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Abstract

We investigate which graphs H have the property that in every graph with bounded clique number
and sufficiently large chromatic number, some induced subgraph is isomorphic to a subdivision of
H. In an earlier paper [6], the first author proved that every tree has this property; and in another
earlier paper with Maria Chudnovsky [2], we proved that every cycle has this property. Here we give
a common generalization. Say a “banana” is the union of a set of paths all with the same ends but
otherwise disjoint. We prove that if H is obtained from a tree by replacing each edge by a banana
then H has the property mentioned.



1 Introduction

All graphs in this paper are finite and simple. For some purposes it is convenient to use multigraphs
instead of graphs; all multigraphs in this paper are finite and loopless. If G is a graph, χ(G) denotes
its chromatic number, and ω(G) denotes its clique number, that is, the cardinality of the largest
clique of G.

Let H be a multigraph, and let J be a graph obtained from H by replacing each edge uv by a
path (of length at least one) joining u, v, such that these paths are vertex-disjoint except for their
ends. Then J is a subdivision of H. We say a graph G is H-subdivision-free if no induced subgraph
of G is a subdivision of H. We could ask:

• which multigraphs H have the property that for all κ there exists c such that every H-
subdivision-free graph with clique number at most κ has chromatic number at most c?

• which multigraphs H have the property that for every subdivision J of H and for all κ there
exists c such that every J-subdivision-free graph with clique number at most κ has chromatic
number at most c?

The second question, while more complicated, is perhaps better. At least if we confine ourselves to
“controlled” classes of graphs (defined later), we know the answer to the second question, while the
first remains open. The second question could be rephrased as asking for which multigraphs H every
graph with bounded clique number and large chromatic number contains a “long” subdivision of H,
that is, one in which every edge is subdivided at least some prescribed number of times.

Let us say a multigraph H is pervasive in some class of graphs C if it has the second property
above for graphs in the class; that is, for every subdivision J of H and for all κ ≥ 0 there exists c
such that every J-subdivision-free graph G ∈ C with ω(G) ≤ κ satisfies χ(G) ≤ c. (The reader is
referred to [3] for a more detailed introduction to the topic of pervasiveness.)

There are some earlier theorems that can be expressed in this language. First, Scott proved that

1.1 [6] Every tree is pervasive in the class of all graphs.

Second, we proved with Maria Chudnovsky [2] a conjecture of Gyárfás [4] that for all κ, `, every
graph with clique number at most κ and sufficiently large chromatic number has an induced cycle of
length at least `; and that can be reformulated as:

1.2 [2] The multigraph with two vertices and two parallel edges is pervasive in the class of all graphs.

One of our main theorems, and the goal of the first three-quarters of the paper (up to the end of
section 6), is the following common generalization:

1.3 Let H be a multigraph obtained from a tree by adding parallel edges. Then H is pervasive in
the class of all graphs.

What is known in the converse direction? Chalopin, Esperet, Li and Ossona de Mendez proved:

1.4 [1] Every graph that is pervasive in the class of all graphs is a forest of chandeliers,

where
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• a chandelier is a graph obtained from a tree by adding a new vertex called the pivot adjacent
to its leaves (we also count the one- and two-vertex complete graphs as chandeliers, choosing
some vertex as pivot);

• a tree of chandeliers is either a chandelier or obtained inductively from a smaller tree of chan-
deliers by identifying some vertex with the pivot of a new chandelier; and

• a forest of chandeliers is a graph where every component is a tree of chandeliers.

A string graph is the intersection graph of a set of curves in the plane. The same paper proved a
result stronger than 1.4, namely:

1.5 [1] Every graph that is pervasive in the class of string graphs is a forest of chandeliers.

With M. Chudnovsky, we proved a converse to this:

1.6 [3] Every forest of chandeliers is pervasive in the class of string graphs.

The goal of this paper is to investigate pervasiveness in other classes of graphs. Before we go on, we
need some definitions.

If X ⊆ V (G), G[X] denotes the subgraph induced on X, and we write χ(X) for χ(G[X]). If ρ ≥ 0
is an integer, then for v ∈ V (G), Nρ

G[v] means the set of vertices of G with distance at most ρ from v;
and χρ(G) denotes the maximum over all vertices v of χ(Nρ

G[v]), or zero for the null graph. Usually
we speak of “G-distance” (to mean distance in G) rather than just distance, in case there may be
some ambiguity. Let us say an ideal is a class of graphs closed under taking induced subgraphs; that
is, a class such that for all graphs G,H, if G is an induced subgraph of H and H ∈ C then G ∈ C.
(This is sometimes called a “hereditary class”, but we needed a shorter name.) If C, C′ are ideals and
C′ ⊆ C, we say C′ is a subideal of C.

An ideal C is

• colourable if there exists k such that all members of C have chromatic number at most k;

• ρ-bounded (where ρ ≥ 0 is some integer) if there exists τ such that χρ(G) ≤ τ for all G ∈ C;

• ρ-controlled (for some ρ) if every ρ-bounded subideal of C is colourable; and

• controlled if it is ρ-controlled for some ρ ≥ 0.

Roughly, if a graph in a controlled ideal has large chromatic number, then some ball of bounded
radius in the graph also has large chromatic number. Thus, being ρ-bounded and being ρ-controlled
are almost opposite; ρ-bounded means χρ(G) is bounded for all G, and ρ-controlled means χρ(G)
can be chosen as large as we want by choosing G with χ(G) large. Controlled ideals have been an
important tool in the study of χ-boundedness – see [7].

In fact the following significant extension of 1.6 is known:

1.7 [3] Every forest of chandeliers is pervasive in every controlled ideal.
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We would like to know which multigraphs are pervasive in the ideal of all graphs. Subdividing
edges in a graph or multigraph does not change whether the graph or multigraph is pervasive, so it
is enough to decide which graphs are pervasive. (We could have written this paper just working with
graphs, but sometimes multigraphs are more convenient.) Every such graph is a forest of chandeliers,
so let H be a forest of chandeliers; in view of the results of [3], what do we still need to prove, to show
that H is pervasive in the ideal of all graphs? Let J be a subdivision of H, and let C be the ideal of
all J-subdivision-free graphs; we need to show that the members of C with bounded clique number
also have bounded chromatic number. Suppose not; so for some κ ≥ 0, there is a noncolourable
subideal D of C such that all graphs G ∈ D satisfy ω(G) ≤ κ. In particular, since H is a forest of
chandeliers, 1.7 implies that D is not ρ-controlled, for any ρ. Let ρ ≥ 0. Since D is not ρ-controlled,
there is a noncolourable ρ-bounded subideal of D. Thus, a forest of chandeliers H is not pervasive
in the ideal of all graphs if and only if for some subdivision J of H, some κ ≥ 0 and all ρ ≥ 0 there
is a noncolourable ρ-bounded ideal of J-subdivision-free graphs all with clique number at most κ.

Thus we would like to show the negative: that for every subdivision J of H and all κ ≥ 0
there exists ρ ≥ 0 such that every ρ-bounded ideal of J-subdivision-free graphs G with ω(G) ≤ κ is
colourable. Let us call this being “weakly widespread”.

The argument above shows that a forest of chandeliers H is not pervasive in the ideal of all
graphs if and only if it is not weakly widespread. We know which graphs are pervasive in controlled
ideals, and roughly speaking, the concept of “weakly widespread” is the complementary property; a
graph is both pervasive in controlled ideals and weakly widespread if and only if it is pervasive in
the ideal of all graphs, which is what we really want to determine.

Here is a slightly stronger property, eliminating κ. (The reason for using this strengthening is
that it is somewhat simpler, and it is what in fact we proved whenever we have been able to prove the
weaker property). Let us say a multigraph H is widespread if for every subdivision J of H there exists
ρ ≥ 0 such that every ρ-bounded ideal of J-subdivision-free graphs G is colourable. Equivalently, H
is widespread if and only if for every subdivision J of H there exists ρ ≥ 0 such that for all τ ≥ 0
there exists c ≥ 0 such that every J-subdivision-free graph G with ω(G) ≤ κ satisfies χ(G) ≤ c.

Scott [6] conjectured that every multigraph is pervasive in the ideal of all graphs, but this was
disproved by a beautiful construction in [5]. Now we have a different question: which graphs H
are widespread? Originally we expected that the answer would be “if and only if H is a forest of
chandeliers”, but “if” remains open and “only if” turns out to be false; in the last quarter of this
paper we give some widespread graphs that are not forests of chandeliers. So now our best guess is
the following resuscitated version of Scott’s conjecture:

1.8 Conjecture: Every multigraph is widespread.

We are very far from proving this; we still do not know whether every forest of chandeliers, or
indeed every chandelier, is widespread, and conversely, all the multigraphs that we have proved to
be widespread are subdivisions of outerplanar graphs.

With Chudnovsky, we proved that:

1.9 [3] For all ρ ≥ 2 and every multigraph J , every ρ-controlled class of J-subdivision-free graphs
is 2-controlled.

Thus 1.8 is equivalent to the following, which is nicer (although we do not use 1.10 in this paper):
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1.10 Conjecture: For all graphs J and for all integers τ ≥ 0, there exists c such that if G is a
graph with chromatic number more than c, then either some induced subgraph of G is a subdivision
of J or χ2(G) > τ .

If e = uv is an edge of a multigraph G, fattening e means replacing e by some nonempty set of
parallel edges all joining u, v. We will show:

1.11 Let T be a tree, and let H be a multigraph obtained by fattening the edges of T . Then H is
widespread.

Our first main theorem 1.3 follows immediately from 1.11 and 1.7, as fattening the edges of a tree
gives a multigraph whose subdivisions are banana trees, and banana trees are trees of chandeliers.

Similar methods can be used to prove that some other classes of multigraphs are widespread. In
sections 7 and 8 we will prove:

1.12 Let H be a multigraph obtained from a cycle by fattening all of its edges except one. Then H
is widespread.

1.13 Let H be a multigraph obtained from a triangle K3 by fattening two of its edges and replacing
the third by two parallel edges. Then H is widespread.

These two results are of particular interest because the multigraphs H of 1.12 and 1.13 are in general
not forests of chandeliers.

2 Distant subgraphs with large chromatic number

With 1.8 in mind, let us see what we need. We have a graph J (a subdivision of the initial multigraph
H), and we need to show that if we choose ρ large enough, then every ρ-bounded ideal of J-
subdivision-free graphs is colourable. At this stage we prefer not to specify H,J , and see how
far we can progress in general. So H,J might as well both be K1

ν , the graph obtained from a
complete graph Kν by subdividing every edge once; because for any fixed graph H, if ν is large
enough then there is an induced subgraph of K1

ν which is a subdivision of H. So, we are given ν,
and let us choose ρ very large in terms of ν. Now we need to show that every ρ-bounded ideal C
of K1

ν -subdivision-free graphs is colourable. Choose some such C; then since it is ρ-bounded, there
exists τ such that χρ(G) ≤ τ for all G ∈ C. Altogether then we have three numbers ν, ρ, τ , where ν
is given, and ρ is some large function of ν that we can choose, and then after selecting ρ, the number
τ is given. We need to prove for such a quadruple of numbers, there is a number c, such that every
graph G that is K1

ν -subdivision-free and satisfies χρ(G) ≤ τ also satisfies χ(G) ≤ c. We begin by
proving some lemmas about such graphs G. The main result of this section is:

2.1 For all ν, k, d, c, τ ≥ 0 there exists c′ ≥ 0 with the following property. Let G be a K1
ν -subdivision-

free graph, such that χ2d+7(G) ≤ τ , and let Z ⊆ V (G) with χ(Z) > c′. Then there exist subsets
Z1, . . . , Zk ⊆ Z such that χ(Zi) > c for i = 1, . . . , k and the G-distance between every two of
Z1, . . . , Zk is more than d.

To prove this, we need first:
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2.2 For all κ ≥ 0 and d, s ≥ 0 there exists k ≥ s with the following property. Let G be a connected
graph with ω(G) ≤ κ. Let x1, . . . , xk ∈ V (G) be distinct, and let v ∈ V (G) such that the G-distance
between v and xi is at most d for 1 ≤ i ≤ k. Then there exist u ∈ V (G) and a subset S ⊆ {1, . . . , k}
with |S| = s, and for each i ∈ S a path Qi between u and xi of length at most d, such that

• for 1 ≤ i ≤ k, Qi is a shortest path in G between u, xi, and Q1, . . . , Qk all have the same length;

• for all distinct i, j, Qi, Qj are disjoint except for u, and there is no edge between V (Qi) \ {u}
and V (Qj) \ {u}.

Proof. For fixed κ, s we proceed by induction on d. The result is vacuous for d = 0 and true for d = 1,
so we assume d > 1 and that setting k = k′ satisfies the result for d−1. We may therefore assume that

(1) For each u ∈ V (G) there are at most k′ − 1 values of i such that u has G-distance at most
d− 1 from xi.

Let k1 ≥ 2 be such that every graph with at least k1 vertices either has a clique of cardinality
κ or a stable set of cardinality s, and let k = 2((d+ 1)(k′ − 1) + 1)k1. We claim that k satisfies the
conclusion of the theorem. For given G, x1, . . . , xk, v as in the theorem, let Qi be a shortest path in
G between v, xi for 1 ≤ i ≤ k; thus each Qi is an induced path. Let D be the digraph with vertex set
{1, . . . , k} in which for distinct i, j ∈ {1, . . . , k}, there is an edge from i to j if some vertex of Qi has
G-distance less than d from xj . Because of (1), this digraph has outdegree at most (d+1)(k′−1), and
so its underlying graph is 2(d+ 1)(k′− 1)-degenerate and therefore (2(d+ 1)(k′− 1) + 1)-colourable;
and so there exists I ⊆ {1, . . . , k} with |I| ≥ k/(2(d+ 1)(k′ − 1) + 1) = k1 such that for all distinct
i, j ∈ I, every vertex of Qi has G-distance at least d from xj . It follows that

• all the paths Qi (i ∈ I) have length exactly d (to see this, choose j ∈ I \ {i}; then v ∈ V (Qj)
and so has G-distance d from xi);

• all the paths Qi (i ∈ I) are pairwise disjoint except for v; and

• for all distinct i, j ∈ I, every edge between V (Qi) \ {v} and V (Qj) \ {v} joins two neighbours
of v.

From the choice of k1, since ω(G) ≤ κ, there exists J ⊆ I with |J | = s such that the neighbours of
v in Qi (i ∈ J) are pairwise nonadjacent; and so the paths Qi (i ∈ J) satisfy the conclusion of the
theorem. This proves 2.2.

2.3 For all κ, ν, d ≥ 0, there exist k, ` ≥ 0 with the following property. Let G be a graph with
ω(G) ≤ κ, let X1, . . . , Xk be nonnull connected subgraphs of G, and let v1, . . . , v` ∈ V (G), such that

• for all distinct i, j ∈ {1, . . . , k}, every vertex in Xi has G-distance at least three from every
vertex of Xj;

• for all distinct i, j ∈ {1, . . . , `}, the G-distance between vi, vj is at least 2d+ 2; and

• for 1 ≤ i ≤ k and 1 ≤ j ≤ `, the G-distance between Xi and vj is at most d.
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Tnen G is not K1
ν -subdivision-free.

Proof. Let s = ν(ν − 1)/2; choose k1 such that setting k = k1 satisfies 2.2; let `1 = ν
(
k1
s

)
;

and define k = (d + 1)k1 and ` = (d + 1)k`1. We claim that k, ` satisfy the theorem. For let
G,X1, . . . , Xk, v1, . . . , v` be as in the theorem.

For 1 ≤ i ≤ k and 1 ≤ j ≤ `, let the shortest path in G between Xi and vj have length dij . For
each j ∈ {1, . . . , `}, there are only (d+ 1)k possibilities for the sequence (d1j , . . . , dkj), and so there
exists J1 ⊆ {1, . . . , `} with |J1| ≥ `(d + 1)−k = `1 such that for each i ∈ {1, . . . , k}, the numbers
dij(j ∈ J1) all have some common value, say di. Since there are only d+ 1 possibilities for di, there
exists I1 ⊆ {1, . . . , k} with |I1| = k/(d + 1) = k1 such that the numbers di (i ∈ I1) all have some
common value, say D. Thus for each i ∈ I1 and each j ∈ J1, the G-distance between Xi and vj is D.
For each i ∈ I1 and j ∈ J1, let Pij be some shortest path between Xi and vj , and let its end in Xi be
xij . For each j ∈ J1, let Gj be the subgraph of G induced on the union of the sets V (Pij) (i ∈ I1).
For distinct j, j′ ∈ J1, since the G-distance between vj , vj′ is at least 2d+ 2 and every vertex of Gj
has G-distance at most d from vj and the same for Gj′ , it follows that Gj , Gj′ are disjoint and there
is no edge joining them.

Suppose that for some distinct i, i′ ∈ I1 and j ∈ J1, some vertex z of Pij belongs to or has a
neighbour in Xi′ . Since every path between xij and Xi′ has length at least three, it follows that z
is not xij or its neighbour in Pij , and so there is a path between vj and z of length at most D − 2,
and hence a path between vj and Xi′ of length at most D − 1, a contradiction. Thus no vertex of
Pij belongs to or has a neighbour in Xi′ .

For each j ∈ J1, by 2.2 applied to Gj there exist Ij ⊆ I1 with |Ij | = s, and a vertex uj ∈ V (Gj),
and induced paths Qij of Gj between uj and xij for each i ∈ Ij , such that the paths Qij (i ∈ Ij)
are pairwise disjoint except for uj , and there are no edges between them not incident with uj . Since

`1 = ν
(
k1
s

)
, there exists J ⊆ J1 with |J | = ν such that the sets Ij (j ∈ J) are all equal, equal to

some I say. Since |I| = s = ν(ν − 1)/2, we can number the members of I as ij,j′ where j, j′ ∈ J and
j < j′. For all j, j′ ∈ J with j < j′, let i = ij,j′ ; the subgraph Qij ∪Xi ∪ Qij′ is connected, and so
includes an induced path Rjj′ of G between uj , uj′ . But then the vertices uj (j ∈ J) and the paths
Rjj′ provide an induced subgraph isomorphic to a subdivision of K1

ν . This proves 2.3.

We deduce the following, which is the main step in the proof of 2.1:

2.4 For all ν, d, c, τ ≥ 0 there exists c′ ≥ 0 with the following property. Let G be a K1
ν -subdivision-

free graph, such that χ2d+7(G) ≤ τ , and let Z ⊆ V (G) with χ(Z) > c′. Then there exist subsets
Z1, Z2 ⊆ Z such that χ(Zi) > c for i = 1, 2 and the G-distance between Z1, Z2 is more than d.

Proof. Let k, ` ≥ 1 satisfy 2.3 with d replaced by d + 3, and κ = τ . Let ck = `τ , and for
i = k − 1, . . . , 0 define ci = 2ci+1 + 2c. Let c′ = c0. We claim that c′ satisfies the conclusion of the
theorem. For let G,Z be as in the theorem. Then ω(G) ≤ τ , since ω(G) ≤ χ1(G) ≤ χ2d+7(G) ≤ τ .
Choose k′ ≤ k maximum such that there exist connected subgraphs X1, . . . , Xk′ of G[Z] and a subset
A ⊆ Z with the following properties:

• for 1 ≤ i < j ≤ k′, the G-distance between Xi, Xj is at least three;

• for 1 ≤ i ≤ k′, there exists di with 3 ≤ di ≤ d + 3 such that every vertex in A has G-distance
exactly di from Xi; and
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• χ(A) > ck′ .

(This is possible since setting k′ = 0 and A = Z satisfies the bulletted statements.) By replacing
A by the vertex set of a connected component of G[A] with maximum chromatic number, we may
assume in addition that G[A] is connected. Since ck′ > (` − 1)τ and χ2d+7(G) ≤ τ , there exist
vertices v1, . . . , v` ∈ A, pairwise with G-distance at least 2d + 8. Consequently, k′ < k by 2.3. Let
z0 ∈ A. For i ≥ 0 let Li be the set of vertices in A with G[A]-distance from z0 equal to i. For i ≥ 0
let Mi = L0 ∪ · · · ∪Li. Thus each Mi induces a connected graph. For r ≥ 0 let M r

i denote the set of
vertices in A with G-distance from Mi at most r. It follows that M r

i ⊇ Mi+r. (We emphasize that
G-distance and G[A]-distance may be different.) For sufficiently large i, Mi = A; and so there exists
i such that χ(Md+3

i ) > 2ck′+1 + c. Choose i minimum with this property.
Suppose that χ(M2

i ) ≤ c. Then χ(Md+3
i \M2

i ) > (2ck′+1 + c)− c, and every vertex in Md+3
i \M2

i

has G-distance from Mi at least three and at most d + 3. For 3 ≤ j ≤ d + 3 let Bj be the set of
vertices in Md+3

i \M2
i with G-distance exactly j from Mi. It follows that χ(Bj) > ck′+1 for some

j ∈ {3, . . . , d + 3}. Let Xk′+1 = Mi and dk′+1 = j; then since χ(Bj) > ck′+1, this contradicts the
maximality of k′. This proves that χ(M2

i ) > c.
Now χ(Md+3

i ) > 2ck′+1 + c ≥ τ , and so i > 0 since χ2d+7(G) ≤ τ . From the minimality of i it
follows that χ(Md+3

i−1 ) ≤ 2ck′+1+c. Since χ(A) > ck′ , it follows that χ(A\Md+3
i−1 ) > ck′−(2ck′+1+c) =

c. But M2
i ⊆ M3

i−1, so the G-distance between M2
i and A \Md+3

i−1 is at least d + 1. Since both the
sets are subsets of A and hence of Z, and both sets have chromatic number more than c, this proves
2.4.

Now we can prove the main result of this section 2.1, which we restate:

2.5 For all ν, k, d, c, τ ≥ 0 there exists c′ ≥ 0 with the following property. Let G be a K1
ν -subdivision-

free graph, such that χ2d+7(G) ≤ τ , and let Z ⊆ V (G) with χ(Z) > c′. Then there exist subsets
Z1, . . . , Zk ⊆ Z such that χ(Zi) > c for i = 1, . . . , k and the G-distance between every two of
Z1, . . . , Zk is more than d.

Proof. We proceed by induction on k. Let c′′ satisfy the theorem with k replaced by k− 1; and let
c′ satisfy 2.4 with c replaced by c′′. We claim that c′ satisfies the conclusion of the theorem. For let
G,Z be as in the theorem. By 2.4 exist subsets Z1, Z2 ⊆ Z such that χ(Zi) > c′′ for i = 1, 2 and the
G-distance between Z1, Z2 is more than d. By the inductive hypothesis applied with Z replaced by
Z2, there are k − 1 subsets Y1, . . . , Yk−1 of Z2, each with chromatic number at least c and pairwise
with G-distance at least d+ 1. But then Z1, Y1, . . . , Yk−1 satisfy the theorem. This proves 2.5

3 Pineapple trees

If X,Y ⊆ V (G), we say that Y covers X if X ∩ Y = ∅ and every vertex in X has a neighbour in Y .
If in addition G[Y ] is connected we call the pair (X,Y ) a pineapple in G. It is a levelled pineapple
if there exists z0 ∈ Y such that for some k, every vertex in Y is joined to z0 by a path of G[Y ] of
length less than k, and there is no path in G[X ∪ Y ] of length less than k from z0 to X.

Now let T be a tree, with a vertex r called its root. We call (T, r) a rooted tree. For u, v ∈ V (T ),
we say v is an ancestor of u and u is a descendant of v if v belongs to the path of T between u, r.
We define parent and child in the natural way. We say u, v ∈ V (T ) are incomparable if neither is a
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descendant of the other. Let L(T ) be the set of vertices of T with no children (thus, L(T ) is the set
of leaves of T different from r, except when V (T ) = {r}). Now let G be a graph. For each vertex
v ∈ V (T ) let Cv ⊆ V (G), and for each vertex v ∈ V (T ) \L(T ) let (Xv, Yv) be a levelled pineapple in
G with Xv ∪ Yv = Cv, and with the following properties:

• all the sets Cv (v ∈ V (T )) are nonempty and pairwise disjoint;

• for all incomparable u, v ∈ V (T ) there is no edge between Cu, Cv;

• if u, v ∈ V (T ) are distinct, and u is a descendant of v, then there are no edges between Cu and
Yv, and if also u ∈ L(T ) then Xv covers Cu.

(Note that we only demand that Xv covers Cu when u is a leaf. It is undetermined whether there
are edges between Cu and Xv when u ∈ V (T )\L(T ) is a descendant of v; this will be resolved later.)
We call the system

(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ V (T )))

a pineapple tree in G and (T, r) is its shape. Let us call the union of all the sets Cv(v ∈ V (T )) the
vertex set of the pineapple tree. In this section we prove:

3.1 For all ν, c, d, τ ≥ 0, and every rooted tree (T, r), there exists c′ with the following property. Let
G be a K1

ν -subdivision-free graph, such that χ2d+7(G) ≤ τ , and let Z ⊆ V (G) with χ(Z) > c′. Then
there is a pineapple tree

(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ V (T )))

in G, with vertex set a subset of Z, such that

• χ(Cv) > c for each v ∈ L(T ); and

• for all incomparable u, v ∈ V (T ), the G-distance between Cu, Cv is at least d+ 1.

Proof. First, a remark: the reader might wonder why we do not just delete all vertices in V (G)\Z.
The reason is, the final condition involves G-distance and not just G[Z]-distance.

We proceed by induction on |V (T )|. If V (T ) = {r}, then r ∈ L(T ), and we define Cr = V (G)
and the theorem holds. Thus we may assume that r /∈ L(T ), and the result holds for smaller trees.
Let r1, . . . , rk be the children of r, and for 1 ≤ i ≤ k let Ti be the component of T \ r containing ri.
Inductively for i = 1, . . . , k, there exists ci satisfying the theorem with T, r, c′ replaced by Ti, ri, ci.
Let c′′ be the maximum of c1, . . . , ck. Choose c0 ≥ τ such that 2.1 holds with c, c′ replaced by c′′, c0.
We claim that setting c′ = 2c0 satisfies the conclusion of the theorem. For let G,Z be as in the
theorem. Choose a component A of G[Z] with χ(A) = χ(Z), and choose z0 ∈ A. For j ≥ 0 let Lj be
the set of vertices in A with G[Z]-distance j from z0, and choose j such that χ(Lj) ≥ χ(A)/2 > c0.
It follows that j > 1, since χ2d+7(G) ≤ τ ≤ c0; let Xr = Lj−1 and Yr = L0 ∪ · · · ∪ Lj−2. Then
(Xr, Yr) is a levelled pineapple, and Xr covers Lj , and there are no edges between Yr, Lj .

From 2.1 there exist Z1, . . . , Zk ⊆ Lj , each with chromatic number more than c′′, and pairwise
at G-distance more than d. From the choice of ci, for each i there is a pineapple tree

(Ti, ri, ((Xv, Yv) : v ∈ V (Ti) \ L(Ti)), (Cv : v ∈ V (Ti)))
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in G, with vertex set a subset of Zi, such that χ(Cv) > c′′ ≥ ci for each v ∈ L(Ti), and for all distinct
u, v ∈ L(Ti), the G-distance between Cu, Cv is at least d+ 1. But then

(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ V (T )))

is the required pineapple tree. This proves 3.1.

We remark that 3.1 proved more than we asked for; we found a pineapple tree such that Xv

covers Cu for all u, v such that u is a descendant of v, not just when u is a leaf. This extra property
will not be of use to us.

4 Pruning a pineapple tree

In the previous section we proved that we can assume our graph contains a pineapple tree with shape
whatever we like; but we need to extract a nice big banana tree from this somehow. To do so, we
will tidy up the existence of edges between Xu ∪ Yu and Xv when u ∈ V (T ) \ L(T ) is a descendant
of v. What we care about is, let r, v, w, u be in some path of T in this order, where u ∈ L(T ). There
are vertices in Xv that have neighbours in Cu; do all such vertices have neighbours in Cw? Do none
of them have neighbours in Cw? It turns out that both these extreme cases are good for finding
banana trees (assuming the same thing happens for all such u, v, w, and the shape of the pineapple
tree is rich enough and the chromatic numbers of the sets Cv are big enough). So we need a Ramsey
argument to produce a pineapple tree with one of these two properties, and that is the content of
this section and the next. We do it in two stages: first we arrange that for each triple v, w, u, one
of the two things happens (this is called “pruning”), and then we will arrange that the same thing
happens for all triples v, w, u.

Let
(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ V (T )))

be a pineapple tree in G, and let d ≥ 2, such that for all incomparable u, v ∈ V (T ), the G-distance
between Cu, Cv is at least d+ 1. For each u ∈ L(T ) and each ancestor v ∈ V (T ) \ L(T ) of u, let Xu

v

be the set of vertices in Xv with a neighbour in Cu. Here are some observations about these subsets:

• For each v ∈ V (T ) \ L(T ), if u, u′ ∈ L(T ) are distinct descendants of v, then Xu
v ∩ Xu′

v = ∅;
for d ≥ 2, so the G-distance between Cu, Cu′ is at least three, and so no vertex in Xv has
neighbours in both sets.

• We may assume that for each v ∈ V (T ) \ L(T ), every vertex in Xv belongs to Xu
v for some

descendant u ∈ L(T ) of v; for any other vertices in Xv may be removed from Xv without
violating the definition of a pineapple tree.

• For all distinct u, v, v′ ∈ V (T ), if u ∈ L(T ), and v is an ancestor of u, and v′ is incomparable
with u, then there are no edges between Xu

v and Cv′ ; because the G-distance between Cu, Cv′

is at least three, and every vertex in Xu
v has a neighbour in Cu, and so has no neighbour in

Cv′ .
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We say an aligned triple is a triple (u, v, w) such that u ∈ L(T ), w is an ancestor of u, v is an
ancestor of w, and u, v, w are all different. We say that an aligned triple (u, v, w) is pruned if either
every vertex in Xu

v has a neighbour in Yw, or none does; and the pineapple tree is pruned if every
aligned triple is pruned.

4.1 For all ν, c, d, τ ≥ 0, and every rooted tree (T, r), there exists c′ with the following property. Let
G be a K1

ν -subdivision-free graph, such that χ2d+7(G) ≤ τ , and let Z ⊆ V (G) with χ(Z) > c′. Then
there is a pruned pineapple tree

(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ V (T )))

in G, with vertex set a subset of Z, such that

• χ(Cv) > c for each v ∈ L(T ); and

• for all incomparable u, v ∈ V (T ), the G-distance between Cu, Cv is at least d+ 1.

Proof. Let c′′ = 2h
2
c where h is the length of the longest path in T with one end r. Let c′ satisfy

3.1 with c replaced by c′′. We claim that c′ satisfies the conclusion of the theorem. For let G,Z be
as in the theorem; then by 3.1 there is a pineapple tree as in 3.1, in the usual notation. Thus we
may choose a pineapple tree

(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ V (T )))

in G, satisfying the following conditions:

• its vertex set is a subset of Z;

• for all incomparable u, v ∈ L(T ), the G-distance between Cu, Cv is at least d+ 1;

• for each u ∈ L(T ), let nu be the number of pairs (v, w) such that (u, v, w) is a pruned aligned
triple; then χ(Cu) > c′′2−nu .

(Indeed, we can choose such a pineapple tree with χ(Cu) > c′′ for each i.) Choose this tree such that
in addition the sum of the numbers nu (u ∈ L(T )) is maximum. We claim this tree is pruned. For
if not, choose an aligned triple (u, v, w) that is not pruned. Let A be the set of vertices in Xv

u with
a neighbour in Yw, and B = Xu

v \ A. Every vertex in Cu has a neighbour in one of A,B, and so we
can choose one of A,B, say W u

v , such that the set of vertices in Cu with a neighbour in W u
v , say C ′u,

has chromatic number at least χ(Cu)/2 and hence more than c′′2−nu−1. But then replacing Xu
v by

W u
v and Cu by C ′u gives a new pineapple with the sum of the numbers nu (u ∈ L(T )) larger, which

is impossible. This proves that the pineapple tree is pruned.
For each u ∈ L(T ), nu ≤ h(h− 1)/2 ≤ h2 and so χ(Cu) > c′′2−nu ≥ c, and so this pineapple tree

satisfies the conclusion of the theorem.
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5 A Ramsey theorem for trees

Let h ≥ 0 and t ≥ 1, and let (T, r) be a rooted tree in which every path from r to a member of L(T )
has length h, and every vertex in V (T ) \ L(T ) has t children (and hence degree t+ 1, except for r).
We call (T, r) a uniform t-ary tree of height h. We need the following.

5.1 Let q, h ≥ 0 and t ≥ 1. Let (T ′, r) be a uniform (qt)-ary tree of height h, and let φ be a map
from L(T ′) to the set {1, . . . , q}. Then there is a subtree T of T ′ containing r, such that (T, r) is a
uniform t-ary tree of height h, and such that for some x ∈ {1, . . . , q}, φ(u) = x for all u ∈ L(T ).

Proof. We proceed by induction on h. For h = 0 the result is true, so we assume that h > 0 and
the result holds for h− 1. Let r1, . . . , rqt be the children of r in T ′, and for 1 ≤ i ≤ qt let Ti be the
component of T \ r containing ri. For 1 ≤ i ≤ qt, from the inductive hypothesis there is a subtree T ′i
of Ti containing ri, such that (T ′i , ri) is a uniform t-ary tree of height h− 1, and such that for some
xi ∈ {1, . . . , q}, φ(u) = xi for all u ∈ L(T ′i ). Choose x ∈ {1, . . . , q} such that xi = x for at least t
values of i; then the union of t of the corresponding trees Ti, together with r, gives the desired tree
T ′.

Let
(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ V (T )))

be a pineapple tree. It is barren if for every aligned triple (u, v, w), no member of Xu
v has a neighbour

in Yw; and it is fruitful if for every aligned triple (u, v, w), every member of Xu
v has a neighbour in

Yw. (In both cases, there may or may not be edges between Xu
v and Xw.) We need a further

strengthening of 3.1.

5.2 For all ν, c, d, τ ≥ 0, and every rooted tree (T, r), there exists c′ with the following property. Let
G be a K1

ν -subdivision-free graph such that χ2d+7(G) ≤ τ , and let Z ⊆ V (G) with χ(Z) > c′. Then
there is a pineapple tree

(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ V (T )))

in G, with vertex set a subset of Z, such that

• χ(Cv) > c for each v ∈ L(T ); and

• for all incomparable u, v ∈ V (T ), the G-distance between Cu, Cv is at least d+ 1.

which is either barren or fruitful.

Proof. Choose t ≥ 1 and h ≥ 0 such that every vertex of T has at most t children and every path
of T with one end r has length at most h. Let q = 22

2h
. Let (T ′, r′) be a uniform (qt)-ary tree of

height 2h, and choose c′ such that 4.1 is satisfied with (T, r) replaced by (T ′r′). We claim that c′

satisfies the conclusion of the theorem. For let G,Z be as in the theorem. By 4.1 there is a pruned
pineapple tree

(T ′, r′, ((Xv, Yv) : v ∈ V (T ′) \ L(T ′)), (Cv : v ∈ V (T ′)))

as in 4.1. For each u ∈ L(T ′), let qu be the function with domain the set of all ordered pairs (i, j)
with 0 ≤ i < j < 2h, defined as follows. For each such pair (i, j), let v, w ∈ V (T ′) be the ancestors of
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u with G-distance i and j from r respectively; let qu(i, j) = 0 if no member of Xu
v has a neighbour in

Yw, and qu(i, j) = 1 if every member of Xu
v has a neighbour in Yw. (Since the pineapple tree is pruned

and all the sets Xu
v are nonempty, this is well-defined.) Thus each qu is a map into a domain with at

most q elements, and so by 5.1 there is a subtree T ′′ of T ′ containing r′, such that (T ′′, r′) is a uniform
t-ary tree of height 2h, and such that all the functions qu (u ∈ L(T ′′)) are equal. Let the common
value of all the qu (u ∈ L(T ′′)) be a function f . Let H be the graph with vertex set {0, . . . , 2h − 1}
in which for 0 ≤ i < j < 2h, i, j are adjacent if f(i, j) = 1. By Ramsey’s theorem applied to H,
there exists I ⊆ {0, . . . , 2h− 1} with |I| = h such that all the values f(i, j) (i, j ∈ I, i < j) are equal.
Let I = {i0, . . . , ih−1} where 0 ≤ i0 < · · · < ih−1 < 2h. Choose s ∈ V (T ′′) with T ′′-distance i0 from
r′. Let N be the set of descendants of s in T ′′ whose T ′′-distance from r′ belongs the set I ∪ {2h}.
Let S be the tree with vertex set N in which u, v are adjacent if one is a descendant in T ′′ of the
other and no third vertex of N belongs to the path of T ′′ between them. Then (S, s) is a rooted tree
in which every path from s to L(S) has length h and every vertex in V (S) \ L(S) has t children.
Consequently

(S, s, ((Xv, Yv) : v ∈ V (S) \ L(S)), (Cv : v ∈ V (S)))

is a pineapple tree, and it is either barren or fruitful, and since (S, s) has a rooted subtree isomorphic
to (T, r), the result follows. This proves 5.2.

We can eliminate barren pineapple trees, but to do so we need a lemma. Say an infusion of a
graph H in a graph G is a map φ, such that

• φ maps V (H) injectively into V (G), and

• φ maps each edge e = uv of H to an induced path φ(e) of G between φ(u), φ(v), of length at
least two;

• for all distinct e, f ∈ E(H), the paths φ(e), φ(f) are vertex-disjoint except possibly for a
common end;

• for all distinct e, f ∈ E(H) with no common end, there is no edge ofG between V (φ(e)), V (φ(f));

• for all distinct e, f ∈ E(H) with a common end v say, there is at most one edge between
V (φ(e) \ φ(v)) and V (φ(f) \ φ(v)) and such an edge joins the two neighbours of φ(v).

5.3 There exists n such that if G is K1
ν -subdivision-free and ω(G) ≤ κ, there is no infusion of Kn

in G.

Proof. The result is an easy application of Ramsey’s theorem, and so we merely sketch the proof.
Choose n very large in terms of κ, ν, and suppose G,φ is a counterexample. Let µ = ν2. We may
assume that every vertex of G belongs to one of the paths φ(ij). Consequently, for each path φ(ij),
all its vertices have degree two in G, except for the first two and the last two. If e is an edge of φ(ij)
and neither of its ends is one of the first two or last two vertices of φ(ij), then both its ends have
degree two in G and we could contract e and make a smaller counterexample; and so we may assume
that each path φ(ij) has at most four edges. Thus we have:

• the vertices φ(v) (v ∈ V (Kn)) are pairwise nonadjacent (since the paths φ(ij) all have length
at least two and are induced);
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• each path φ(ij) has length at most four; and

• G is K1
µ,µ-subdivision-free, where K1

µ,µ is obtained from the complete bipartite graph Kµ,µ

by subdividing every edge once; because K1
µ,µ contains a subdivision of K1

ν as an induced
subgraph.

But then the result is a consequence of theorem 3.2 of [3].

5.4 For all ν ≥ 0, there exists n ≥ 1 with the following property. Let τ ≥ 0 and let (T, r) be a
rooted tree where T is a path of length n2 with ends r, u. Let G be a K1

ν -subdivision-free graph, such
that χ2(G) ≤ τ . Then there is no barren pineapple tree in G with shape (T, r), such that in the usual
notation χ(Cu) > nτ .

Proof. Let κ = τ , and choose n as in 5.3. We claim that n satisfies the conclusion of the theorem.
Let T, r,G be as in the theorem; since ω(G) ≤ χ2(G) ≤ tau, it follows that ω(G) ≤ κ. Suppose that
there is a barren pineapple tree with shape (T, r) as described in the theorem. Then |L(T )| = 1; let
u ∈ L(T ). Let the vertices of T be t0- · · · -tn2 in order, where r = t0. (Thus u = tn2 .) For 0 ≤ k < n2

let us write Xk for Xtk and Yk for Ytk for convenience. Since χ(Cu) > nτ and χ2(G) ≤ τ , there exist
n vertices v1, . . . , vn in Cu, pairwise with G-distance at least three. For 1 ≤ i ≤ n and 0 ≤ k < n2,
let xik be a neighbour of vi in Xk. Let H be a graph with vertex set {v1, . . . , vn} in which all pairs of
vertices are adjacent. Number the edges of H as e0, . . . , em−1 where m = n(n− 1)/2. Let 0 ≤ k < m
and let ek have ends vi, vj say where i < j. Let Pk be an induced path of G between vi, vj , consisting

of the edges vix
i
k, vjx

j
k and an induced path joining xik, x

j
k with interior in Yk (this exists since Yk

covers Xk and G[Yk] is connected). Then the paths P0, . . . , Pm−1 are pairwise vertex-disjoint except
possibly for a common end. Suppose that there is an edge e of G joining Pk, Pk′ say, where k 6= k′,
and e is not incident with a common end of Pk, Pk′ . Suppose first that some end v of e is an end of one
of Pk, Pk′ , say of Pk; then v = vi for some i. Since v1, . . . , vn pairwise have G-distance at least three,
the other end of e is not an end of Pk′ , and so belongs to Xk′∪Yk′ . It cannot belong to Yk′ since there
are no edges between Cu and Yk′ , from the definition of a pineapple tree. Consequently it belongs
to Xk′ , and so is adjacent to an end of P ′k. This end of Pk′ must be vi, since v1, . . . , vn pairwise
have G-distance at least three, and so vi is a common end of Pk, Pk′ , contrary to the definition of
e. Thus neither end of e belongs to Cu. Hence one end is in Xk ∪ Yk, and the other in Xk′ ∪ Yk′ .
From the symmetry we may assume that k′ > k, and so there are no edges between Yk and Xk′ ∪Yk′
from the definition of a pineapple tree. Hence one end of e is in Xk. The other end of e is not in
Yk′ since (u, tk, tk′) is an aligned triple, and by hypothesis no vertex in Xu

k has a neighbour in Yk′ .
Hence the other end of e is in Xk′ . It follows that both ends of e have a neighbour in {v1, . . . , vk},
and so they have a common neighbour since v1, . . . , vn pairwise have G-distance at least three, and
this common neighbour is a common end of both Pk, Pk′ . Consequently the vertices v1, . . . , vn and
paths P0, . . . , Pm−1 define an infusion of Kn in G, which is impossible. This proves 5.4.

We deduce:

5.5 For all ν, c, d, τ ≥ 0, and every rooted tree (T, r), there exists c′ with the following property. Let
G be a K1

ν -subdivision-free graph such that χ2d+7(G) ≤ τ , and let Z ⊆ V (G) with χ(Z) > c′. Then
there is a fruitful pineapple tree

(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ V (T )))
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in G, with vertex set a subset of Z, such that

• χ(Cv) > c for each v ∈ L(T ); and

• for all incomparable u, v ∈ L(T ), the G-distance between Cu, Cv is at least d+ 1.

Proof. By adding a path to T if necessary, we may assume that there is a rooted subtree of (T, r)
which is a path of length n as in 5.4. But then the result follows from 5.2 and 5.4.

6 Banana trees

Now we use the previous results to prove the first of our main theorems, 1.11 and hence 1.3. We need
the following. Let (T, r) be a rooted tree. A path in T of positive length joining some u ∈ L(T ) to
some ancestor of u is called a limb of (T, r), and we call u its leaf and v its start. Let T = (Tq : q ∈ Q)
be a family of limbs in (T, r), and let k ≥ 1 be an integer. We make a graph J with vertex set Q as
follows. We say that distinct q1, q2 ∈ Q are adjacent in J if there are at least k vertices w of T , such
that w belongs to the interiors of Tq1 and Tq2 , and w is not a vertex of Tq for any q ∈ Q \ {q1, q2}).
We call J the k-overlap graph of T . It is easy to see that J must be a forest. More important for us
is the converse; that

6.1 For every forest J and every k ≥ 1, there is a rooted tree (T, r) and a family of limbs T in T
such that the k-overlap graph of T is isomorphic to J , and no two members of T share an end.

The proof is straightforward and we omit it.
Let us say a banana is a graph formed by the union of a nonempty set of paths each of positive

length, all with the same ends (s, t say) and otherwise disjoint, and its thickness is the number of
these paths. Its length is the minimum length of its constituent paths. We call s, t ends of the
banana. By a banana in G we mean an induced subgraph of G that is a banana.

6.2 Let (T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ V (T ))) be a fruitful pineapple tree in G, and
let W ⊆ V (T ). Let T1, T2 be limbs of (T, r), with distinct leaves, and such that for i = 1, 2, W is
a subset of the interior of Ti. Let Ti have leaf ui and start vi, and let xi ∈ Xui

vi , where x1, x2 are
nonadjacent. There is a banana B in G, with ends x1, x2, thickness |W |, and interior a subset of⋃
w∈W Yw.

Proof. Let w ∈W . For i = 1, 2, (ui, vi, w) is an aligned triple, and so xi has a neighbour in Yw, since
the pineapple tree is fruitful. Since G[Yw] is connected, there is an induced path, Pw say, between
x1, x2 with interior in Yw. The union over all w ∈ W of the paths Pw makes the desired banana
B.

Two bananas B1, B2 in G are orthogonal if every vertex in V (B1∩B2) is an end of both bananas,
and there is at most one such vertex, and every edge of G between V (B1) and V (B2) is incident
with a common end of B1, B2. A banana tree is a graph obtained from a tree T by replacing each
edge uv by a banana with ends u, v, such that these bananas are orthogonal. To prove 1.11, we
need to prove that every multigraph obtained by fattening the edges of a tree is widespread; and
part of “widespread” involves proving that for every subdivision J of such a multigraph, there is a
subdivision of J which is present as an induced subgraph. But such a graph J is just a banana tree,
so 1.11 is implied by the following:
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6.3 For every banana tree J and for all τ ≥ 0 there exists c ≥ 0 such that every J-subdivision-free
graph G with χ2|V (J)|+7(G) ≤ τ satisfies χ(G) ≤ c.

Proof. Let n = |V (J)|. We may assume that n ≥ 3, since otherwise the result is trivial. Since J
is a banana tree, it is obtained from some tree S by substituting bananas for its edges. By 6.1, we
may choose a rooted tree (T, r) such that there is a family T of limbs in (T, r) with n-overlap graph
isomorphic to S, and no two members of T share an end. Choose ν > 0 such that there is an induced
subgraph of K1

ν which is a subdivision of J ; and let c′ satisfy 5.5 with c, d replaced by 0, n. We claim
that setting c = c′ satisfies the conclusion of the theorem. For let G be a J-subdivision-free graph
G with χ2n+7(G) ≤ τ . We must show that χ(G) ≤ c′. Suppose not. Now G is K1

ν -subdivision-free,
and so by 5.5 (setting Z = V (G)) there is a fruitful pineapple tree

(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ V (T )))

in G, such that for all incomparable u, v ∈ L(T ), the G-distance between Cu, Cv is at least n + 1.
For each u ∈ L(T ), Cu is nonempty from the definition of a pineapple tree. Let T = (Tq : q ∈ Q),
and for each q ∈ Q let Tq have leaf uq and start vq; and choose xq ∈ X

uq
vq (this is possible since X

uq
vq

covers Cuq). There is an isomorphism from the n-overlap graph of T to S; let the corresponding
bijection from Q onto V (S) map q to sq for each q ∈ Q. Now let sqsq′ be an edge of S. Then from
the definition of the n-overlap graph, there are at least n vertices of T that belong to the interiors
of the limbs Tq, Tq′ and do not belong to any of the other members of T . Let We be a set of n
such vertices. By 6.2, there is a banana Be with ends xq, xq′ , with thickness n, such that its interior
is a subset of

⋃
w∈We

Yw. The G-distance between xq, xq′ is at least n − 1, because the G-distance
between Cuq and Cuq′ is at least n+ 1; so Be has length at least n− 1.

Since the vertices in We do not belong to any other member of T , it follows that for all distinct
edges e, f of S, the bananas Be, Bf are disjoint except for their ends. Since each banana has thickness
n and length at least n − 1, it follows that the vertices x1, . . . , xk and all the bananas Be make a
subgraph H of G which has an induced subgraph that is a subdivision of J . We claim that H is
itself an induced subgraph of G. For suppose not, and let a, b ∈ V (H) be distinct and adjacent in
G and not adjacent in H. Since the vertices xq (q ∈ Q) pairwise have G-distance at least n− 1 and
hence are nonadjacent (since n ≥ 3), we may assume that a belongs to the interior of some banana
Be say, and hence a ∈ Yw for some w.

From the definition of a pineapple tree, the only vertices of the pineapple tree with neighbours
in Yw belong to Yw, to Xw, or to Xv for some ancestor v of w; and if a vertex in Xu

v has a neighbour
in Yw where v is an ancestor of w and u ∈ L(T ), then u is a descendant of w. Consequently the only
vertices of H with neighbours in Yw belong to Yw∪{xq, xq′} where e = sqsq′ ; and so b belongs to this
set, and hence to Pwe . Since Pwe is induced, it follows that a, b are adjacent in H, a contradiction.
This proves that H is induced. Consequently there is an induced subgraph of G isomorphic to a
subdivision of J , a contradiction. This proves 6.3.

7 Fattening a cycle

In this section we prove 1.12. In the proof of 6.3 we made use of the overlap graph, which exploited
vertices of the tree that only belonged to two of the selected limbs. For 1.12 we will again apply
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3.1, but now we need to use vertices of the tree that belong to more than two limbs. This will still
give us bananas, but we have less control over which pairs the bananas join. We have the following
variant of 6.2.

7.1 Let (T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ V (T ))) be a fruitful pineapple tree in G, such
that for all incomparable u, v ∈ L(T ), the G-distance between Cu, Cv is at least 5. Let k, n ≥ 1 be
integers, and let W ⊆ V (T ) with |W | > (n − 1)k(k − 1)/2. Let (Tq : q ∈ Q) be a family of limbs
of (T, r), with |Q| = k, such that their leaves are all different, and such that W is a subset of the
interior of Tq for each q ∈ Q. For each q ∈ Q let Tq have leaf uq and start vq, and let xq ∈ X

uq
vq . For

every partition of Q into two nonempty sets I, J , there exist q ∈ I, q′ ∈ J , and a banana B in G,
with ends xq, xq′, thickness n and interior a subset of

⋃
w∈W Yw, such that there is no edge between

V (B) and {xq′′ : q′′ ∈ Q \ {q, q′}}.

Proof. Since |Q| = k, we may assume that Q = {1, . . . , k}. We see first that for all distinct
q, q′ ∈ Q, the G-distance between xq, xq′ is at least three, because they have neighbours in Cuq , Cuq′
respectively, and the G-distance between Cuq , Cuq′ is at least five, since uq 6= uq′ . It follows that
the vertices x1, . . . , xk are pairwise nonadjacent and no two have a common neighbour. Let I, J be
complementary nonempty subsets of Q, and let w ∈ W . For each i ∈ I and j ∈ J , since xi, xj both
have neighbours in Yw and G[Yw] is connected, there is a path between xi, xj with interior in Yw.
Choose i, j and the path such that this path (Pw say) is as short as possible. It follows that no other
member of {x1, . . . , xk} has a neighbour in Pw, since x1, . . . , xk are pairwise nonadjacent and no two
have a common neighbour. Let fw = (i, j) where i < j. Since there are only k(k − 1)/2 possibilities
for the pair (i, j) (in fact fewer, since we insists that i ∈ I and j ∈ J), there exist at least n values of
w where the pairs fw are all the same, equal to (q, q′) say. But then the union of the corresponding
paths Pw makes the desired banana B.

The goal of the section is to prove 1.12, which is implied by the following:

7.2 Let J be obtained from a cycle of length m by substituting bananas for all except one of its
edges. Then for all τ ≥ 0 there exists c ≥ 0 such that if G is a J-subdivision-free graph with
χ2|V (J)|+7(G) ≤ τ , then χ(G) ≤ c.

Proof. Let n = max(|V (J)|, 5). Let (S, r) be a uniform 2-ary tree of height m. For each vertex
z ∈ V (S), we say its height is the S-distance from z to a vertex in L(S). Let (T, r) be obtained from
(S, r) by replacing each edge e ∈ E(S) by a path Pe of length 2n3. (Thus V (S) ⊆ V (T ).) Choose ν
such that K1

ν contains J ; and choose c′ such that 5.5 holds, taking d = n + 1 and c = 0. We claim
that setting c = c′ satisfies the conclusion of the theorem.

Let G be a J-subdivision-free graph with χ2|V (J)|+7(G) ≤ τ , and suppose that χ(G) > c. Let h ≥
1, and let x1, . . . , xh ∈ V (G) be distinct. A banana path on (x1, . . . , xh) is a sequence (B1, . . . , Bh−1)
of pairwise orthogonal bananas in G, each of thickness n − 1, such that Bi has ends xi, xi+1 for
1 ≤ i ≤ h− 1. (If h = 1, the null sequence of bananas counts as a banana path.) Its interior is the
union of the interiors of B1, . . . , Bh−1. (Thus none of x1, . . . , xh belongs to the interior.)

Since G is K1
ν -subdivision-free, by 5.5 there is a fruitful pineapple tree

(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ V (T )))
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in G, such that for all incomparable u, v ∈ L(T ), the G-distance between Cu, Cv is at least n + 2.
For each u ∈ L(T ) choose xu ∈ Xu

r . Since the set Cu (u ∈ L(T )) pairwise have G-distance at least
n+ 2, it follows that the vertices xu (u ∈ L(T )) pairwise have G-distance at least n. For each edge
e = z1z2 ∈ E(S), where z1 is the parent of z2 in S, let Te be the union of V (Pe) \ {z1} and the set of
descendants of z2 in T . Let Le = Te ∩ L(T ), and let Me = {xu : u ∈ Le)}. Thus Me ⊆ Xr for every
e ∈ E(S).

(1) Let e = z1z2 ∈ E(S), where z1 is the parent of z2 in S, and let h be the height of z1. Then
there exist distinct vertices x1, . . . , xh ∈ Me, such that there is a banana path on (x1, . . . , xh) with
interior a subset of

⋃
v∈Te\Le

Yv.

To prove this we proceed by induction on h. If h = 1, then the result is true since then z2 ∈ L(T )
and xz2 satisfies the requirement. Thus we may assume that h > 1 and the result holds for h − 1.
Let z3, z4 be the children of z2 in S, and let f, g be the edges z2z3 and z2z4 respectively. From the
inductive hypothesis, there exist distinct a1, . . . , ah−1 ∈ Mz3 such that there is a banana path on
(a1, . . . , ah−1) with interior in

⋃
v∈Tf\Lf

Yv, and there exist b1, . . . , bh−1 ∈ Mz4 similarly. It follows
that there are no edges between any banana of the first banana path and any banana of the second,
from the definition of a pineapple tree. Moreover, each of a1, . . . , ah−1 has G-distance at least n
from each of b1, . . . , bh−1. Let We denote the set of vertices of T in the interior of Pe. Now each
ai is adjacent to a member of

⋃
u∈L(T )Cu, and the interior of the corresponding limb includes We,

and the same for each bj . Since |We| ≥ 2n3 − 1 > (n − 1)2h(2h − 1)/2, 7.1 implies that there
exist ai ∈ {a1, . . . , ah−1} and bj ∈ {b1, . . . , bh−1}, and a banana B with ends ai, bj and thickness
n and interior a subset of

⋃
w∈We

Yw, such that no other member of {a1, . . . , ah−1, b1, . . . , bh−1} has
a neighbour in V (B). By reversing the sequence (a1, . . . , ah−1) if necessary, we may assume that
i ≥ h/2, and similarly j ≤ h/2. Now no vertex of the interior of B belongs to or has a neighbour in⋃
v∈Tf\Lf

Yv, and the same for
⋃
v∈Tg\Lg

Yv; and so there is a banana path on (a1, . . . , ai, bj , . . . , bh−1)
with interior in ⋃

v∈Tf\Lf

Yv ∪
⋃

v∈Tg\Lg

Yv ∪
⋃
v∈We

Yv ⊆
⋃

v∈Te\Le

Yv.

This proves (1).

In particular, since r has height m, from (1) applied to some edge e = rs of S incident with r,
there exist m vertices x1, . . . , xm ∈Me such that there is a banana path on (x1, . . . , xm) with interior
a subset of

⋃
v∈Te\Le

Yv. Now choose a path between x1, xm with interior in Yr such that x2, . . . , xm−1
have no neighbours in it (this is possible since the pineapple (Xr, Yr) is levelled). Adding this to the
banana path gives a subdivision of J . This proves 7.2.

8 The fat triangle

Now we turn to the third of our theorems, 1.13. We need a lemma, as follows.

8.1 Let ρ ≥ 4, τ ≥ 0, and n ≥ 0, let G be a graph with χρ(G) ≤ τ , and let X,Z ⊆ V (G) be disjoint,
such that X covers Z and χ(Z) > nτ . Then there exist x1, . . . , xn ∈ X with the following properties:
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• x1, . . . , xn pairwise have G-distance at least ρ; and

• for all distinct i, j ∈ {1, . . . , n}, there is a path between xi, xj with interior in Z, such that no
other vertex in {x1, . . . , xn} has a neighbour in this path.

Proof. By a {1, . . . , k}-colouring of a graph we mean a proper colouring using {1, . . . , k} as the set
of colours. If X1, X2 ⊆ V (G) with X1 ∩X2 = ∅, and κi is a colouring of G[Xi] for i = 1, 2, we say
they are compatible if their union in the natural sense is a colouring of G[X1 ∪X2]. For each x ∈ X,
the subgraph Gx induced on the set of neighbours of x in Z has chromatic number at most τ ; choose
some {1, . . . , τ}-colouring κx of Gx for each such v. Now choose k ∈ {0, . . . , n}, x1, . . . , xk ∈ X and
C ⊆ Z, with the following properties:

• G[C] is connected, and x1, . . . , xk have no neighbours in C;

• x1, . . . , xk pairwise have G-distance at least ρ;

• no {1, . . . , nτ}-colouring of G[C] is compatible with each of the colourings κxi (1 ≤ i ≤ k); and

• subject to these conditions, C is minimal.

(This is possible, since taking k = 0 and taking C to be the vertex set of a component of G[Z] with
maximum chromatic number satisfies all bullets except the last.) If some Gxi contains no vertex with
a neighbour in C then we may remove xi from the list x1, . . . , xk; so we may assume that x1, . . . , xk
each have a neighbour in Z which has a neighbour in C. Now k ≤ n, and if k = n then the theorem
holds, so we may suppose for a contradiction that k < n. Since only colours 1, . . . , τ are used by
the colourings κ1, . . . , κk, it follows that χ(C) > (n − 1)τ ≥ kτ ; and so there exists v ∈ C with
G-distance more than ρ from each of x1, . . . , xk. Choose xk+1 ∈ X adjacent to v. Thus xk+1 has
G-distance at least ρ from each of x1, . . . , xk. Let C ′ be the set of vertices in C nonadjacent to xk+1.
Since κxk+1

is compatible with each of the colourings κxi (1 ≤ i ≤ k) (because xk+1 has G-distance
at least four from each of x1, . . . , xk), it follows that no {1, . . . , nτ}-colouring of G[C ′] is compatible
with each of the colourings κxi (1 ≤ i ≤ k+ 1). Consequently there is a component C ′′ of G[C ′] such
that no {1, . . . , nτ}-colouring of G[C ′′] is compatible with each of the colourings κxi (1 ≤ i ≤ k+ 1).
But this contradicts the minimality of C. Hence k = n. This proves 8.1.

We deduce the following, which implies 1.13:

8.2 Let H be the multigraph obtained from K3 by fattening two of its edges and replacing the third
by two parallel edges, and let J be a subdivision of H. Let n = |V (J)|. For all τ ≥ 0 there exists
c ≥ 0 such that every J-subdivision-free graph G with χ2n+7(G) ≤ τ satisfies χ(G) ≤ c.

Proof. It follows that n ≥ 3. Let (T, r) be the rooted tree where T is a path of length 3n and r
is one end of T . Let the vertices of T in order be t0, . . . , t3n where r = t0; thus L(T ) = {t3n}. We
write u = t3n. Choose ν such that K1

ν contains J . Choose c′ to satisfy 5.5 with c = 3τ and d = n;
we claim that setting c = c′ satisfies the conclusion of the theorem. For let G be J-subdivision-free
and hence K1

ν -subdivision-free, with χ2n+7(G) ≤ τ , and suppose that χ(G) > c′, By 5.5, there is a
fruitful pineapple tree

(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ V (T )))
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in G, such that χ(Cu) > 3τ . For 0 ≤ i < 3n let Xi = Xti and Yi = Yti . We may assume that every
vertex in Xi has a neighbour in Cu, because any other vertices in Xi may be removed from Xi (thus
Xti = Xt3n

ti
in the earlier notation). Consequently for all i, j with 0 ≤ i < j < 3n, every vertex in Xi

has a neighbour in Yj .
By 8.1, there exist x, x′, x′′ ∈ X0, pairwise at G-distance at least n, such that every two of them

are joined by a path with interior in Cu in which the third has no neighbours. Let R(xx′) be the set of
i ∈ {1, . . . , 3n−1} such that there is a path between x, x′ with interior in Yi containing no neighbour
of x′′; and define R(xx′′) and R(x′x′′) similarly. Since x, x′, x′′ pairwise have G-distance at least
n ≥ 3, and G[Yi] is connected and x, x′, x′′ have neighbours in Yi, each value of i ∈ {1, . . . , 3n − 1}
belongs to at least two of R(xx′), R(xx′′), R(x′x′′). Consequently there exists I ⊆ {1, . . . , 3n − 1}
with |I| = n such that I is a subset of one of R(xx′), R(xx′′), R(x′x′′), say R(xx′′); and since
|{1, . . . , 3n−1}\ I| = 2n−1, there exists J ⊆ {1, . . . , 3n−1}\ I with |J | = n such that J is a subset
of one of R(xx′), R(x′x′′), say R(x′x′′). By 6.2, there is a banana of thickness n, with ends x, x′′, and
with interior a subset of

⋃
i∈I Yi; and it has length at least n, since the G-distance between x, x′′ is

at least n. Similarly there is a banana with ends x′, x′′ with interior a subset of
⋃
j∈J Yj . These two

bananas are orthogonal.
To obtain a subdivision of J , we need to add to this union two paths joining x, x′; and we will

obtain these, one with interior in Cu via 8.1, and one with interior in Y0. The first is immediate
from the definition of x, x′, x′′. For the second we use the fact that (X0, Y0) is a levelled pineapple.
Let z0 ∈ Y0 such that for some k, every vertex in Y0 is joined to z0 by a path of G[Y0] of length less
than k, and there is no path in G[X0 ∪ Y0] from z0 to X0 of length less than k. For 0 ≤ i ≤ k, let Li
be the set of vertices in X0 ∪ Y0 with G[X0 ∪ Y0]-distance i from z0. Thus Y0 = L0 ∪ · · · ∪ Lk−1 and
X0 = Yk. Now x, x′ both have neighbours in Lk−1, say y, y′ respectively, and since the G-distance
between x, x′ is at least n, it follows that 2k ≥ n, and in particular k > 1. Since G[L0 ∪ · · · ∪Lk−2] is
connected and y, y′ both have neighbours in it, there is an induced path between y, y′ with interior
in L0 ∪ · · · ∪ Lk−2, and which consequently contains no neighbours of x′′. Adding the edges xy and
x′y′ to this path gives the required path from x to x′. The subgraph consisting of the two bananas
and these two paths is induced, and isomorphic to a subdivision of H. Since x, x′, x′′ pairwise have
distance at least n, all these paths between pairs of x, x′, x′′ have length at least n; and so this same
subgraph is also isomorphic to a subdivision of J , a contradiction. This proves 8.2.

9 Bigger widespread graphs

The same methods can be combined to prove that more complicated graphs are widespread. For
instance, in the proof of 1.12, all the limbs we used started from the root r, and all the limbs
eventually become disjoint. We are free to make the tree T bigger by adding more vertices to its
leaves, and extend the old limbs further to make new limbs, and add more limbs meeting the old
paths just in their new sections. By this process we can make not just one cycle as in 1.12, but any
multigraph each of whose blocks is such a cycle. We omit the details.

Can we make more 2-connected widespread graphs? Here is one construction. Take a path with
vertices v1- · · · -vk in order where k ≥ 4, fatten each edge, and add two more vertices a, b and edges
av1, av2, bvk−1, bvk and ab, making a multigraph H. We claim:

9.1 H is widespread.
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Proof. We merely sketch the proof, since the result is such an oddity. Let J be a subdivision of
H. Let us proceed as in the proof of 7.2, with a subdivided 2-ary tree T ; but apply 5.5 to this
tree with c larger than zero, large enough that 8.1 can be applied. For each u ∈ L(T ), choose three
vertices xu, yu, zu ∈ Xu

r , such that for every two of them there is a path between them with interior
in Cu containing no neighbour of the third; and choose xu, yu, zu with G-distance at least n + 2.
Now because the limb of T from r to u has a final section W consisting of many vertices w each
with only one child, these vertices are incomparable with the other leaves of T , and so there are two
orthogonal bananas Bu, B

′
u in G, both with interior in the union of Yw (w ∈W ), and each with both

ends in {xu, yu, zu} (and joining distinct pairs from this set). This defines a banana path of length
two. Now we apply the method of 7.2; we generate longer and longer banana paths, starting from
the ones we just made of length two. The procedure of 7.2 has the convenient feature that the first
and last banana of every banana path it generates is a banana of one of the initial banana paths of
length two. So we may assume that we generate a (k − 1)-term banana path where the first banana
is Bu and the last is Bu′ for some u, u′ ∈ L(T ). Let Bu have ends xu, yu say. By choosing one path
from the banana B′u (not to be confused with Bu′), joining zu with one of xu, yu, and choosing one
path via 8.1 joining zu with the other of xu, yu, we obtain an induced path from xu to yu in which zu
is an internal vertex. Now do the same thing for u′, and then add a path joining zu, zu′ with interior
in Yr. This provides the induced subgraph which is a subdivision of J .
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