and $x \geqslant 1$ be a real. Then either:
(a) there is a tree X in G with $|V(X)| \leqslant x$ such that $V(X) \cap A_{i} \neq \varnothing$ for each i, or
(b) there is a set Y of at most $(k-1)|V(G)| / x$ vertices such that no component of $G-Y$ intersects all of A_{1}, \ldots, A_{k}.

The next result is a straightforward extension of Lemma 10.
Lemma 11. Let G be a graph, A_{1}, \ldots, A_{k} be non-empty subsets of $V(G), x \geqslant 1$ be a real, and $\ell \geqslant 1$ be an integer. Then either:
(a) there are pairwise disjoint trees X_{1}, \ldots, X_{ℓ} in G with $\left|V\left(X_{j}\right)\right| \leqslant x$ and such that $V\left(X_{j}\right) \cap A_{i} \neq \varnothing$ for each i and j, or
(b) there is a set Y of at most $(\ell-1) x+(k-1)|V(G)| / x$ vertices such that no component of $G-Y$ intersects all of A_{1}, \ldots, A_{k}.

Proof. We proceed by induction on ℓ. Lemma 10 proves the result if $\ell=1$. Now assume that $\ell \geqslant 2$ and the result holds for $\ell-1$. If outcome (b) holds for $\ell-1$, then the same set Y satisfies outcome (b) for ℓ. So assume that (a) holds for $\ell-1$. That is, there are pairwise disjoint trees $X_{1}, \ldots, X_{\ell-1}$ in G with $\left|V\left(X_{j}\right)\right| \leqslant x$ and such that $V\left(X_{j}\right) \cap A_{i} \neq \varnothing$ for each i and j. Apply Lemma 10 to $G^{\prime}:=G-V\left(X_{1} \cup \cdots \cup X_{\ell-1}\right)$. If there is a tree X_{ℓ} in G^{\prime} with $\left|V\left(X_{\ell}\right)\right| \leqslant x$ such that $V\left(X_{\ell}\right) \cap A_{i} \neq \varnothing$ for each i, then X_{1}, \ldots, X_{ℓ} are the desired set of trees, and outcome (a) holds. Otherwise there exists $Y^{\prime} \subseteq V\left(G^{\prime}\right)$ with $\left|Y^{\prime}\right| \leqslant(k-1)|V(G)| / x$ such that no component of $G^{\prime}-Y^{\prime}$ intersects all of A_{1}, \ldots, A_{k}. Let $Y:=V\left(X_{1} \cup \cdots \cup X_{\ell-1}\right) \cup Y^{\prime}$. Thus $|Y| \leqslant(\ell-1) x+(k-1)|V(G)| / x$ and no component of $G-Y$ intersects all of A_{1}, \ldots, A_{k} (since $G^{\prime}-Y^{\prime}=G-Y$). That is, Y satisfies (b).

3 Main theorem and $\mathcal{O}(\operatorname{tw}(G))$ blow-up

We now prove our main technical theorem and deduce Theorems 4 and 5 from it.
The following definition allows the K_{t}-minor-free and $K_{s, t}^{*}$-minor-free cases to be combined. Let $\mathcal{J}_{s, t}$ be the class of graphs G whose vertex-set has a partition $A \cup B$, where $|A|=s$ and $|B|=t, A$ is a clique, every vertex in A is adjacent to every vertex in B, and $G[B]$ is connected. A graph is $\mathcal{J}_{s, t}$-minor-free if it contains no graph in $\mathcal{J}_{s, t}$ as a minor. The following is our main theorem.
Theorem 12. Let $s, t \geqslant 2$ be integers, G be a $\mathcal{J}_{s, t}$-minor-free graph, and (T, \mathcal{W}) be a tree-decomposition of G. Then G has a partition of \mathcal{W}-width at most $t-1$ and treewidth at most s.

This says that, given a $\mathcal{J}_{s, t}$-minor-free G and a tree-decomposition (T, \mathcal{W}) of G, there is a simple (low treewidth) partition that is also simple with respect to \mathcal{W}. Theorem 12 follows immediately from the next lemma (for example, by taking $r=1$ and U_{1} to consist of a single vertex).

Lemma 13. Let $s, t \geqslant 2$ be integers, G be a $\mathcal{J}_{s, t}$-minor-free graph, and (T, \mathcal{W}) be a tree-decomposition of G. Suppose that $\left(U_{1}, \ldots, U_{r}\right)$ is a K_{r}-model of \mathcal{W}-width at most $t-1$ where $r \leqslant s$. Then G has a partition of \mathcal{W}-width at most $t-1$ and treewidth at most s that is rooted at $\left(U_{1}, \ldots, U_{r}\right)$.

Proof. Let $U:=U_{1} \cup \cdots \cup U_{r}$. We proceed by induction on $|V(G)|$. If $V(G)=U$, then $\left(U_{1}, \ldots, U_{r}\right)$ is the desired partition H where $H=K_{r}$ has treewidth $r-1 \leqslant s$. Now assume that $V(G) \backslash U \neq \varnothing$. Let $A_{i}:=N_{G}\left(U_{i}\right) \backslash U$ for each i.

First suppose that some A_{i} is empty, say $A_{1}=\varnothing$. By induction, $G-U_{1}$ has a partition H_{1} of \mathcal{W}-width at most $t-1$ and treewidth at most s that is rooted at $\left(U_{2}, \ldots, U_{r}\right)$. Add a new part U_{1} adjacent to each of U_{2}, \ldots, U_{r} to obtain the desired H-partition of G. The neighbourhood of U_{1} is a clique on $r-1$ vertices, so $\operatorname{tw}(H)=\max \left\{\operatorname{tw}\left(H_{1}\right), r-1\right\} \leqslant s$. Thus we may assume that A_{i} is non-empty for all i.

Next suppose that $G-U$ is disconnected. Then there is a partition U, V_{1}, V_{2} of $V(G)$ into three non-empty sets such that there is no edge between V_{1} and V_{2}. Let $G_{1}:=G\left[U \cup V_{1}\right]$ and $G_{2}:=G\left[U \cup V_{2}\right]$. For $j \in\{1,2\}$, let \mathcal{W}_{j} be the tree-decomposition of G_{j} obtained from \mathcal{W} by deleting all the vertices of G not in G_{j}. By induction, each G_{j} has a partition H_{j} of \mathcal{W}_{j}-width at most $t-1$ and treewidth at most s that is rooted at $\left(U_{1}, \ldots, U_{r}\right)$. Let H be the partition of G obtained from H_{1} and H_{2} by identifying the vertex U_{i} in H_{1} with the vertex U_{i} in H_{2} for each i. The graph H is a clique-sum of H_{1} and H_{2}, so $\operatorname{tw}(H)=\max \left\{\operatorname{tw}\left(H_{1}\right), \operatorname{tw}\left(H_{2}\right)\right\} \leqslant s$. Since every bag of \mathcal{W}_{1} and \mathcal{W}_{2} is a subset of a bag of \mathcal{W}, the partition H has \mathcal{W}-width at most $t-1$. Thus we may assume that $G-U$ is connected.

We now show there exists a set $Y \subseteq V(G) \backslash U$ of \mathcal{W}-width at most $t-1$ such that

$$
\text { no component of } G-U-Y \text { meets every } A_{i} \text {. }
$$

Let \mathcal{F} be the collection of all connected subgraphs F of $G-U$ such that $V(F) \cap A_{i} \neq \varnothing$ for all i. For each $F \in \mathcal{F}$, let $T_{F}:=T\left[\left\{x \in V(T): W_{x} \cap V(F) \neq \varnothing\right\}\right]$. Since F is connected, T_{F} is a (connected) subtree of T.

First consider the case $r \leqslant s-1$.
First suppose there exists $F_{1}, F_{2} \in \mathcal{F}$ such that $T_{F_{1}}$ and $T_{F_{2}}$ are disjoint. Let $x y$ be any
edge of T on the shortest path between $T_{F_{1}}$ and $T_{F_{2}}$. Then $W_{x} \cap W_{y}$ separates $^{3} V\left(F_{1}\right)$ and $V\left(F_{2}\right)$. Let S be a minimal subset of $W_{x} \cap W_{y}$ that separates $V\left(F_{1}\right)$ and $V\left(F_{2}\right)$. By construction, S has \mathcal{W}-width $1, S \cap V\left(F_{1}\right)=\varnothing$, and $S \cap V\left(F_{2}\right)=\varnothing$. Then there is a partition $S \cup V_{1} \cup V_{2}$ of $V(G) \backslash U$ such that $V\left(F_{1}\right) \subseteq V_{1}, V\left(F_{2}\right) \subseteq V_{2}$ and there is no edge between V_{1} and V_{2}. We now show that $G\left[S \cup V_{1}\right]$ and $G\left[S \cup V_{2}\right]$ are connected. Consider some $s \in S$. Since S is minimal, there is a path from s to $V\left(F_{1}\right)$ internally disjoint from $S \cup V\left(F_{2}\right)$. Since there is no edge between V_{1} and V_{2}, this path must lie entirely inside $S \cup V_{1}$. Since F_{1} is connected, between any two vertices of S there is a path entirely inside $S \cup V_{1}$. Since $G-U$ is connected, there is a path from any vertex of V_{1} to S inside $S \cup V_{1}$. Hence $G\left[S \cup V_{1}\right]$ is connected. Similarly for $G\left[S \cup V_{2}\right]$. For $j \in\{1,2\}$, let G_{j} be the graph obtained from G by contracting all of $S \cup V_{j}$ into a single vertex v_{j}. Each G_{j} is a minor of G and thus is $\mathcal{J}_{s, t}$-minor-free. Furthermore, since $V\left(F_{j}\right) \subseteq V_{j},\left(U_{1}, \ldots, U_{r},\left\{v_{j}\right\}\right)$ is a K_{r+1}-model in G_{j}. Let \mathcal{W}_{j} be the tree-decomposition of G_{j} obtained from \mathcal{W} by replacing every instance of a vertex in $S \cup V_{j}$ by v_{j}. By induction, each G_{j} has a partition H_{j} of \mathcal{W}_{j}-width at most $t-1$ and treewidth at most s that is rooted at $\left(U_{1}, \ldots, U_{r},\left\{v_{j}\right\}\right)$. Let H be obtained from the disjoint union of H_{1} and H_{2} where the corresponding U_{i} are identified and the vertices v_{1} and v_{2} from H_{1} and H_{2} are identified and replaced by S. If $X \subseteq V\left(G_{j}\right) \backslash\left\{v_{j}\right\}$ is a subset of a bag of \mathcal{W}_{j}, then X is a subset of a bag of \mathcal{W}. So if $X \subseteq V\left(G_{j}\right) \backslash\left\{v_{j}\right\}$ has \mathcal{W}_{j}-width at most $t-1$, then X has \mathcal{W}-width at most $t-1$. Since S also has \mathcal{W}-width at most $t-1$, the partition H has \mathcal{W}-width at most $t-1$. The graph H is a clique-sum of H_{1} and H_{2}, so $\operatorname{tw}(H) \leqslant \max \left\{\operatorname{tw}\left(H_{1}\right), \operatorname{tw}\left(H_{2}\right)\right\} \leqslant s$ and the partition has all the required properties.

Now assume that $T_{F_{1}}$ and $T_{F_{2}}$ intersect for all $F_{1}, F_{2} \in \mathcal{F}$. By the Helly property, there is a node $x \in V(T)$ such that $x \in V\left(T_{F}\right)$ for all $F \in \mathcal{F}$. Let $Y:=W_{x}$. Then Y has \mathcal{W}-width 1 and intersects every $F \in \mathcal{F}$. Thus $G-U-Y$ contains no graph of \mathcal{F} and so every component of $G-U-Y$ avoids some A_{i}. This Y satisfies (\dagger).

Now consider the case $r=s$.
Suppose that \mathcal{F} contains t vertex-disjoint graphs F_{1}, \ldots, F_{t}. Since $G-U$ is connected, there is a partition Q_{1}, \ldots, Q_{t} of $V(G) \backslash U$ such that $V\left(F_{i}\right) \subseteq Q_{i}$ and $G\left[Q_{i}\right]$ is connected, for all i. Contract each Q_{i} to a single vertex q_{i} and each U_{i} to a single vertex u_{i} to get a graph G^{\prime} with vertex-set $\left\{u_{1}, \ldots, u_{s}, q_{1}, \ldots, q_{t}\right\}$. Since $G-U$ is connected, $G^{\prime}\left[\left\{q_{1}, \ldots, q_{t}\right\}\right]$ is connected and so $G^{\prime} \in \mathcal{J}_{s, t}$, a contradiction. Hence, there are no t vertex-disjoint graphs in \mathcal{F}. For any $F_{1}, F_{2} \in \mathcal{F}$, if $T_{F_{1}}$ and $T_{F_{2}}$ are disjoint, then F_{1} and F_{2} are disjoint. So $\left\{T_{F}: F \in \mathcal{F}\right\}$ contains no t pairwise disjoint subtrees. Thus, by Lemma 9 , there is a set $S \subseteq V(T)$ of size at most $t-1$ that meets every T_{F}. Let

[^3]$Y:=\bigcup_{x \in S} W_{x}$. Then Y has \mathcal{W}-width at most $t-1$ and intersects every $F \in \mathcal{F}$. This Y satisfies (\dagger).

We have shown in all cases that there exists $Y \subseteq V(G) \backslash U$ satisfying (\dagger). Take a minimal such Y and let G_{1}, \ldots, G_{q} be the components of $G-U-Y$. Consider each G_{j} in turn. Let Y_{j} be the set of vertices $w \in Y$ that have a neighbour in G_{j}. By (\dagger), there exists i^{\prime} such that $A_{i^{\prime}} \cap V\left(G_{j}\right)=\varnothing$. Since $G-U$ is connected and $A_{i^{\prime}}$ is non-empty, both Y and Y_{j} are non-empty. We claim that for each $w \in Y_{j}$ there is a path P_{w} from w to $A_{i^{\prime}}$ that avoids $U \cup V\left(G_{j}\right)$. By the minimality of Y, some component Q of $G-U-(Y \backslash\{w\})$ meets every A_{i}. Since Y satisfies $(\dagger), w$ is a cut-vertex of Q. Also w has a neighbour in G_{j}, so G_{j} is a subgraph of Q and, furthermore, G_{j} is a component of $Q-w$. Since Q meets every A_{l}, there is a path P_{w} from w to $A_{i^{\prime}}$ inside Q. But $V\left(G_{j}\right)$ does not meet $A_{i^{\prime}}$ and G_{j} is a component of $Q-w$, so P_{w} avoids G_{j}. Also P_{w} is in Q, so P_{w} avoids U. Hence, P_{w} has the required properties. Let Z_{j} be the subgraph induced by the union of $U_{i^{\prime}}$ and all P_{w} (where $w \in Y_{j}$). By construction, Z_{j} is connected and disjoint from $V\left(G_{j}\right) \cup\left(U \backslash U_{i^{\prime}}\right)$.

Take the subgraph of G induced by $V\left(G_{j}\right) \cup Z_{j} \cup U$ and contract Z_{j} into a new vertex z_{j}. Call the graph obtained G_{j}^{\prime}, which has vertex-set $V\left(G_{j}\right) \cup\left(U \backslash U_{i^{\prime}}\right) \cup\left\{z_{j}\right\}$. Now $\left(\left\{z_{j}\right\}, U_{i}: i \neq i^{\prime}\right)$ is a K_{r}-model in G_{j}^{\prime}. Let \mathcal{W}_{j} be the tree-decomposition of G_{j}^{\prime} obtained from \mathcal{W} by deleting vertices of G not in $V\left(G_{j}\right) \cup Z_{j} \cup U$, and then replacing each vertex in Z_{j} by z_{j}. By induction, G_{j}^{\prime} has a partition H_{j} of \mathcal{W}_{j}-width at most $t-1$ and treewidth at most s that is rooted at $\left(\left\{z_{j}\right\}, U_{i}: i \neq i^{\prime}\right)$. Add to H_{j} the vertex $U_{i^{\prime}}$ adjacent to all other U_{i} and to $\left\{z_{j}\right\}$. Since the neighbourhood of this added vertex is a clique of order $r \leqslant s, H_{j}$ still has treewidth at most s. Let H be obtained from the disjoint union of H_{1}, \ldots, H_{q}, where corresponding U_{i} are identified and the vertices z_{1}, \ldots, z_{q} from H_{1}, \ldots, H_{q} are identified and replaced by Y. Note that if $X \subseteq V\left(G_{j}\right) \backslash\left\{z_{j}\right\}$ is a subset of a bag of \mathcal{W}_{j}, then X is a subset of a bag of \mathcal{W}. So if $X \subseteq V\left(G_{j}\right) \backslash\left\{z_{j}\right\}$ has \mathcal{W}_{j}-width at most $t-1$, then X has \mathcal{W}-width at most $t-1$. Since Y has \mathcal{W}-width at most $t-1$, the partition H has \mathcal{W}-width at most $t-1$. The graph H is a clique-sum of H_{1}, \ldots, H_{q}, so $\operatorname{tw}(H) \leqslant \max _{j} \operatorname{tw}\left(H_{j}\right) \leqslant s$.

We finally check that H is a partition of G. The vertices U_{1}, \ldots, U_{r}, Y form a clique in H so all edges of G inside $Y \cup U$ appear in H. Every edge inside G_{j} appears in $G_{j}^{\prime}-z_{j}$, thus appears in H_{j} and hence in H. Any edge between U and G_{j} is, by definition of i^{\prime}, an edge between G_{j} and $U \backslash U_{i^{\prime}}$ so appears in $G_{j}^{\prime}-z_{j}$ and hence in H. Finally consider edges between Y and G_{j}. Let $v w$ be an edge with $v \in V\left(G_{j}\right)$ and $w \in Y$. By definition, $w \in Y_{j}$ and so the edge $v z_{j}$ is present in G_{j}^{\prime} and hence in H_{j}. Since z_{j} is replaced by Y, the edge $v w$ is in H.

Applying Theorem 12 to a tree-decomposition of minimum width gives the following
corollary.
Theorem 14. For all integers $s, t \geqslant 2$, every $\mathcal{J}_{s, t}$-minor-free graph G is isomorphic to a subgraph of $H \boxtimes K_{m}$, where $\operatorname{tw}(H) \leqslant s$ and $m:=(\operatorname{tw}(G)+1)(t-1)$.

Proof. Let G be a $\mathcal{J}_{s, t}$-minor-free graph. Fix a tree-decomposition (T, \mathcal{W}) of G in which every bag has size at most $\operatorname{tw}(G)+1$. By Theorem $12, G$ has a partition H of \mathcal{W}-width at most $t-1$ where $\operatorname{tw}(H) \leqslant s$. Since each bag of \mathcal{W} has size at most $\operatorname{tw}(G)+1$, the partition has width at most $(t-1)(\operatorname{tw}(G)+1)=m$. Hence, by Observation $8, G$ is isomorphic to a subgraph of $H \boxtimes K_{m}$.

Observe that $\mathcal{J}_{t-2,2}=\left\{K_{t}\right\}$ so every K_{t}-minor-free graph is $\mathcal{J}_{t-2,2}$-minor-free. Hence Theorem 14 implies Theorem 4. Clearly, $K_{s, t}^{*}$ is a subgraph of every graph in $\mathcal{J}_{s, t}$ and so every $K_{s, t}^{*}-$ minor-free graph is $\mathcal{J}_{s, t}$-minor-free. Hence, Theorem 14 implies Theorem 5.

4 Layered treewidth: planar and apex-minor-free graphs

A layering of a graph G is a partition $\mathcal{L}=\left(V_{1}, V_{2}, \ldots\right)$ of $V(G)$ such that for each edge $v w \in E(G)$, if $v \in V_{i}$ and $w \in V_{j}$, then $|i-j| \leqslant 1$. A layering of G is equivalent to a partition P of G where P is a path. The next observation, first noted in [17], gives a useful characterisation of when a graph is isomorphic to a subgraph of a product of the form $H \boxtimes P \boxtimes K_{m}$.

Observation 15 ([17]). A graph G has a layering \mathcal{L} and a partition H such that each layer of \mathcal{L} and each part of H intersect in at most m vertices if and only if G is isomorphic to a subgraph of $H \boxtimes P \boxtimes K_{m}$ for some path P.

Proof. Suppose that G is isomorphic to a subgraph of $H \boxtimes P \boxtimes K_{m}$ where $V(H)=$ $\left\{x_{1}, \ldots, x_{h}\right\}, V(P)=\left\{y_{1}, y_{2}, \ldots\right\}$, and $V\left(K_{m}\right)=\left\{z_{1}, \ldots, z_{m}\right\}$. Then the isomorphism maps each vertex v of G to $\left(x_{a(v)}, y_{b(v)}, z_{c(v)}\right)$ where $v \mapsto(a(v), b(v), c(v))$ is injective. Let \mathcal{L} have layers $V_{i}=\{v: b(v)=i\}$ and the partition H have parts $\{v: a(v)=j\}$ for $j \in\{1, \ldots, h\}$. Since $c(v)$ takes at most m values, each layer and part have at most m vertices in common.

Reversing this identification converts a suitable layering \mathcal{L} and partition H into an isomorphism from G to a subgraph of $H \boxtimes P \boxtimes K_{m}$.

Dujmović, Morin, and Wood [18] defined the layered treewidth, $\operatorname{ltw}(G)$, of G to be the minimum integer k such that G has a layering \mathcal{L} and tree-decomposition (T, \mathcal{W}) such
that $|L \cap W| \leqslant k$ for each layer $L \in \mathcal{L}$ and each bag $W \in \mathcal{W}$. Theorem 12 has the following corollary.

Theorem 16. For all integers $s, t \geqslant 2$, every $\mathcal{J}_{s, t}$-minor-free graph G is isomorphic to a subgraph of $H \boxtimes P \boxtimes K_{m}$, where P is a path, $\operatorname{tw}(H) \leqslant s$, and $m:=(t-1) \operatorname{ltw}(G)$.

Proof. Let G be a $\mathcal{J}_{s, t}$-minor-free graph. Fix a layering \mathcal{L} and tree-decomposition (T, \mathcal{W}) of G such that $|L \cap W| \leqslant \operatorname{ltw}(G)$ for every layer $L \in \mathcal{L}$ and each bag $W \in \mathcal{W}$. By Theorem $12, G$ has a partition H of \mathcal{W}-width at most $t-1$ where $\operatorname{tw}(H) \leqslant s$.

Let $X \in V(H)$ be a part and $L \in \mathcal{L}$ be a layer. Since the partition has \mathcal{W}-width at most $t-1$, there are bags $W_{1}, \ldots, W_{t-1} \in \mathcal{W}$ such that $X \subseteq \bigcup_{i=1}^{t-1} W_{i}$. Since $\left|L \cap W_{i}\right| \leqslant \operatorname{ltw}(G)$ for each $i,|X \cap L| \leqslant(t-1) \operatorname{ltw}(G)$. The result now follows from Observation 15.

Again, since $\mathcal{J}_{t-2,2}=\left\{K_{t}\right\}$ and $K_{s, t}^{*}$ is a subgraph of every graph in $\mathcal{J}_{s, t}$, Theorem 16 has the following corollaries.

Theorem 17. For any integer $t \geqslant 2$, every K_{t}-minor-free graph G is isomorphic to a subgraph of $H \boxtimes P \boxtimes K_{m}$, where P is a path, $\operatorname{tw}(H) \leqslant t-2$, and $m:=\operatorname{ltw}(G)$.

Theorem 18. For all integers $s, t \geqslant 2$, every $K_{s, t}^{*}-$ minor-free graph G is isomorphic to a subgraph of $H \boxtimes P \boxtimes K_{m}$, where P is a path, $\operatorname{tw}(H) \leqslant s$, and $m:=(t-1) \operatorname{ltw}(G)$.

The Planar Graph Product Structure Theorem (Theorem 7(b)) follows from Theorem 17 (with $t=5$) and the fact that every planar graph has layered treewidth at most 3 , as proved by Dujmović et al. [18]. We sketch the proof for completeness.

Theorem 19 ([18, Thm. 12]). Every planar graph has layered treewidth at most 3.
Proof Sketch. We may assume that G is a planar triangulation. Let T be a breadth-first-search spanning tree rooted at an arbitrary vertex r. Let G^{*} be the dual of G and T^{*} be the spanning subgraph of G^{*} consisting of those edges not dual to edges in T. von Staudt [43] showed that T^{*} is a spanning tree of G^{*}. For each vertex x of T^{*}, corresponding to face $u v w$ of G, let W_{x} be the union of the $u r$-path in T, the $v r$-path in T, and the $w r$-path in T. Eppstein [22] showed that $\left(W_{x}: x \in V\left(T^{*}\right)\right)$ is a tree-decomposition of G. Let $V_{i}:=\left\{v \in V(G): \operatorname{dist}_{G}(v, r)=i\right\}$ and so $\left(V_{0}, V_{1}, \ldots\right)$ is a layering of G. Since T is a breadth-first-search spanning tree, each bag W_{x} has at most three vertices in each layer V_{i}. Hence $\operatorname{ltw}(G) \leqslant 3$.

We now show that the bound in Theorem 19 is tight. Suppose on the contrary that $\operatorname{ltw}(G) \leqslant 2$ for every planar graph G. Then each layer induces a subgraph with treewidth 1, which is thus a forest. Taking alternate layers, G has a vertex-partition into two
induced forests (which would imply the 4-colour theorem). Chartrand and Kronk [10] constructed planar graphs G that have no vertex-partition into two induced forests, implying $\operatorname{ltw}(G) \geqslant 3$.

Theorem 7 is generalised as follows. The vertex-cover number $\tau(G)$ of a graph G is the size of a smallest set $S \subseteq V(G)$ such that every edge of G has at least one end-vertex in S. By definition, G is a subgraph of every graph in $\mathcal{J}_{\tau(G),|V(G)|-\tau(G)}$. A graph X is apex if $X-v$ is planar for some vertex $v \in V(X)$. Dujmović et al. [18] showed that for any graph X, the class of X-minor-free graphs has bounded layered treewidth if and only if X is apex. Thus, the next result follows from Theorem 18.

Theorem 20. For every apex graph X there exists $m \in \mathbb{N}$, such that every X-minor-free graph is isomorphic to a subgraph of $H \boxtimes P \boxtimes K_{m}$, where P is a path and $\operatorname{tw}(H) \leqslant \tau(X)$.

Dujmović et al. [17] proved a similar result to Theorem 20, but with a much larger bound on $\operatorname{tw}(H)$ (depending on constants from the Graph Minor Structure Theorem).

Theorem 20 has applications to p-centred colouring, as we now explain. For $p \in \mathbb{N}$, a vertex colouring of a graph G is p-centred if for every connected subgraph X of G, X receives more than p colours or some vertex in X receives a unique colour. The p-centred chromatic number $\chi_{p}(G)$ is the minimum number of colours in a p-centred colouring of G. Centred colourings are important within graph sparsity theory as they characterise graph classes with bounded expansion [37]. A result of Dębski, Felsner, Micek, and Schröder [14, Lem. 8] implies that $\chi_{p}\left(H \boxtimes P \boxtimes K_{m}\right) \leqslant m(p+1) \chi_{p}(H)$ for every graph H. Pilipczuk and Siebertz [38, Lem. 15] proved that every graph of treewidth at most t has p-centred chromatic number at most $\binom{p+t}{t} \leqslant(p+1)^{t}$. In particular, Theorem 20 implies:

Theorem 21. For every apex graph X with $\tau(X) \leqslant t$ there exists $m \in \mathbb{N}$ such that for every X-minor-free graph G,

$$
\chi_{p}(G) \leqslant m(p+1)^{t+1}
$$

Pilipczuk and Siebertz [38] proved that for every graph X there exists c such that every X-minor-free graph has p-centred chromatic number $\mathcal{O}\left(p^{c}\right)$. However, the known bounds on c are huge (depending on the Graph Minor Structure Theorem). Theorem 21 provides much improved bounds in the case of apex-minor-free graphs. As an example, since $K_{3, t}^{*}$ is apex with $\tau\left(K_{3, t}^{*}\right) \leqslant 3$, Theorem 21 implies there exists $m=m(t)$ such that $\chi_{p}(G) \leqslant m(p+1)^{4}$ for every $K_{3, t}^{*}$-minor-free graph G.

5 Blow-up $\mathcal{O}(\sqrt{n})$

In this section we employ a similar proof strategy but with a different hitting result (Lemma 11 in place of Lemma 9) to prove Theorems 2 and 3.

Theorem 22. Let s, t, n be positive integers and define

$$
m:= \begin{cases}\max \{t-1,1\} & \text { if } s=1 \text { or } 2, \\ \sqrt{(s-2) n} & \text { if } s \geqslant 3 \text { and } t=1, \\ 2 \sqrt{(s-1)(t-1) n} & \text { otherwise. }\end{cases}
$$

Then every $\mathcal{J}_{s, t}$-minor-free graph G on n vertices is isomorphic to a subgraph of $H \boxtimes K_{\lfloor m\rfloor}$ for some graph H of treewidth at most s.

Theorem 22 implies Theorems 2 and 3 since $\mathcal{J}_{t-1,1}=\mathcal{J}_{t-2,2}=\left\{K_{t}\right\}$ and $K_{s, t}^{*}$ is a subgraph of every graph in $\mathcal{J}_{s, t}$. Theorem 22 is implied by Observation 8 and the following lemma.

Lemma 23. Let s, t, n be positive integers and define m as in Theorem 22. Suppose G is a $\mathcal{J}_{s, t}$-minor-free graph on n vertices and $\left(U_{1}, \ldots, U_{r}\right)$ is a K_{r}-model in G where $r \leqslant s$ and $\left|U_{i}\right| \leqslant m$ for all i. Then G has a partition of width at most m and treewidth at most s that is rooted at $\left(U_{1}, \ldots, U_{r}\right)$.

Proof. Let $U:=U_{1} \cup \cdots \cup U_{r}$. We proceed by induction on n. If $n \leqslant r+m$, then the partition $\left(U_{1}, \ldots, U_{r}, V(G) \backslash U\right)$ is the desired partition H where $H=K_{r+1}$ has treewidth $r \leqslant s$. Now assume that $n>r+m$. Note that if $n \leqslant t-1$, then $n \leqslant m$ in all cases and so we may assume that $n>t-1$. Let $A_{i}:=N_{G}\left(U_{i}\right) \backslash U$ for each i.

By the same argument used in the proof of Lemma 13, we may assume that A_{i} is non-empty for all i, and that $G-U$ is connected.

If $r \leqslant s-1$ and there is some U_{r+1} of size at most m such that $\left(U_{1}, \ldots, U_{r+1}\right)$ is a K_{r+1}-model in G, then Lemma 23 for U_{1}, \ldots, U_{r+1} would imply it is also true for U_{1}, \ldots, U_{r} (with the same partition). In particular, if $r \leqslant s-1$, then we may assume there is no U_{r+1} of size at most m such that $\left(U_{1}, \ldots, U_{r+1}\right)$ is a K_{r+1}-model in G. Call this property the 'maximality of r '.

We now show there exists a set $Y \subseteq V(G) \backslash U$ of size at most m such that no component of $G-U-Y$ meets every A_{i}.

First suppose that $s=1$ and so $U=U_{1}$. Suppose that $\left|A_{1}\right| \geqslant t$. Let v_{1}, \ldots, v_{t} be distinct vertices in A_{1}. Since $G-U$ is connected, it is possible to partition $V(G) \backslash U$
into vertex-sets Q_{1}, \ldots, Q_{t} such that for all $i, v_{i} \in Q_{i}$ and $G\left[Q_{i}\right]$ is connected. Now contract each Q_{i} into a single vertex q_{i} and U_{1} into a single vertex u_{1} to get a graph G^{\prime} on vertex-set $\left\{u_{1}, q_{1}, \ldots, q_{t}\right\}$. Since $G-U$ is connected, $G^{\prime}\left[\left\{q_{1}, \ldots, q_{t}\right\}\right]$ is connected and so $G^{\prime} \in \mathcal{J}_{1, t}$, a contradiction. Hence $\left|A_{1}\right| \leqslant t-1 \leqslant m$. Then $Y=A_{1}$ satisfies (\ddagger).

Next suppose that $s=2$. If $r=1$, then for any $x \in A_{1}$, the pair $\left(U_{1},\{x\}\right)$ is a K_{2}-model in G, which contradicts the maximality of r. Hence $r=2$ and $U=U_{1} \cup U_{2}$. Suppose $G-U$ contains t pairwise vertex-disjoint paths P_{1}, \ldots, P_{t} from A_{1} to A_{2}. Since $G-U$ is connected, there is a partition of $V(G) \backslash U$ into vertex-sets Q_{1}, \ldots, Q_{t} such that, for all $i, V\left(P_{i}\right) \subseteq Q_{i}$ and $G\left[Q_{i}\right]$ is connected. Now contract each Q_{i} to a single vertex q_{i} and each U_{i} to a single vertex u_{i} to get a graph G^{\prime} on vertex-set $\left\{u_{1}, u_{2}, q_{1}, \ldots, q_{t}\right\}$. Since $G-U$ is connected, $G^{\prime}\left[\left\{q_{1}, \ldots, q_{t}\right\}\right]$ is connected and so $G^{\prime} \in \mathcal{J}_{2, t}$, a contradiction. Thus, by Menger's theorem, there is a set $Y \subseteq V(G) \backslash U$ of size at most $t-1 \leqslant m$ such that there is no path from A_{1} to A_{2} in $G-U-Y$. In particular, no component of $G-U-Y$ meets both A_{1} and A_{2} and so Y satisfies (\ddagger). Thus we may assume that $s \geqslant 3$.
Suppose that $r \leqslant s-1$. Apply Lemma 10 to $G-U$ with $x=\sqrt{(s-2) n} \geqslant 1$ and $k=r$. If (a) occurs, then there is a tree T on at most $x \leqslant m$ vertices intersecting each A_{i}. Then $\left(U_{1}, \ldots, U_{r}, T\right)$ is a K_{r+1}-model in G with all parts of size at most m, which contradicts the maximality of r. Hence, (b) occurs. That is, there is a vertex-set Y of size at most $(r-1) n / x \leqslant(s-2) n / x=x \leqslant m$ such that no component of $G-U-Y$ meets every A_{i}. This Y satisfies (\ddagger).

Now assume that $r=s$. For $t=1$ we are done: since $G-U$ is connected, contracting each of $U_{1}, \ldots, U_{s}, G-U$ to a single vertex gives a K_{s+1}-minor in G, which is a contradiction since $K_{s+1} \in \mathcal{J}_{s, 1}$. Thus $t \geqslant 2$. Apply Lemma 11 to $G-U$ with $\ell=t, k=r=s$ and $x=\sqrt{\frac{s-1}{t-1} n}>1$. Suppose (a) occurs. Then there are pairwise disjoint trees T_{1}, \ldots, T_{t} in $G-U$ such that each T_{j} meets each A_{i}. Since $G-U$ is connected, it is possible to partition $V(G) \backslash U$ into vertex-sets Q_{1}, \ldots, Q_{t} such that, for all $i, V\left(T_{i}\right) \subseteq Q_{i}$ and $G\left[Q_{i}\right]$ is connected. Now contract each Q_{i} to a single vertex q_{i} and each U_{i} to a single vertex u_{i} to get a graph G^{\prime} on vertex-set $\left\{u_{1}, \ldots, u_{s}, q_{1}, \ldots, q_{t}\right\}$. Since $G-U$ is connected, $G^{\prime}\left[\left\{q_{1}, \ldots, q_{t}\right\}\right]$ is connected and so $G^{\prime} \in \mathcal{J}_{s, t}$, a contradiction. Hence, (b) occurs: there is a vertex-set Y of size at most $(t-1) x+(s-1) n / x=m$ such that no component of $G-U-Y$ meets every A_{i}. This Y satisfies (\ddagger).

We have shown in all cases that there exists $Y \subseteq V(G) \backslash U$ satisfying (\ddagger). We may now finish exactly as in the proof of Lemma 13 (with width instead of \mathcal{W}-width, so the argument is even simpler).

Since $K_{2, t}^{*}$ is planar and so $K_{2, t}^{*}$-minor-free graphs have bounded treewidth, one would expect a good bound (independent of n) on the blow-up factor. Campbell et al. [9]
showed that every $K_{2, t}^{*}$-minor-free graph is isomorphic to a subgraph of $H \boxtimes K_{\mathcal{O}\left(t^{3}\right)}$ where $\operatorname{tw}(H) \leqslant 2$. They state as an open problem whether this $\mathcal{O}\left(t^{3}\right)$ bound can be improved to $\mathcal{O}(t)$. Theorem 22 for $s=2$ gives an affirmative answer to this question.

Theorem 24. For every integer $t \geqslant 2$, every $K_{2, t}^{*}-$ minor-free graph G is isomorphic to a subgraph of $H \boxtimes K_{t-1}$, where $\operatorname{tw}(H) \leqslant 2$.

Note that Theorem 24 implies $K_{2, t}^{*}$-minor-free graphs have treewidth $\mathcal{O}(t)$, which was first proved by Leaf and Seymour [33, (4.4)].

6 Concluding Remarks

We conclude the paper by first discussing some possible ways in which Theorem 2 might be strengthened. Similar questions can be asked for $K_{s, t}-$ minor-free graphs. Consider the following meta-theorem:

Every K_{t}-minor-free graph G is isomorphic to a subgraph of $H \boxtimes K_{m(G)}$ for some function m and some graph H of treewidth at most $f(t)$.

Note that Theorem 2 says that (\star) holds for $m(G)=2 \sqrt{(t-3) n}$ where $n:=|V(G)|$ and $f(t)=t-2$ while Theorem 4 says it holds for $m(G)=\operatorname{tw}(G)+1$ and $f(t)=t-2$.

Q1. Is it possible to improve $f(t)$ in Theorem 2 (possibly sacrificing some dependence on t in $m(G))$? In particular, can (\star) be proved with $m(G)=\mathcal{O}_{t}\left(n^{1 / 2}\right)$ and $f(t)=c$ for some constant c independent of t ? It follows from a result of Linial, Matoušek, Sheffet, and Tardos [34] that, even for planar graphs, $c \geqslant 2$. On the other hand, (\star) holds with H a star $(c=1)$ and $m(G)=\mathcal{O}_{t}\left(n^{2 / 3}\right)$, and for any $\varepsilon>0$ there exists c such that (\star) holds with $f(t) \leqslant c$ and $m(G)=\mathcal{O}_{t}\left(n^{1 / 2+\varepsilon}\right)$; see [44]. The real interest is when $m(G)=\mathcal{O}_{t}\left(n^{1 / 2}\right)$.

As noted in Section 1, there is no corresponding improvement to Theorem 4 since $f(t)=t-2$ is best possible when $m(G)$ is a function of $\operatorname{tw}(G)$.

Q2. We highlight the $t=5$ case of Q1: is every K_{5}-minor-free graph G isomorphic to a subgraph of $H \boxtimes K_{\mathcal{O}(\sqrt{n})}$ for some graph H of treewidth at most 2? Having treewidth at most 2 is equivalent to being K_{4}-minor-free, so this problem is particularly appealing. It is open even when G is planar.

Q3. Optimising the dependence on t in Theorem 2 is an interesting question. Note that Kawarabayashi and Reed [30] proved that K_{t}-minor-free graphs have balanced separators of order $\mathcal{O}(t \sqrt{n})$, which is best possible. Does (\star) hold with $f(t) \cdot m(G)=\mathcal{O}(t \sqrt{n})$?

Finally we mention a connection to row treewidth. Bose et al. [8] defined the row
treewidth of a graph G to be the minimum treewidth of a graph H such that G is isomorphic to a subgraph of $H \boxtimes P$ for some path P. For example, Theorem 7(a) says that planar graphs have row treewidth at most 8 , which was improved to 6 by Ueckerdt, Wood, and Yi [42]. It is easily seen that $\operatorname{ltw}(G) \leqslant \operatorname{rtw}(G)+1$ for every graph G. The next result, which provides a partial converse, follows from Theorem 17 since $\operatorname{tw}\left(H \boxtimes K_{m}\right) \leqslant(\operatorname{tw}(H)+1) m-1$.

Corollary 25. For every K_{t}-minor-free graph G,

$$
\operatorname{rtw}(G) \leqslant(t-1) \operatorname{ltw}(G)-1
$$

Corollary 25 is in marked contrast to a result of Bose et al. [8] who constructed graphs with layered treewidth 1 and arbitrarily large row-treewidth. Thus the K_{t}-minor-free (or some other sparsity) assumption in Corollary 25 is necessary.

Q4. For what other graph classes \mathcal{G} (beyond those defined by an excluded minor) is row treewidth bounded by a function of layered treewidth for graphs in \mathcal{G} ?

Acknowledgement

Thanks to Gwenaël Joret for pointing out that Lemma 9 leads to improved dependence on ℓ in some of our results. Thanks to Robert Hickingbotham who observed that our results imply Theorem 21. Thanks to Pat Morin for stimulating conversations.

References

[1] Noga Alon, Paul Seymour, and Robin Thomas. A separator theorem for nonplanar graphs. J. Amer. Math. Soc., 3(4):801-808, 1990.
[2] Stefan Arnborg and Andrzej Proskurowski. Characterization and recognition of partial 3-trees. SIAM J. Algebraic Discrete Methods, 7(2):305-314, 1986.
[3] Michael A. Bekos, Giordano Da Lozzo, Petr Hlinĕný, and Michael Kaufmann. Graph product structure for h-framed graphs. 2022, arXiv:2204.11495. ArXiv:2204.11495.
[4] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci., 209(1-2):1-45, 1998.
[5] Marthe Bonamy, Cyril Gavoille, and Michal Pilipczuk. Shorter labeling schemes for planar graphs. In Shuchi Chawla, ed., Proc. ACM-SIAM Symp. on Discrete Algorithms (SODA '20), pp. 446-462. 2020.
[6] Édouard Bonnet, O-joung Kwon, and David R. Wood. Reduced bandwidth: a qualitative strengthening of twin-width in minor-closed classes (and beyond). 2022. ArXiv:2202.11858.
[7] Prosenjit Bose, Vida Dujmović, Mehrnoosh Javarsineh, and Pat Morin. Asymptotically optimal vertex ranking of planar graphs. 2020. ArXiv:2007.06455.
[8] Prosenjit Bose, Vida Dujmović, Mehrnoosh Javarsineh, Pat Morin, and David R. Wood. Separating layered treewidth and row treewidth. Discret. Math. Theor. Comput. Sci., 24(1):\#18, 2022.
[9] Rutger Campbell, Katie Clinch, Marc Distel, J. Pascal Gollin, Kevin Hendrey, Robert Hickingbotham, Tony Huynh, Freddie Illingworth, Youri Tamitegama, Jane Tan, and David R. Wood. Product structure of graph classes with bounded treewidth. 2022, arXiv:2206.02395.
[10] Gary Chartrand and Hudson V. Kronk. The point-arboricity of planar graphs. J. London Math. Soc., 44:612-616, 1969.
[11] Hao Chen. Apollonian ball packings and stacked polytopes. Discrete Comput. Geom., 55(4):801-826, 2016.
[12] Marc Distel, Robert Hickingbotham, Tony Huynh, and David R. Wood. Improved product structure for graphs on surfaces. Discrete Math. Theor. Comput. Sci., 24(2):\#6, 2022.
[13] Hristo N. Duidjev. A separator theorem. C. R. Acad. Bulgare Sci., 34(5):643-645, 1981.
[14] Michal Dębski, Stefan Felsner, Piotr Micek, and Felix Schröder. Improved bounds for centered colorings. Adv. Comb., \#8, 2021.
[15] Vida Dujmović, Louis Esperet, Cyril Gavoille, Gwenaël Joret, Piotr Micek, and Pat Morin. Adjacency labelling for planar graphs (and beyond). J. ACM, 68(6):42, 2021.
[16] Vida Dujmović, Louis Esperet, Gwenaël Joret, Bartosz Walczak, and David R. Wood. Planar graphs have bounded nonrepetitive chromatic number. Adv. Comb., \#5, 2020.
[17] Vida Dujmović, Gwenaël Joret, Piotr Micek, Pat Morin, Torsten Ueckerdt, and David R. Wood. Planar graphs have bounded queue-number. J. ACM, 67(4):\#22, 2020.
[18] Vida Dujmović, Pat Morin, and David R. Wood. Layered separators in minor-closed graph classes with applications. J. Combin. Theory Ser. B, 127:111-147, 2017.
[19] Vida Dujmović, Pat Morin, and David R. Wood. Graph product structure for non-minor-closed classes. 2019, arXiv:1907.05168. ArXiv:1907.05168.
[20] Zdenek Dvorák, Daniel Gonçalves, Abhiruk Lahiri, Jane Tan, and Torsten Ueckerdt. On comparable box dimension. In Xavier Goaoc and Michael Kerber, eds., Proc. 38th Int'l Symp. on Computat. Geometry (SoCG 2022), vol. 224 of LIPIcs, pp. 38:1-38:14. Schloss Dagstuhl, 2022.
[21] Zdeněk Dvořák, Tony Huynh, Gwenaël Joret, Chun-Hung Liu, and David R. Wood. Notes on graph product structure theory. In David R. Wood, Jan de Gier, Cheryl E. Praeger, and Terence Tao, eds., 2019-20 MATRIX Annals, pp. 513-533. Springer, 2021. arXiv:2001.08860.
[22] David Eppstein. Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms Appl., 3(3):1-27, 1999.
[23] Louis Esperet, Gwenä̈l Joret, and Pat Morin. Sparse universal graphs for planarity. 2020, arXiv:2010.05779. ArXiv:2010.05779.
[24] Alan Frieze and Charalampos E. Tsourakakis. Some properties of random Apollonian networks. Internet Math., 10(1-2):162-187, 2014.
[25] John R. Gilbert, Joan P. Hutchinson, and Robert E. Tarjan. A separator theorem for graphs of bounded genus. J. Algorithms, 5(3):391-407, 1984.
[26] Daniel J. Harvey and David R. Wood. Parameters tied to treewidth. J. Graph Theory, 84(4):364-385, 2017.
[27] Robert Hickingbotham, Paul Jungeblut, Laura Merker, and David R. Wood. The product structure of squaregraphs. 2022, arXiv:2203.03772.
[28] Robert Hickingbotham and David R. Wood. Shallow minors, graph products and beyond planar graphs. 2021, arXiv:2111.12412. ArXiv:2111.12412.
[29] Tony Huynh, Bojan Mohar, Robert Šámal, Carsten Thomassen, and David R. Wood. Universality in minor-closed graph classes. 2021, arXiv:2109.00327. ArXiv:2109.00327.
[30] Ken-ichi Kawarabayashi and Bruce Reed. A separator theorem in minor-closed classes. In Proc. 51st Annual Symp. on Foundations of Computer Science (FOCS '10), pp. 153-162. IEEE, 2010.
[31] Kolja Knauer and Torsten Ueckerdt. Simple treewidth. In Pavel Rytír, ed., Midsummer Combinatorial Workshop Prague. 2012.
[32] Jan Kratochvíl and Michal Vaner. A note on planar partial 3-trees. arXiv:1210.8113, 2012.
[33] Alexander Leaf and Paul Seymour. Tree-width and planar minors. J. Comb. Theory, Ser. B, 111:38-53, 2015.
[34] Nathan Linial, Jirí Matoušek, Or Sheffet, and Gábor Tardos. Graph colouring with no large monochromatic components. Combin. Probab. Comput., 17(4):577-589, 2008.
[35] Lilian Markenzon, Claudia Marcela Justel, and N. Paciornik. Subclasses of k-trees: characterization and recognition. Discrete Appl. Math., 154(5):818-825, 2006.
[36] Bojan Mohar and Carsten Thomassen. Graphs on surfaces. Johns Hopkins University Press, 2001.
[37] Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity, vol. 28 of Algorithms and Combinatorics. Springer, 2012.
[38] Michae Pilipczuk and Sebastian Siebertz. Polynomial bounds for centered colorings on proper minor-closed graph classes. J. Comb. Theory, Series B, 151:111-147, 2021.
[39] Bruce A. Reed. Algorithmic aspects of tree width. In Recent advances in algorithms and combinatorics, vol. 11, pp. 85-107. Springer, 2003.
[40] Neil Robertson and Paul Seymour. Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms, 7(3):309-322, 1986.
[41] Neil Robertson and Paul Seymour. Graph minors. V. Excluding a planar graph. J. Combin. Theory Ser. B, 41(1):92-114, 1986.
[42] Torsten Ueckerdt, David R. Wood, and Wendy Yi. An improved planar graph product structure theorem. Electron. J. Combin., 29:P2.51, 2022.
[43] Karl Georg Christian von Staudt. Geometrie der lage. Verlag von Bauer and Rapse 25. Julius Merz, Nürnberg, 1847.
[44] David R. Wood. Product structure of graph classes with strongly sublinear separators. 2022, arXiv:2208.10074.
[45] Lasse Wulf. Stacked treewidth and the Colin de Verdiére number. 2016. Bachelorthesis, Institute of Theoretical Computer Science, Karlsruhe Institute of Technology.

A Simple Treewidth

A tree-decomposition $\left(T,\left(W_{x}: x \in V(T)\right)\right)$ of a graph G is k-simple, for some $k \in \mathbb{N}$, if it has width at most k, and for every set S of k vertices in G, we have $\mid\{x \in V(T): S \subseteq$ $\left.W_{x}\right\} \mid \leqslant 2$. The simple treewidth, $\operatorname{stw}(G)$, of a graph G is the minimum $k \in \mathbb{N}$ such that G has a k-simple tree-decomposition. Simple treewidth appears in several places in the literature under various guises [7, 29, 31, 32, 35, 45]. The following facts are well known: A graph has simple treewidth 1 if and only if every component is a path. A graph has simple treewidth at most 2 if and only if it is outerplanar. A graph has simple treewidth at most 3 if and only if it has treewidth at most 3 and is planar [32]. The edge-maximal graphs with simple treewidth 3 are ubiquitous objects, called planar 3-trees in structural graph theory and graph drawing [2, 32], called stacked polytopes in polytope theory [11], and called Apollonian networks in enumerative and random graph theory [24]. It is well-known and easily proved that $\operatorname{tw}(G) \leqslant \operatorname{stw}(G) \leqslant \operatorname{tw}(G)+1$ for every graph G (see $[31,45])$.

Several known product structure theorems can be expressed in terms of simple treewidth. For example, the following simple treewidth version of Theorem 7 is known.
Theorem 26. Every planar graph is isomorphic to a subgraph of:
(a) $H \boxtimes P$ for some planar graph H of simple treewidth 8 and for some path $P([17])$.
(b) $H \boxtimes P$ for some planar graph H of simple treewidth 6 and for some path P ([42]).
(c) $H \boxtimes P \boxtimes K_{3}$ for some planar graph H of simple treewidth 3 and for some path P ([17]).

Similarly, this appendix shows that $\mathrm{tw}(H)$ can be replaced by $\operatorname{stw}(H)$ in Theorem 2(a), Theorem 3, Theorem 5, Corollary 6, Theorem 18, Theorem 20, and Theorem 24. In particular, in Theorem 24, H is outerplanar and, in Corollary $6, H$ is planar with treewidth at most 3. These results all follow by improving the 'treewidth at most s ' conclusions of Theorems 12 and 22 to 'simple treewidth at most s '. This improvement comes at a slight cost: the theorems now apply to $K_{s, t}^{*}$-minor-free graphs instead of $\mathcal{J}_{s, t}$-minor-free graphs. The only place where we do not obtain a result in terms of simple treewidth is for K_{t}-minor-free graphs where we use $\mathcal{J}_{t-2,2}=\left\{K_{t}\right\}$.
Theorem 27. Let $s, t \geqslant 2$ be integers, G be a $K_{s, t}^{*}$-minor-free graph, and (T, \mathcal{W}) be a tree-decomposition of G. Then G has a partition of \mathcal{W}-width at most $t-1$ and simple treewidth at most s.

This result follows immediately from the next lemma, which is an analogue of Lemma 13 for simple treewidth. The main difference is we can no longer apply induction when $G-U$ is disconnected (pasting on the same clique can increase simple treewidth) and so we cannot assume $G-U$ is connected. The proof frequently uses the fact that for any clique C in a graph G, any tree-decomposition of G has a bag that contains C.

Lemma 28. Let $s, t \geqslant 2$ be integers, G be a $K_{s, t}^{*}$-minor-free graph, and (T, \mathcal{W}) be a tree-decomposition of G. Suppose that $\left(U_{1}, \ldots, U_{r}\right)$ is a K_{r}-model of \mathcal{W}-width at most $t-1$ where $r \leqslant s$. Then G has a partition H of \mathcal{W}-width at most $t-1$ rooted at $\left(U_{1}, \ldots, U_{r}\right)$ where H has an s-simple tree-decomposition (R, \mathcal{B}). Furthermore, if $r=s$, then only one bag of \mathcal{B} contains all of U_{1}, \ldots, U_{s}.

Proof. Let $U:=U_{1} \cup \cdots \cup U_{r}$. We proceed by induction on $|V(G)|$. If $V(G)=U$, then the $\left(U_{1}, \ldots, U_{r}\right)$ is the desired partition H where $H=K_{r}, R$ is a single vertex with bag $\left\{U_{1}, \ldots, U_{r}\right\}$. Now assume that $V(G) \backslash U \neq \varnothing$. Let $A_{i}:=N_{G}\left(U_{i}\right) \backslash U$ for each i.

First suppose that some A_{i} is empty, say $A_{1}=\varnothing$. By induction, $G-U_{1}$ has a partition H_{1} of \mathcal{W}-width at most $t-1$ rooted at $\left(U_{2}, \ldots, U_{r}\right)$ and H_{1} has an s-simple treedecomposition $\left(R_{1}, \mathcal{B}_{1}\right)$. Add a new part U_{1} adjacent to each of U_{2}, \ldots, U_{r} to get the partition H. Since $\left\{U_{2}, U_{3}, \ldots, U_{r}\right\}$ is a clique in H, some bag $B_{x} \in \mathcal{B}_{1}$ contains all of U_{2}, \ldots, U_{r}. Add a leaf y adjacent to x and let $B_{y}:=\left\{U_{1}, \ldots, U_{r}\right\}$. This gives the desired s-simple tree-decomposition (R, \mathcal{B}) of H. Thus we may assume that A_{i} is non-empty for all i.

Next suppose that some component of $G-U$ does not meet every A_{i}. Without loss of generality some component Q_{1} of $G-U$ misses A_{1}. Apply induction to $G_{1}:=$ $G\left[U \backslash U_{1} \cup V\left(Q_{1}\right)\right]$ rooted at $\left(U_{2}, \ldots, U_{r}\right)$ to obtain a suitable partition H_{1} and s-simple tree-decomposition $\left(R_{1}, \mathcal{B}_{1}\right)$. Apply induction to $G_{2}:=G-V\left(Q_{1}\right)$ rooted at $\left(U_{1}, \ldots, U_{r}\right)$ to obtain a suitable partition H_{2} and s-simple tree-decomposition $\left(R_{2}, \mathcal{B}_{2}\right)$. We obtain the partition H for G from the disjoint union of H_{1} and H_{2} where the corresponding $U_{i}(2 \leqslant i \leqslant r)$ are identified. Some bag $B_{x} \in \mathcal{B}_{1}$ contains all of U_{2}, \ldots, U_{r} and some bag $B_{y} \in \mathcal{B}_{2}$ contains all of U_{1}, \ldots, U_{r}. Let R be the tree obtained from the disjoint union of R_{1} and R_{2} with an edge added between x and y. Then $\left(R, \mathcal{B}_{1} \cup \mathcal{B}_{2}\right)$ is an s-simple tree-decomposition for H (note that $\left.V\left(G_{1}\right) \cap V\left(G_{2}\right)=U \backslash U_{1}\right)$. Further, if $r=s$, then only one bag of \mathcal{B}_{2} contains all of U_{1}, \ldots, U_{r}, and so only one bag of \mathcal{B} does. Now assume that every component of $G-U$ meets every A_{i}.

We now show there exists a set $Y \subseteq V(G) \backslash U$ of \mathcal{W}-width at most $t-1$ such that

$$
\text { no component of } G-U-Y \text { meets every } A_{i} \text {. }
$$

Let \mathcal{F} be the collection of all connected subgraphs F of $G-U$ such that $V(F) \cap A_{i} \neq \varnothing$
for all i. For each $F \in \mathcal{F}$, let $T_{F}:=T\left[\left\{x \in V(T): W_{x} \cap V(F) \neq \varnothing\right\}\right]$. Since F is connected, each T_{F} is a (connected) subtree of T.

First consider the case $r \leqslant s-1$.
First suppose there exists $F_{1}, F_{2} \in \mathcal{F}$ such that $T_{F_{1}}$ and $T_{F_{2}}$ are disjoint. Let $x y$ be any edge of T on the shortest path between $T_{F_{1}}$ and $T_{F_{2}}$. Then $W_{x} \cap W_{y}$ separates $V\left(F_{1}\right)$ and $V\left(F_{2}\right)$. Let S be a minimal subset of $W_{x} \cap W_{y}$ that separates $V\left(F_{1}\right)$ and $V\left(F_{2}\right)$. By construction, S has \mathcal{W}-width $1, S \cap V\left(F_{1}\right)=\varnothing$, and $S \cap V\left(F_{2}\right)=\varnothing$. Then there is a partition $S \cup V_{1} \cup V_{2}$ of $V(G) \backslash U$ such that $V\left(F_{1}\right) \subseteq V_{1}, V\left(F_{2}\right) \subseteq V_{2}$ and there is no edge between V_{1} and V_{2}. We now show that there is a component Q_{1} of $G\left[S \cup V_{1}\right]$ that contains $S \cup V\left(F_{1}\right)$ and a component Q_{2} of $G\left[S \cup V_{2}\right]$ that contains $S \cup V\left(F_{2}\right)$. Consider some $s \in S$. Since S is minimal, there is a path from s to $V\left(F_{1}\right)$ internally disjoint from $S \cup V\left(F_{2}\right)$. Since there is no edge between V_{1} and V_{2}, this path must lie entirely inside $S \cup V_{1}$. Since F_{1} is connected, the component of $G\left[S \cup V_{1}\right]$ containing s contains all of $S \cup V\left(F_{1}\right)$. Similarly for $G\left[S \cup V_{2}\right]$. For $j \in\{1,2\}$, let G_{j} be the graph obtained from G by contracting all of Q_{j} into a single vertex v_{j} and deleting the rest of V_{j}. Each G_{j} is a minor of G and thus is $K_{s, t}^{*}$-minor-free. Furthermore, since $V\left(F_{j}\right) \subseteq Q_{j},\left(U_{1}, \ldots, U_{r},\left\{v_{j}\right\}\right)$ is a K_{r+1}-model in G_{j}. Apply induction to G_{j} rooted at $\left(U_{1}, \ldots, U_{r},\left\{v_{j}\right\}\right)$ to obtain a suitable partition H_{j} and s-simple tree-decomposition $\left(R_{j}, \mathcal{B}_{j}\right)$. Let H be obtained from the disjoint union of H_{1} and H_{2} where the corresponding U_{i} are identified and the vertices v_{1} and v_{2} from H_{1} and H_{2} are identified and replaced by S. There is a bag $B_{x} \in \mathcal{B}_{1}$ and a bag $B_{y} \in \mathcal{B}_{2}$ that both contain all of U_{1}, \ldots, U_{r}, S. Let R be the tree obtained from the disjoint union of R_{1} and R_{2} with an edge added between x and y, and let $\mathcal{B}:=\mathcal{B}_{1} \cup \mathcal{B}_{2}$. If $r=s-1$ then the bags B_{x} and B_{y} are unique and so only two bags in \mathcal{B} contain all of U_{1}, \ldots, U_{r}, S. Thus (R, \mathcal{B}) is a s-simple tree-decomposition of H.

Now assume that $T_{F_{1}}$ and $T_{F_{2}}$ intersect for all $F_{1}, F_{2} \in \mathcal{F}$. By the Helly property, there is a node $x \in V(T)$ such that $x \in V\left(T_{F}\right)$ for all $F \in \mathcal{F}$. Let $Y:=W_{x}$. Then Y has \mathcal{W}-width 1 and intersects every $F \in \mathcal{F}$. Thus $G-U-Y$ contains no graph of \mathcal{F} and so every component of $G-U-Y$ avoids some A_{i}. This Y satisfies (\star).

Now consider the case $r=s$.
Suppose that \mathcal{F} contains t vertex-disjoint graphs F_{1}, \ldots, F_{t}. Contracting each U_{i} and each F_{j} to a vertex gives a $K_{s, t}^{*}$-minor in G. Hence, there are no t vertex-disjoint graphs in \mathcal{F}. For any $F_{1}, F_{2} \in \mathcal{F}$, if $T_{F_{1}}$ and $T_{F_{2}}$ are disjoint, then F_{1} and F_{2} are disjoint. So $\left\{T_{F}: F \in \mathcal{F}\right\}$ contains no t pairwise disjoint subtrees. Thus, by Lemma 9 , there is a set $S \subseteq V(T)$ of size at most $t-1$ that meets every T_{F}. Let $Y:=\bigcup_{x \in S} W_{x}$. Then Y has \mathcal{W}-width at most $t-1$ and intersects every $F \in \mathcal{F}$. This Y satisfies (\star).

We have shown in all cases that there exists $Y \subseteq V(G) \backslash U$ satisfying (\star). Take a minimal
such Y. Since Y satisfies (\star) there are induced subgraphs G_{1}, \ldots, G_{r} of $G-U-Y$ such that:

- each G_{j} is a union of components of $G-U-Y$,
- G_{j} does not meet A_{j} for all j,
- every vertex of $G-U-Y$ is in exactly one G_{j}.

Let Y_{j} be the set of vertices $w \in Y$ that have neighbours in G_{j}. We first show that if G_{j} is non-empty, then so is Y_{j}. If not, then there is some j for which G_{j} is non-empty and there are no edges between Y and $V\left(G_{j}\right)$. But then G_{j} is a union of components in $G-U$. We showed above that every component of $G-U$ meets every A_{i}, so A_{j} meets G_{j}, which is a contradiction.

We now only consider those j with G_{j} (and so Y_{j}) non-empty. We claim that for each $w \in Y_{j}$ there is a path P_{w} from w to A_{j} that avoids $U \cup V\left(G_{j}\right)$. By the minimality of Y, some component Q of $G-U-(Y \backslash\{w\})$ meets every A_{i}. Since Y satisfies (\star), w is a cut-vertex of Q. Now Q meets A_{j} and w is adjacent to some vertex of G_{j} so there is a path from A_{j} to $V\left(G_{j}\right)$ in Q. There is no such path in $Q-w$, so there is some path P_{w} from A_{j} to w in Q that avoids $V\left(G_{j}\right)$. Also P_{w} is in Q, so P_{w} avoids U. Hence, P_{w} has the required properties. Let Z_{j} be the subgraph induced by the union of U_{j} and all P_{w} (where $w \in Y_{j}$). By construction, Z_{j} is connected and disjoint from $V\left(G_{j}\right) \cup\left(U \backslash U_{j}\right)$.
Take the subgraph of G induced by $V\left(G_{j}\right) \cup Z_{j} \cup U$ and contract Z_{j} into a new vertex z_{j}. Call the graph obtained G_{j}^{\prime}, which has vertex-set $V\left(G_{j}\right) \cup\left(U \backslash U_{j}\right) \cup\left\{z_{j}\right\}$. Now ($\left\{z_{j}\right\}, U_{i}: i \neq j$) is a K_{r}-model in G_{j}^{\prime}. Apply induction to G_{j}^{\prime} rooted at this K_{r}-model to obtain a suitable partition H_{j} and s-simple tree-decomposition $\left(R_{j}, \mathcal{B}_{j}\right)$. Let H be obtained from the disjoint union of the H_{j} where corresponding U_{i} are identified, and the z_{j} are identified and replaced by Y. This gives a partition of G exactly as in the proof of Lemma 13.

For each j, there is a bag $B_{x_{j}} \in \mathcal{B}_{j}$ that contains all of $U_{1}, \ldots, U_{j-1}, U_{j+1}, \ldots, U_{r}, Y$. Let R be the tree obtained from the disjoint union of the R_{j} by adding a vertex x adjacent to all the x_{j}. Let $B_{x}:=\left\{U_{1}, \ldots, U_{r}, Y\right\}$ and define $\mathcal{B}:=\left\{B_{x}\right\} \cup \bigcup_{j} \mathcal{B}_{j}$. Since the only common neighbours of vertices in different G_{j} are in $U \cup Y$, this is a tree-decomposition of H. If $r<s$, then, since each $\left(R_{j}, \mathcal{B}_{j}\right)$ is s-simple, so is (R, \mathcal{B}). Finally, suppose that $r=s$. Consider $U_{1}, \ldots, U_{j-1}, U_{j+1}, \ldots, U_{s}, Y: B_{x_{j}}$ and B_{x} are the only two bags of \mathcal{B} that contain all these sets. Finally, B_{x} is the only bag containing all of $U_{1}, U_{2}, \ldots, U_{s}$. In particular, \mathcal{B} is s-simple and satisfies the required properties.

The next result is an analogue of Theorem 16 for simple treewidth, and is proved in the same way as Theorem 16, using Theorem 27 instead of Theorem 12.

Theorem 29. For all integers $s, t \geqslant 2$, every $K_{s, t}^{*}$-minor-free graph G is isomorphic to a subgraph of $H \boxtimes P \boxtimes K_{m}$, where P is a path, $\operatorname{stw}(H) \leqslant s$, and $m:=(t-1) \operatorname{ltw}(G)$.

Taking $s=3$ in Theorem 29 shows that for all t there is an m such that every $K_{3, t^{-}}^{*}$ minor-free graph is isomorphic to a subgraph of $H \boxtimes P \boxtimes K_{m}$ where P is a path and H is planar with treewidth at most 3 . This has an application to p-centred colouring. Dębski et al. [14, Thm. 6] showed that if H is planar with treewidth at most 3, then $\chi_{p}(H)=\mathcal{O}\left(p^{2} \log p\right)$. Using this and $\chi_{p}\left(H \boxtimes P \boxtimes K_{m}\right) \leqslant m(p+1) \chi_{p}(H)$ shows that every $K_{3, t}^{*}$-minor-free G has $\chi_{p}(G)=\mathcal{O}\left(p^{3} \log p\right)$. This improves Theorem 21 which gives $\chi_{p}(G)=\mathcal{O}\left(p^{4}\right)$.

Applying the same approach as in the proof of Lemma 28 establishes the following analogue of Theorem 22 for simple treewidth. We omit the details.

Theorem 30. Let s, t, n be positive integers and define

$$
m:= \begin{cases}\max \{t-1,1\} & \text { if } s=1 \text { or } 2 \\ \sqrt{(s-2) n} & \text { if } s \geqslant 3 \text { and } t=1 \\ 2 \sqrt{(s-1)(t-1) n} & \text { otherwise }\end{cases}
$$

Then every $K_{s, t}^{*}-$ minor-free graph G on n vertices is isomorphic to a subgraph of $H \boxtimes K_{\lfloor m\rfloor}$ for some graph H of simple treewidth at most s.

[^0]: December 17, 2022. MSC classification: 05 C 83 graph minors.
 ${ }^{\dagger}$ Mathematical Institute, University of Oxford, United Kingdom (\{illingworth, scott\}@maths.ox .ac.uk). Research supported by EPSRC grant EP/V007327/1.
 \ddagger School of Mathematics, Monash University, Melbourne, Australia (david.wood@monash.edu). Research supported by the Australian Research Council, and by a Visiting Research Fellowship of Merton College, University of Oxford.

[^1]: ${ }^{1}$ The balanced separator result follows from Theorem 1 and the separator lemma of Robertson and Seymour [40, (2.6)].

[^2]: ${ }^{2}$ The Euler genus of a surface with h handles and c cross-caps is $2 h+c$. The Euler genus of a graph G is the minimum integer $g \geqslant 0$ such that G embeds in a surface of Euler genus g; see [36] for more about graph embeddings in surfaces.

[^3]: ${ }^{3}$ Given a graph G and $V_{1}, V_{2} \subseteq V(G)$, a set S separates V_{1} and V_{2} if no connected component of $G-S$ contains a vertex of both V_{1} and V_{2}.

