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Abstract

We investigate which graphs H have the property that in every graph with bounded clique number
and sufficiently large chromatic number, some induced subgraph is isomorphic to a subdivision of
H. In an earlier paper [6], one of us proved that every tree has this property; and in another earlier
paper with M. Chudnovsky [2], we proved that every cycle has this property. Here we give a common
generalization. Say a “banana” is the union of a set of paths all with the same ends but otherwise
disjoint. We prove that if H is obtained from a tree by replacing each edge by a banana then H has
the property mentioned. We also find some other multigraphs with the same property.



1 Introduction

All graphs in this paper are finite and simple. For some purposes it is convenient to use multigraphs
instead of graphs; all multigraphs in this paper are finite and loopless. If G is a graph, χ(G) denotes
its chromatic number, and ω(G) denotes its clique number, that is, the cardinality of the largest
clique of G.

Let H be a multigraph, and let J be a graph obtained from H by replacing each edge uv by a
path (of length at least one) joining u, v, such that these paths are vertex-disjoint except for their
ends. Then J is a subdivision of H. We say a graph G is H-subdivision-free if no induced subgraph
of G is a subdivision of H. We could ask:

• which multigraphs H have the property that for all κ there exists c such that every H-
subdivision-free graph with clique number at most κ has chromatic number at most c?

• which multigraphs H have the property that for every subdivision J of H and for all κ there
exists c such that every J-subdivision-free graph with clique number at most κ has chromatic
number at most c?

The second question, while more complicated, is perhaps better. At least if we confine ourselves to
“controlled” classes of graphs (defined later), we know the answer to the second question, while the
first remains open. The second question could be rephrased as asking for which multigraphs H every
graph with bounded clique number and large chromatic number contains a ”long” subdivision of H,
that is, one in which every edge is subdivided at least some prescribed number of times.

Let us say a multigraph H is pervasive in some class of graphs C if it has the second property
above for graphs in the class; that is, for every subdivision J of H and for all κ ≥ 0 there exists c
such that every J-subdivision-free graph G ∈ C with ω(G) ≤ κ satisfies χ(G) ≤ c. (The reader is
referred to [3] for a more detailed introduction to the topic of pervasiveness.)

There are some earlier theorems that can be expressed in this language. First, Scott [6] proved
that

1.1 Every tree is pervasive in the class of all graphs.

Second, we proved with Maria Chudnovsky [2] a conjecture of Gyárfás [4] that for all κ, `, every
graph with clique number at most κ and sufficiently large chromatic number has an induced cycle of
length at least `; and that can be reformulated as:

1.2 The multigraph with two vertices and two parallel edges is pervasive in the class of all graphs.

Actually, we proved in [3] that:

1.3 For all k ≥ 0, the multigraph with two vertices and k parallel edges is pervasive in the class of
all graphs.

One of the main theorems of this paper is the following common generalization:

1.4 Let H be a multigraph obtained from a tree by adding parallel edges. Then H is pervasive in
the class of all graphs.

What is known in the converse direction? Chalopin, Esperet, Li and Ossona de Mendez [1]
proved:
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1.5 Every graph that is pervasive in the class of all graphs is a forest of chandeliers,

where

• a chandelier is a graph obtained from a tree by adding a new vertex called the pivot adjacent
to its leaves;

• a tree of chandeliers is either a chandelier or obtained from a smaller tree of chandeliers by
identifying some vertex with the pivot of a new chandelier; and

• a forest of chandeliers is a graph where every component is a tree of chandeliers.

A string graph is the intersection graph of a set of curves in the plane. In fact a result stronger than
1.5 was shown in [1], namely that:

1.6 Every graph that is pervasive in the class of string graphs is a forest of chandeliers.

With M. Chudnovsky [3], we proved a converse to this:

1.7 Every forest of chandeliers is pervasive in the class of string graphs.

The goal of this paper is to investigate pervasiveness in other classes of graphs. Before we go on, we
need some definitions.

If X ⊆ V (G), G[X] denotes the subgraph induced on X, and we write χ(X) for χ(G[X]). If
ρ ≥ 0 is an integer, then for v ∈ V (G), Nρ

G[v] means the set of vertices of G with distance at most ρ
from v; and χρ(G) denotes the maximum over all vertices v of χ(Nρ

G[v]), or zero for the null graph.
Sometimes we speak of “G-distance” (to mean distance in G) rather than just distance, in case there
may be some ambiguity. Let us say an ideal is a class of graphs such that for all graphs G,H, if G
is an induced subgraph of H and H ∈ C then G ∈ C. An ideal C is

• colourable if there exists k such that all members of C have chromatic number at most k;

• ρ-bounded if there exists τ such that χρ(G) ≤ τ for all G ∈ C;

• ρ-controlled if every ρ-bounded subideal of C is colourable; and

• controlled if it is ρ-controlled for some ρ ≥ 0.

Roughly, if a graph in a controlled ideal has large chromatic number, then some ball of bounded
radius in the graph also has large chromatic number. We proved the following in [3], a significant
extension of 1.7:

1.8 Every forest of chandeliers is pervasive in every controlled ideal.

We would like to know which multigraphs are pervasive in the ideal of all graphs. Subdividing
edges in a graph or multigraph does not change whether the graph or multigraph is pervasive, so it
is enough to decide which graphs are pervasive. (We could have written this paper just working with
graphs, but sometimes multigraphs are more convenient.) Every such graph is a forest of chandeliers,
so let H be a forest of chandeliers; in view of the results of [3], what do we still need to prove, to show
that H is pervasive in the ideal of all graphs? Let J be a subdivision of H, and let C be the ideal of
all J-subdivision-free graphs; we need to show that the members of C with bounded clique number
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also have bounded chromatic number. Suppose not; so for some κ ≥ 0, there is a noncolourable
subideal D of C such that all graphs G ∈ D satisfy ω(G) ≤ κ. In particular, since H is a forest of
chandeliers, 1.8 implies that D is not ρ-controlled, for any ρ. Let ρ ≥ 0. Since D is not ρ-controlled,
there is a noncolourable ρ-bounded subideal of D. Thus, a forest of chandeliers H is not pervasive
in the ideal of all graphs if and only if for some subdivision J of H, some κ ≥ 0 and all ρ ≥ 0 there
is a noncolourable ρ-bounded ideal of J-subdivision-free graphs all with clique number at most κ.

Let us say a multigraph H is widespread if for every subdivision J of H and all κ ≥ 0 there exists
ρ ≥ 0 such that every ρ-bounded ideal of J-subdivision-free graphs G with ω(G) ≤ κ is colourable.
Then we have shown that a forest of chandeliers H is not pervasive in the ideal of all graphs if and
only it is not widespread.

We know which graphs are pervasive in controlled ideals, and roughly speaking, the concept
of “widespread” is the complementary property; a graph is both pervasive in controlled ideals and
widespread if and only if it is pervasive in the ideal of all graphs, which is what we really want to
determine.

Scott [6] conjectured that every multigraph is pervasive in the ideal of all graphs, but this was
disproved in [5]. Now we have a different question: which graphs H are widespread? Originally we
expected that the answer would be “if and only if H is a forest of chandeliers”, but in this paper we
give some counterexamples, that is, widespread graphs that are not forests of chandeliers. So now
our best guess is a resuscitated version of Scott’s conjecture, the following:

1.9 Conjecture: Every multigraph is widespread.

We are very far from proving this; for instance we still do not know whether every forest of chandeliers,
or indeed every chandelier, is widespread. All the multigraphs that we have proved to be widespread
are subdivisions of outerplanar graphs.

We proved in [3] that:

1.10 For all ρ ≥ 2 and every multigraph J , every ρ-bounded class of J-subdivision free graphs is
2-bounded.

Thus 1.9 is equivalent to the following, which is nicer (although we do not use 1.11 in this paper):

1.11 Conjecture: For all graphs J and for all integers τ ≥ 0, there exists c such that if G is a
graph with chromatic number more than c, then either some induced subgraph of G is a subdivision
of J or χ2(G) > τ .

If e = uv is an edge of a multigraph G, fattening e means replacing e by some set of parallel
edges all joining u, v. In this paper we will prove the following three results:

1.12 Let T be a tree, and let H be a multigraph obtained by fattening the edges of T . Then H is
widespread.

1.13 Let H be a multigraph obtained from a cycle by fattening all except one of its edges. Then H
is widespread.

1.14 Let H be a multigraph obtained from a triangle K3 by fattening two of its edges and replacing
the third by two parallel edges. Then H is widespread.
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We remark that the multigraphs H of 1.13 and 1.14 are in general not forests of chandeliers. Note
also that 1.4 follows immediately from 1.12 and 1.8 (as fattening the edges of a tree gives a multigraph
whose subdivisions are banana trees, and banana trees are trees of chandeliers).

2 Distant subgraphs with large chromatic number

With 1.9 in mind, let us see what we need. We have a graph J (a subdivision of the initial multigraph
H), and a number κ, and we need to show that if we choose ρ large enough, then every ρ-bounded
ideal of J-subdivision-free graphs with clique number at most κ is colourable. At this stage we prefer
not to specify H,J , and see how far we can progress in general. So H,J might as well both be K1

ν ,
the graph obtained from a complete graph Kν by subdividing every edge once; because if ν is large
enough then there is an induced subgraph of K1

ν which is a subdivision of any fixed graph. So, we
are given ν and κ, and let us choose ρ very large in terms of ν, κ. Now we need to show that every
ρ-bounded ideal C of K1

ν -subdivision-free graphs with clique number at most κ is colourable. Choose
some such C; then since it is ρ-bounded, there exists τ such that χρ(G) ≤ τ for all G ∈ C. Altogether
then we have four numbers κ, ν, ρ, τ , where κ, ν are given, and ρ is some large function of the numbers
κ, τ that we can choose, and then after selecting ρ, the number τ is given. We need to prove for such
a quadruple of numbers, there is a number c, such that every graph G that is K1

ν -subdivision-free
and satisfies χρ(G) ≤ τ and ω(G) ≤ κ also satisfies χ(G) ≤ c. We begin by proving some lemmas
about such graphs G. We need first:

2.1 For all κ ≥ 0 and d, s ≥ 0 there exists k ≥ 0 with the following property. Let G be a connected
graph with ω(G) ≤ κ. Let x1, . . . , xk ∈ V (G) be distinct, and let v ∈ V (G) such that the distance
between v and xi is at most d for 1 ≤ i ≤ k. Then there exists u ∈ V (G) and a subset S ⊆ {1, . . . , k}
with |S| = s, and for each i ∈ S a path Qi between u and xi of length at most d, such that each Qi
is a shortest path in G between u, xi, and for all distinct i, j, Qi, Qj are disjoint except for u, and
have the same length, and there is no edge between V (Pi) \ {u} and V (Pj) \ {u}.

Proof. For fixed κ, s we proceed by induction on d. The result is vacuous for d = 0 and true for d = 1,
so we assume d > 1 and that setting k = k′ satisfies the result for d− 1. We may therefore assume
that every vertex of G has distance less than d from at most k′− 1 of x1, . . . , xk. Let k1 be such that
every graph with at least k1 vertices either has a clique of cardinality κ or a stable set of cardinality s;
and let k = ((d+1)(k′−1)+1)k1. We claim that k satisfies the theorem. For given G, x1, . . . , xk, v as
in the theorem, let Pi be a shortest path in G between v, xi for 1 ≤ i ≤ k; thus each Pi is an induced
path. Let D be the digraph with vertex set {1, . . . , k} in which there is an edge from i to j if some
vertex of Pi has distance less than d from vj . This digraph has outdegree at most (d+1)(k′−1), and
so its underlying graph is 2(d+ 1)(k′− 1)-degenerate and therefore (2(d+ 1)(k′− 1) + 1)-colourable;
and so there exists I ⊆ {1, . . . , k} with |I| ≥ k/(2(d+ 1)(k′ − 1) + 1) = k1 such that for all distinct
i, j ∈ I, every vertex of Pi has distance at least d from vj . It follows that

• all the paths Pi(i ∈ I) have length exactly d (since v ∈ V (Pi) and so has distance d from xj);

• all the paths Pi(i ∈ I) are pairwise disjoint except for v; and

• for all distinct i, j ∈ I, every edge between V (Pi) \ {v} and V (Pj) \ {v} joins two neighbours
of v.
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From the choice of k1, since ω(G) ≤ κ, there exists J ⊆ I with |J | = s such that the neighbours of
v in Pi(i ∈ J) are pairwise nonadjacent; and then setting Qi = Pi(i ∈ J) satisfies the theorem. This
proves 2.1.

2.2 For all ν, d ≥ 0, there exist k, ` ≥ 0 with the following property. Let G be a graph, let X1, . . . , Xk

be nonempty connected subgraphs of G, and let v1, . . . , v` ∈ V (G), such that

• for all distinct i, j ∈ {1, . . . , k}, every vertex in Xi has distance at least three from every vertex
of Xj;

• for all distinct i, j ∈ {1, . . . , `}, the distance between vi, vj is at least 2d+ 2; and

• for 1 ≤ i ≤ k and 1 ≤ j ≤ `, the distance between Xi and vj is at most d.

Tnen G is not K1
ν -subdivision-free.

Proof. Let s = ν(ν − 1)/2; choose k1 such that setting k = k1 satisfies 2.1; and let `1 = ν
(
k1
s

)
. We

claim that k, ` satisfy the theorem. For let G,X1, . . . , Xk, v1, . . . , v` be as in the theorem.
For 1 ≤ i ≤ k and 1 ≤ j ≤ `, let the shortest path between Xi and vj have length dij . For

each value of j, there are only (d+ 1)k possibilities for the sequence d1j , . . . , dkj , and so there exists
J1 ⊆ {1, . . . , `} with |J1| ≥ `(d+ 1)−k = `1 such that for each i ∈ {1, . . . , k}, the numbers dij(j ∈ J1)
all have some common value, say di. Since there are only d + 1 possibilities for di, there exists
I1 ⊆ {1, . . . , k} with |I1|/(d+ 1) = k1 such that the numbers di(i ∈ I1) all have some common value,
say D. Thus for each i ∈ I1 and each j ∈ J1, the distance between Xi and vj is D. Let Pij be some
shortest path between Xi and vj , and let its end in Xi be xij . For each j, let Gj be the subgraph
induced on the union of the paths Pij(i ∈ I1, j ∈ J1). For distinct j, j′ ∈ J1, since the distance
between vj , vj′ is at least 2d+ 2 and every vertex of Gj has distance at most d from vj and the same
for Gj′ , it follows that Gj , Gj′ are disjoint and there is no edge joining them.

Suppose that for some distinct i, i′ ∈ I1 and j ∈ J1, some vertex z of Pij belongs to or has a
neighbour in Xi′ . Since every path between xij and Xi′ has length at least three, it follows that z
is not xij or its neighbour in Pij , and so there is a path between uj and z of length at most D − 2,
and hence a path between Uj and Xi′ of length at most D − 1, a contradiction. Thus no vertex of
Pij belongs to or has a neighbour in Xi′ .

For each j ∈ J1, by 2.1 applied to Gj there exist Ij ⊆ I1 with |I| = s, and a vertex uj ∈ V (Gj),
and induced paths Qij of Gj between uj and xij for each i ∈ Ij , such that the paths Qij(i ∈ Ij)
are pairwise disjoint except for uj , and there are no edges between them not incident with uj . Since

`1 = ν
(
k1
s

)
, there exists J ⊆ J1 with |J | = ν such that the sets Ij(j ∈ J) are all equal, equal to some

I say. Since |I| = s = ν(ν−1)/2, we can number the members of I as ij,j′ where j, j′ ∈ J and j < j′.
For all j, j′ ∈ J with j < j′, let i = ij,j′ ; the subgraph Qij ∪Xi∪Qij′ is connected, and so includes an
induced path Rjj′ of G between vj , vj′ . But then the vertices vj(j ∈ J) and the paths Rjj′ provide
an induced subgraph isomorphic to a subdivision of K1

ν . This proves 2.2.

The main result of this section is the following.

2.3 For all ν, d, c, τ ≥ 0 there exists c′ ≥ 0 with the following property. Let G be a K1
ν -subdivision-

free graph, such that χ2d+7(G) ≤ τ , and let Z ⊆ V (G) with χ(Z) > c′. Then there exist subsets
Z1, Z2 ⊆ Z such that χ(Zi) > c for i = 1, 2 and the G-distance between Z1, Z2 is more than d.
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Proof. Let k, ` ≥ 1 satisfy 2.2 with d replaced by d + 3. Let ck = `τ , and for i = k − 1, . . . , 0
define ci = 2ci+1 + 2c. Let c′ = c0. We claim that c′ satisfies the theorem. For let G,Z be as in the
theorem. Choose k′ ≤ k maximum such that there exist connected subgraphs X1, . . . , Xk′ of G[Z]
and a subset A ⊆ Z with the following properties:

• for 1 ≤ i < j ≤ k′, the G-distance between Xi, Xj is at least three;

• for 1 ≤ i ≤ k′, there exists di with 3 ≤ di ≤ d + 3 such that every vertex in A has G-distance
exactly di from Xi; and

• χ(A) > ck′ .

(This is possible since setting k′ = 0 and A = Z satisfies the bulletted statements.) Since ck′ > (`−1)τ
and χ2d+7(G) ≤ τ , there exist vertices v1, . . . , v` ∈ A, pairwise with G-distance at least 2d + 8.
Consequently, k′ < k by 2.2. Choose a connected component A1 of A with maximum chromatic
number, and let z0 ∈ A1. For i ≥ 0 let Li be the set of vertices in A1 with G[A1]-distance from z0
equal to i. For i ≥ 0 let Mi = L0 ∪ · · · ∪ Li. Thus each Mi induces a connected graph. For r ≥ 0 let
M r
i denote the set of vertices in A1 with G-distance from Mi at most r. Thus for sufficiently large i,

Mi = A1; and so there exists i such that Md+3
i > 2ck′+1 + c. Choose i minimum with this property.

Suppose that χ(M2
i ) ≤ c. Then χ(Md+3

i \M2
i ) > (2ck′+1 + c)− c, and every vertex in Md+3

i \M2
i

has G-distance from Mi at least three and at most d + 3. For 3 ≤ j ≤ d + 3 let Bj be the set of
vertices in Md+3

i \M2
i with G-distance exactly j from Mi. It follows that χ(Bj) > ck′+1 for some

j ∈ {3, . . . , d + 3}. Let Xk′+1 = Mi and dk′+1 = j; then since χ(Bj) > ck′+1, this contradicts the
maximality of k′. This proves that χ(M2

i ) > c.
Now χ(Md+3

i ) > 2ck′+1 + c ≥ τ , and so i > 0 since χ2d+7(G) ≤ τ . From the minimality
of i it follows that χ(Md+3

i−1 ) ≤ 2ck′+1 + c. Since χ(A1) > ck′ , it follows that χ(A1 \ Md+3
i−1 ) >

ck′ − (2ck′+1 + c) = c. But M2
i ⊆ M3

i−1, so the G-distance between M2
i and A1 \Md+3

i−1 is at least
d + 1. Since both the sets are subsets of A1 and hence of Z, and both sets have chromatic number
more than c, this proves 2.3.

2.4 For all ν, k, d, c, τ ≥ 0 there exists c′ ≥ 0 with the following property. Let G be a K1
ν -subdivision-

free graph, such that χ2d+7(G) ≤ τ , and let Z ⊆ V (G) with χ(Z) > c′. Then there exist subsets
Z1, . . . , Zk ⊆ Z such that χ(Zi) > c′ for i = 1, . . . , k and the G-distance between every two of
Z1, . . . , Zk is more than d.

Proof. We proceed by induction on k. Let c′′ satisfy the theorem with k replaced by k − 1; and
let c′ satisfy 2.3 with c replaced by c′′. We claim that c′ satisfies the theorem. For let G,Z be as in
the theorem. By 2.3 exist subsets Z1, Z2 ⊆ Z such that χ(Zi) > c′′ for i = 1, 2 and the G-distance
between Z1, Z2 is more than d. By the inductive hypothesis applied with Z replaced by Z2, there are
k−1 subsets Y1, . . . , Yk−1 of Z2, each with chromatic number at least c and pairwise with G-distance
at least d+ 1. But then Z1, Y1, . . . , Yk−1 satisfy the theorem.
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3 Pineapple trees

If X,Y ⊆ V (G), we say that Y covers X if X ∩ Y = ∅ and every vertex in X has a neighbour in Y .
If in addition G[Y ] is connected we call the pair (X,Y ) a pineapple in G. It is a levelled pineapple
if there exists z0 ∈ Y such that for some k, every vertex in Y is joined to z0 by a path of G[Y ] of
length less than k, and there is no path in G[X ∪ Y ] of length less than k from z0 to X.

Now let T be a tree, with a vertex r called its root. We call (T, r) a rooted tree. For u, v ∈ V (T ),
we say v is an ancestor of u and u is a descendant of v if v belongs to the path of T between u, r.
We define parent and child in the natural way. We say u, v ∈ V (T ) are incomparable if neither is a
descendant of the other. Let L(T ) be the set of vertices of T with no children (thus, L(T ) is the set
of leaves of T different from r, except when V (T ) = {r}). Now let G be a graph. For each vertex
v ∈ V (T ) let Cv ⊆ V (G), and for each vertex v ∈ V (T ) \L(T ) let (Xv, Yv) be a levelled pineapple in
G with Xv ∪ Yv = Cv, and with the following properties:

• all the sets Cv(v ∈ V (T )) are nonempty and pairwise disjoint;

• for all incomparable u, v ∈ V (T ) there is no edge between Cu, Cv;

• if u, v ∈ V (T ) are distinct, and u is a descendant of v, then there are no edges between Cu and
Yv, and if also u ∈ L(T ) then Xv covers Cu.

(Note that we only demand that Xv covers Cu when v’s descendant u is a leaf. We leave open
whether there are edges between Cu and Xv when u ∈ V (T ) \L(T ) is a descendant of v; this will be
resolved later.) We call the system

(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ L(T )))

a pineapple tree in G and (T, r) is its shape. Let us call the union of all the sets Cv(v ∈ V (T )) the
vertex set of the pineapple tree. In this section we prove:

3.1 For all ν, c, d, τ ≥ 0, and every rooted tree (T, r), there exists c′ with the following property. Let
G be a K1

ν -subdivision-free graph, such that χ2d+7(G) ≤ τ , and let Z ⊆ V (G). with χ(Z) > c′. Then
there is a pineapple tree

(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ L(T )))

in G, with vertex set a subset of Z, such that χ(Cv) > c for each v ∈ L(T ), and for all incomparable
u, v ∈ L(T ), the G-distance between Cu, Cv is at least d+ 1.

Proof. We may assume that d ≥ 1; and we proceed by induction on V (T ). If V (T ) = {r}, then
r ∈ L(T ), and we define Cr = V (G) and the theorem holds. Thus we may assume that r /∈ L(T ),
and the result holds for smaller trees. Let r1, . . . , rk be the children of r, and for 1 ≤ i ≤ k let Ti
be the component of T \ r containing ri. Inductively for i = 1, . . . , k, there exists ci satisfying the
theorem with T, r, c′ replaced by Ti, ri, ci. Let c′′ be the maximum of c1, . . . , ck. Choose c0 ≥ τ such
that 2.4 holds with c, c′ replaced by c′′, c0. We claim that setting c′ = 2c0 satisfies the theorem. For
let G,Z be as in the theorem. Choose a component A of G[Z] with χ(A) = χ(Z), and choose z0 ∈ A.
For j ≥ 0 let Lj be the set of vertices in A with G[Z]-distance j from z0, and choose j such that
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χ(Lj) ≥ χ(A)/2 > c0. Then j > 1, since χ2d+7(G) ≤ τ ≤ c0; let Xr = Lj−1 and Yr = L0∪ · · ·∪Lr−2.
Then (Xr, Yr) is a levelled pineapple, and Xr covers Lj , and there are no edges between Yr, Lj .

From 2.4 there exist Z1, . . . , Zk ⊆ Lj , each with chromatic number more than c′′, and pairwise
at G-distance more than d. From the choice of ci, for each i there is a pineapple tree

(Ti, ri, ((Xv, Yv) : v ∈ V (Ti) \ L(Ti)), (Cv : v ∈ L(Ti)))

in G, with vertex set a subset of Zi, such that χ(Cv) > c′′ ≥ ci for each v ∈ L(Ti), and for all distinct
u, v ∈ L(Ti), the G-distance between Cu, Cv is at least d+ 1. But then

(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ L(T )))

is the required pineapple tree.

4 Pruning a pineapple tree

Now we turn to the question whether there are edges between Xu∪Yu and Xv when u is a descendant
of v. Let

(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ L(T )))

be a pineapple tree in G, and let d ≥ 2, such that for all incomparable u, v ∈ L(T ), the G-distance
between Cu, Cv is at least d + 1, where Cv = Xv ∪ Yv for v ∈ V (T ) \ L(T ). For each u ∈ L(T ) and
each ancestor v ∈ V (T ) \L(T ) of u, let Xu

v be the set of vertices in Xv with a neighbour in Cu. Here
are some observations about these subsets:

• For each v ∈ V (T ) \L(T ), if u, u′ ∈ L(T ) are distinct descendants of v, then Xu
v ∩Xu′

v = ∅; for
d ≥ 2, so the distance between Cu, Cu′ is at least three, and so no vertex in Xv has neighbours
in both sets.

• We may assume that for each v ∈ V (T ) \ L(T ), every vertex in Xv belongs to Xu
v for some

descendant u ∈ L(T ) of v; for any other vertices in Xv may be removed from Xv without
violating the definition of a pineapple tree.

• For all distinct u, v, v′ ∈ V (T ), if u ∈ L(T ), and v is an ancestor of u, and v′ is incomparable
with u, then there are no edges between Xu

v and Cv′ ; because the distance between Cu, Cv′ is
at least three, and every vertex in Xu

v has a neighbour in Cu, and so has no neighbour in Cv′ .

We say an aligned triple is a triple (u, v, w) such that u ∈ L(T ), w is an ancestor of u, v is an
ancestor of w, and u, v, w are all different. We say that an aligned triple (u, v, w) is pruned if either
every vertex in Xu

v has a neighbour in Yw, or none does; and the pineapple tree is pruned if every
aligned triple is pruned.

4.1 For all ν, c, d, τ ≥ 0, and rooted trees (T, r), there exists c′ with the following property. Let G
be a K1

ν -subdivision-free graph, such that χ2d+7(G) ≤ τ , and let Z ⊆ V (G). with χ(Z) > c′. Then
there is a pruned pineapple tree as in 3.1.
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Proof. Let c′′ = 2h
2
c where h is the length of the longest path in T with one end r. Let c′ satisfy

3.1 with c replaced by c′′. We claim that c′ satisfies the theorem. For let G,Z be as in the theorem;
then by 3.1 there is a pineapple tree as in 3.1, in the usual notation. Thus we may choose a pineapple
tree

(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ L(T )))

in G, satisfying the following conditions:

• its vertex set is a subset of Z;

• for all incomparable u, v ∈ L(T ), the G-distance between Cu, Cv is at least d + 1, where
Cv = Xv ∪ Yv for v ∈ V (T ) \ L(T );

• for each u ∈ L(T ), let nu be the number of pairs (v, w) such that (u, v, w) is a pruned aligned
triple; then χ(Cu) > c′2−nu .

Choose this tree such that in addition the sum of the numbers nu(u ∈ L(T )) is maximum. We claim
this tree is pruned. For if not, choose an aligned triple (u, v, w) that is not pruned. Let A be the
set of vertices in Xv

u with a neighbour in Yw, and B = Xu
v \ A. Every vertex in Cu has a neighbour

in one of A,B, and so we can choose one of A,B, say W u
v , such that the set of vertices in Cu with

a neighbour in W u
v , say C ′u, has chromatic number at least χ(Cu)/2 and hence more than c′2−nu−1.

But then replacing Xu
v by W u

v and Cu by C ′u gives a new pineapple with the sum of the numbers
nu(u ∈ L(T )) larger, which is impossible. This proves that the pineapple tree is pruned.

For each u ∈ L(T ), n(u) ≤ h(h − 1)/2 ≤ h2 and so χ(Cu) > c′2−nu ≥ c, and so this pineapple
tree satisfies the theorem.

5 A Ramsey theorem for trees

Let h ≥ 0 and t ≥ 1, and let (T, r) be a rooted tree in which every path from r to a member of L(T )
has length h, and every vertex in V (T ) \ L(T ) has t children (and hence degree t+ 1, except for r).
We call (T, r) a uniform t-ary tree of height h. We need the following.

5.1 Let q, h ≥ 0 and t ≥ 1. Let (T ′, r) be a uniform (qt)-ary tree of height h, and let φ be a map
from L(T ′) to the set {1, . . . , q}. Then there is a subtree T of T ′ containing r, such that (T, r) is a
uniform t-ary tree of height h, and such that for some x ∈ {1, . . . , q}, φ(u) = x for all u ∈ L(T ).

Proof. We proceed by induction on h. For h = 0 the result is true, so we assume that h > 0 and
the result holds for h− 1. Let r1, . . . , rqt be the children of r in T ′, and for 1 ≤ i ≤ qt let Ti be the
component of T \ r containing ri. For 1 ≤ i ≤ qt, from the inductive hypothesis there is a subtree T ′i
of Ti containing ri, such that (T ′i , ri) is a uniform t-ary tree of height h− 1, and such that for some
xi ∈ {1, . . . , q}, φ(u) = xi for all u ∈ L(T ′i ). Choose x ∈ {1, . . . , q} such that xi = x for at least t
values of i; then the union of t of the corresponding trees Ti, together with r, gives the desired tree
T ′.
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Let
(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ L(T )))

be a pineapple tree. It is barren if for every aligned triple (u, v, w), no member of Xu
v has a neighbour

in Yw; and it is fruitful if for every aligned triple (u, v, w), every member of Xu
v has a neighbour in

Yw. We need a further strengthening of 3.1, the following.

5.2 For all ν, c, d, τ ≥ 0, and every rooted tree (T, r), there exists c′ with the following property. Let
G be a K1

ν -subdivision-free graph such that χ2d+7(G) ≤ τ , and let Z ⊆ V (G). with χ(Z) > c′. Then
there is a pineapple tree as in 3.1 which is either barren or fruitful.

Proof. Choose t ≥ 1 and h ≥ 0 such that every vertex of T has at most t children and every path
of T with one end r has length at most h. Let q = 22

2h
. Let (T ′, r′) be a uniform uniform (qt)-ary

tree of height 2h, and choose c′ such that 4.1 is satisfied with T replaced by T ′. We claim that c′

satisfies the theorem. For let G,Z be as in the theorem. By 4.1 there is a pruned pineapple tree

(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ L(T )))

as in 4.1. For each u ∈ L(T ′), let qu be the function with domain the set of all ordered pairs (i, j)
with 0 ≤ i < j < 2h, defined as follows. For each such pair (i, j), let v, w ∈ V (T ′) be the ancestors of
u with distance i and j from r respectively; let qu(i, j) = 0 if no member of Xu

v has a neighbour in Yw,
and qu(i, j) = 1 if every member of Xu

v has a neighbour in Yw. (Since the pineapple tree is pruned
and all the sets Xu

v are nonempty, this is well-defined.) Thus each qu is a map into a domain with at
most q elements, and so by 5.1 there is a subtree T ′′ of T ′ containing r′, such that (T ′′, r′) is a uniform
t-ary tree of height h, and such that all the functions qu(u ∈ L(T ′′)) are equal. Let the common
value of all the qu(u ∈ L(T ′′)) be a function f . Let H be the graph with vertex set {0, . . . , 2h − 1}
in which for 0 ≤ i < j < 2h, i, j are adjacent if f(i, j) = 1. By Ramsey’s theorem applied to H,
there exists I ⊆ {0, . . . , 2h − 1} with |I| = h such that all the values f(i, j)(i, j ∈ I, i < j) are equal.
Let I = {i0, . . . , ih−1} where 0 ≤ i0 < · · · < ih−1 < 2h. Choose s ∈ V (T ′′) with distance i0 from r′.
Let N be the set of descendants of s in T ′′ whose distance from r′ belongs the set I ∪ {2h}. Let S
be the tree with vertex set N in which u, v are adjacent if one is a descendant in T ′′ of the other
and no third vertex of N belongs to the path of T ′′ between them. Then (S, s) is a rooted tree in
which every path from s to L(S) has length h and every vertex in V (S)\L(S) has at least t children.
Consequently

(S, s, ((Xv, Yv) : v ∈ V (S) \ L(S)), (Cv : v ∈ L(S)))

is a pineapple tree, and it is either barren or fruitful, and since (S, s) has a rooted subtree isomorphic
to (T, r), the result follows. This proves 5.2.

We can eliminate barren pineapple trees, because of the following.

5.3 For all ν, κ ≥ 0, there exists n ≥ 1 with the following property. Let τ ≥ 0 and let (T, r) be a
rooted tree where T is a path of length n2 with ends r, u say. Let G be a K1

ν -subdivision-free graph,
such that χ2(G) ≤ τ and ω(G) ≤ κ. Then there is no barren pineapple tree in G with shape (T, r),
such that in the usual notation χ(Cu) > nτ .

Proof. Say an immersion of Kn into G is a map φ, such that
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• φ maps V (Kn) injectively into V (G), and

• φ maps each edge e = uv of Kn to an induced path φ(e) of G between φ(u), φ(v), of length at
least two;

• for all distinct e, f ∈ E(Kn), the paths φ(e), φ(f) are vertex-disjoint except possibly for a
common end;

• for all distinct e, f ∈ E(Kn) with no common end, there is no edge of G between φ(e), φ(f);

• for all distinct e, f ∈ E(Kn) with a common end v say, there is at most one edge between
V (φ(e) \ φ(v)) and V (φ(f) \ φ(v)) and such an edge joins the two neighbours of φ(v).

It is an easy application of Ramsey’s theorem to prove that there exists n such that if G is K1
ν -

subdivision-free and ω(G) ≤ κ, there is no immersion of Kn in G. (We omit the proof; see theorem
3.2 of [3] for the proof of a similar result.)

We claim that n satisfies the theorem. For let T, r,G be as in the theorem, and suppose that
there is a barren pineapple tree with shape (T, r) as described in the theorem. Then |L(T )| = 1; let
u ∈ L(T ). Let the vertices of T be t0- · · · -tn2 in order, where t = t0. (Thus u = tn2 .) For 0 ≤ k < n2

let us write Xk for Xtk and Yk for Ytk for convenience. Since χ(Cu) > nτ and χ2(G) ≤ τ , there exist
n vertices v1, . . . , vn in Cu, pairwise with G-distance at least three. For 1 ≤ i ≤ n and 0 ≤ k < n2,
let xik be a neighbour of vi in Xk. Let H be a graph with vertex set {v1, . . . , vn} in which all pairs of
vertices are adjacent. Number the edges of H as e0, . . . , em−1 where m = n(n− 1)/2. Let 0 ≤ k < m
and let ek have ends vi, vj say where i < j. Let Pk be an induced path of G between vi, vj , consisting

of the edges vix
i
k, vjx

j
k and an induced path joining xik, x

j
k with interior in Yk (this exists since Yk

covers Xk and G[Yk] is connected). Then the paths P0, . . . , Pm−1 are pairwise vertex-disjoint except
possibly for a common end. Suppose that there is an edge e of G joining Pk, Pk′ say, where k 6= k′,
and e is not incident with a common end of Pk, Pk′ . Suppose first that some end v of e is an end of one
of Pk, Pk′ , say of Pk; then v = vi for some i. Since v1, . . . , vn pairwise have G-distance at least three,
the other end of e is not an end of Pk′ , and so belongs to Xk′∪Yk′ . It cannot belong to Yk′ since there
are no edges between Cu and Yk′ , from the definition of a pineapple tree. Consequently it belongs
to Xk′ , and so is adjacent to an end of P ′k. This end of Pk′ must be vi, since v1, . . . , vn pairwise
have G-distance at least three, and so vi is a common end of Pk, Pk′ , contrary to the definition of
e. Thus neither end of e belongs to Cu. Hence one end is in Xk ∪ Yk, and the other in Xk′ ∪ Yk′ .
From the symmetry we may assume that k′ > k, and so there are no edges between Yk and Xk′ ∪Yk′
from the definition of a pineapple tree. Hence one end of e is in Xk. The other end of e is not in
Yk′ since (u, tk, tk′) is an aligned triple, and by hypothesis no vertex in Xu

k has a neighbour in Yk′ .
Hence the other end of e is in Xk′ . It follows that both ends of e have a neighbour in {v1, . . . , vk},
and so they have a common neighbour since v1, . . . , vn pairwise have G-distance at least three, and
this common neighbour is a common end of both Pk, Pk′ . Consequently the vertices v1, . . . , vn and
paths P0, . . . , Pm−1 define an immersion of Kn in G, which is impossible. This proves 5.3.

We deduce:

5.4 For all ν, c, d, τ, κ ≥ 0, and every rooted tree (T, r), there exists c′ with the following property.
Let G be a K1

ν -subdivision-free graph, such that χ2d+7(G) ≤ τ , and let Z ⊆ V (G) with χ(Z) > c′.

11



Then there is a fruitful pineapple tree

(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ L(T )))

in G, with vertex set a subset of Z, such that

• χ(Cv) > c for each v ∈ L(T ); and

• for all incomparable u, v ∈ L(T ), the G-distance between Cu, Cv is at least d + 1, where Cv =
Xv ∪ Yv for v ∈ V (T ) \ L(T ).

Proof. By adding a path to T if necessary, we may assume that there is a rooted subtree of (T, r)
which is a path of length n as in 5.3. But then the result follows from 5.2 and 5.3.

6 Banana trees

Now we use the previous results to prove the first of our main theorems, 1.12 and hence 1.4. We need
the following. Let (T, r) be a rooted tree. If u, v ∈ V (G), the path of T with ends u, v is denoted by
T (u, v). A path in T of positive length joining some u ∈ L(T ) to some ancestor of u is called a limb
of (T, r), and we call u its leaf and v its start. Let T = (Tq : q ∈ Q) be a family of limbs in (T, r)
(not necessarily all different), and let k ≥ 1 be an integer. We make a graph J with vertex set Q as
follows. We say that distinct q1, q2 ∈ Q are adjacent in J if there are at least k vertices x of T , such
that x belongs to the interiors of Tq1 and Tq2 , and x is not a vertex of any Tq(q ∈ Q \ {q1, q2}). We
call J the k-overlap graph of T . It is easy to see that J must be a forest. More important for us is
the converse; that

6.1 For every forest J and every k ≥ 1, there is a rooted tree (T, r) and a family of limbs T in T
such that the k-overlap graph of T is isomorphic to J , and no two members of T share an end.

We leave the (easy) proof to the reader.
Let us say a banana is a graph formed by the union of a nonempty set of paths each of positive

length, all with the same ends (s, t say) and otherwise disjoint, and its thickness is the number of
these paths. We call s, t the ends of the banana. (A banana of thickness two is just a cycle, and so
its ends are not determined from the graph; so we will therefore specify its ends separately whenever
we use a banana of thickness two.) By a banana in G we mean an induced subgraph of G that is a
banana. Two bananas B1, B2 in G are orthogonal if every vertex in V (B1 ∩ B2) is an end of both
bananas, and there is at most one such vertex, and every edge of G between V (B1) and V (B2) is
incident with a common end of B1, B2. A banana tree is a graph obtained from a tree T by replacing
each edge uv by a banana with ends u, v, such that these bananas are orthogonal. To prove 1.12,
we need to prove that every multigraph obtained by fattening the edges of a tree is widespread; and
part of “widespread” involves proving that for every subdivision J of such a multigraph, there is a
subdivision of J which is present as an induced subgraph. But such a graph J is just a banana tree,
so 1.12 can be reformulated as follows.

6.2 For every banana tree J and κ ≥ 0 there exists ρ ≥ 0 such that every ρ-bounded ideal of
J-subdivision-free graphs G with ω(G) ≤ κ is colourable.

12



Let us simplify this further, eliminating the ideal. It is equivalent to the following.

6.3 For every banana tree J and κ ≥ 0 there exists ρ ≥ 0 such that for all τ ≥ 0 there exists c ≥ 0
such that χ(G) ≤ c for every J-subdivision-free graph G with χρ(G) ≤ τ and ω(G) ≤ κ.

Thus, ρ is permitted to depend on J, κ but not on τ or G. In fact we will prove something
stronger, that setting ρ = 2|V (J)|+ 7 works. In other words, we will prove:

6.4 For every banana tree J with |V (J)| = n and κ, τ ≥ 0 there exists c ≥ 0 such that χ(G) ≤ c for
every J-subdivision-free graph G with χ2n+7(G) ≤ τ and ω(G) ≤ κ.

Proof. We may assume that |V (J)| ≥ 3, since otherwise the result is trivial. Since J is a banana
tree, it is obtained from some tree S by substituting bananas for its edges. Let (T, r) be a rooted tree
such that there is a family T of limbs in (T, r) with n-overlap graph isomorphic to S such that no
two members of T share an end. Choose ν > 0 such that there is an induced subgraph of K1

ν which
is a subdivision of J ; and let c′ satisfy 5.4 with c, d replaced by 0, n. We claim that setting c = c′

satisfies the theorem. For let G be a J-subdivision-free graph G with χ2n+7(G) ≤ τ and ω(G) ≤ κ.
We must show that χ(G) ≤ c′; for suppose not. Now G is K1

ν -subdivision-free, and so by 5.4 (setting
Z = V (G)) there is a fruitful pineapple tree

(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ L(T )))

in G, such that for all incomparable u, v ∈ L(T ), the G-distance between Cu, Cv is at least n + 1,
where Cv = Xv ∪ Yv for v ∈ V (T ) \L(T ). For each u ∈ L(T ), Cu is nonempty from the definition of
a pineapple tree, and we may assume that |Cu| = 1, Cu = {cu} say. Let T = (Tq : q ∈ Q), and for
each q ∈ Q let Tq have leaf uq and start vq; and choose xq ∈ Xvq . There is an isomorphism between
V (S) and the n-overlap graph of T ; let the corresponding bijection from Q onto V (S) map q to sq
for each q ∈ Q. Now let sqsq′ be an edge of S. Then from the definition of the n-overlap graph, there
are at least n vertices of T that belong to the interiors of the limbs Tq, Tq′ and do not belong to any
of the other members of T . Let We be a set of n such vertices, and let w ∈ We. Then (uq, vq, w) is
an aligned triple, and so xq has a neighbour in Yw, since the pineapple tree is fruitful. Similarly xq′

has a neighbour in Yw, and since G[Yw] is connected, there is an induced path Pwe between xq, xq′

with interior in Yw. Since the G-distance between cuq and cuq′ is at least n + 1, because uq, uq′ are
incomparable, it follows that the G-distance between xq, xq′ is at least n− 1, and so Pwe has length
at least n− 1. The union of the paths Pwe over all w ∈We is a banana with ends xq, xq′ , say Be, and
Be is an induced subgraph of G.

Since the vertices w ∈We do not belong to any other member of T , it follows that for all distinct
edges e, f of S, the bananas Be, Bf are disjoint except for their ends. Since each banana has thickness
n, and each of its constituent paths is of length at least n− 1, it follows that the vertices x1, . . . , xk
and all the bananas Be make a subgraph H of G which has an induced subgraph that is a subdivision
of J . We claim that H is itself induced. For suppose not, and let a, b ∈ V (H) be distinct and adjacent
in G and not adjacent in H. Since the vertices xq(q ∈ Q) pairwise have G-distance at least n−1 and
hence are nonadjacent (since n ≥ 3), we may assume that a belongs to the interior of some banana
Be say, and hence a ∈ Yw for some w.

From the definition of a pineapple tree, the only vertices of the pineapple tree with neighbours
in Yw belong to Yw, to Xw, or to Xv for some ancestor v of w; and if a vertex in Xu

v has a neighbour
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in Yw where v is an ancestor of w and u ∈ L(T ), then u is a descendant of w. Consequently the only
vertices of H with neighbours in Yw belong to Yw∪{xq, xq′} where e = sqsq′ ; and so b belongs to this
set, and hence to Pwe . Since Pwe is induced, it follows that a, b are adjacent in H, a contradiction.
This proves that H is induced. Consequently there is an induced subgraph of G isomorphic to a
subdivision of J , a contradiction. This proves 6.4.

7 Fattening a cycle

In this section we prove 1.13. In the proof of 6.4 we made use of the overlap graph, which exploited
vertices of the tree that only belonged to two of the selected limbs. For 1.13 we will again apply 3.1,
but now we need to use vertices of the tree that belong to more than two limbs. This will still give
us bananas, but we have less control over which pairs the bananas join. We have the following.

7.1 Let (T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ L(T ))) be a pineapple tree in G, such that

• χ(Cv) > 0 for each v ∈ L(T );

• for all incomparable u, v ∈ L(T ), the G-distance between Cu, Cv is at least 3, where Cv = Xv∪Yv
for v ∈ V (T ) \ L(T ); and

• for every aligned triple (u, v, w), every vertex in Xu
v has a neighbour in Yw.

Let (Tq : q ∈ Q) be a family of limbs of (T, r), let vq be the start of Tq(q ∈ Q), and for all distinct
q, q′ ∈ Q let the G-distance between vq, vq′ be at least three. Let W ⊆ V (T ) be a subset of the interior
of each Tq(q ∈ Q), where |W | > (n− 1)k(k − 1)/2. For every partition of Q into two nonempty sets
I, J , there exist q ∈ I, q′ ∈ J , and a banana B in G, with ends vq, vq′, thickness n and interior a
subset of

⋃
w∈W Yw, such that there is no edge between V (B) and {vq′′ : q′′ ∈ Q \ {q, q′}}.

Proof. We see first that since for all distinct q, q′ ∈ Q, the G-distance between vq, vq′ is at least
three, it follows that the vertices vq(q ∈ Q) are pairwise nonadjacent and no two have a common
neighbour. Let I, J be two complementary nonempty subsets of Q, and let w ∈ W . For each i ∈ I
and j ∈ J , since vi, vj both have neighbours in Yw and G[Yw] is connected, there is a path between
vi, vj with interior in Yw. Choose i, j and the path such that this path (Pw say) is as short as possible.
It follows that no other member of {v1, . . . , vk} has a neighbour in Pw, since v1, . . . , vk are pairwise
nonadjacent and no two have a common neighbour. Let fw = (i, j) where i < j. Since there are only
k(k − 1)/2 possibilities for the pair (i, j) (in fact fewer, since we insists that i ∈ I and j ∈ J), there
exist at least n values of w where the pairs fw are all the same, equal to (q, q′) say. But then the
union of the corresponding paths Pw makes the desired banana B.

The goal of the section is to prove 1.13, which is equivalent to the following:

7.2 Let H be a multigraph obtained from a cycle by fattening all except one of its edges. Then for
every subdivision J of H and all κ ≥ 0 there exists ρ ≥ 0 such that for all τ ≥ 0 there exists c ≥ 0
such that if G is J-subdivision-free and ω(G) ≤ κ and χρ ≤ τ then χ(G) ≤ c.

We will prove a strengthening of 7.2, that setting ρ = 2|V (J)|+ 7 works, that is:
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7.3 Let J be obtained from a cycle of length m by substituting bananas for all except one of its
edges. Then for all κ, τ ≥ 0 there exists c ≥ 0 such that if G is J-subdivision-free, ω(G) ≤ κ and
χ2|V (J)|+7 ≤ τ , then χ(G) ≤ c.

Proof. Let n = max(|V (J)|, 5). Let (S, r) be a uniform 2-ary tree of height m, and let (T, r) be
obtained from (S, r) by replacing each edge by a path Pe of length 2n3. (Thus V (S) ⊆ V (T ).) For
each vertex z ∈ V (S), we say its height is the S-distance from z to a vertex in L(T ). Choose ν such
that K1

ν contains J ; and choose c′ such that 5.4 holds, taking d = n + 1 and c = 0. We claim that
setting c = c′ satisfies the theorem. For let G be a J-subdivision-free graph with ω(G) ≤ κ and
χ2|V (J)|+7 ≤ τ , and suppose that χ(G) > c. Since G is K1

nu-subdivision-free, by 5.4 there is a fruitful
pineapple tree

(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ L(T )))

in G, such that for all incomparable u, v ∈ L(T ), the G-distance between Cu, Cv is at least n, where
Cv = Xv ∪ Yv for v ∈ V (T ) \ L(T ). For each u ∈ L(T ) choose cu ∈ Cu, and let xv ∈ Xu

v be adjacent
to v. Since the vertices cu(u ∈ L(T )) pairwise have G-distance at least n + 2, it follows that the
vertices xv(v ∈ L(T )) pairwise have G-distance at least n. For each edge e = z1z2 ∈ E(S), where z1
is the parent of z2 in S, let Te be the union of V (Pe) \ {z1} and the set of descendants of z2 in T .
Let Le = Te ∩ L(T ), and let Xe = {xu : u ∈ Le)}.

Let x1, . . . , xh be distinct vertices of G, pairwise with G-distance at least n, and let B1, . . . , Bh−1
be pairwise orthogonal bananas in G, each of thickness n − 1, such that Bi has ends xi, xi+1 for
1 ≤ i ≤ h− 1 We call this sequence of bananas a banana path on (x1, . . . , xh) with interior the union
of the interiors of B1, . . . , Bh−1.

(1) Let e = z1z2 ∈ E(S), where z1 is the parent of z2 in S, and let h be the height of z1. Then
there exist h vertices x1, . . . , xh ∈ Xe such that there is a banana path on (x1, . . . , xh) with interior
a subset of

⋃
v∈Te\Le

Yv.

To prove this we proceed by induction on h. If h = 1, then the result is true since then z2 ∈ L(T )
and xz2 satisfies the requirement. Thus we may assume that h > 1 and the result holds for h − 1.
Let z3, z4 be the children of z2 in S, and let f, g be the edges z2z3 and z2z4 respectively. From the in-
ductive hypothesis, there exist a1, . . . , ah−1 ∈ Xz3 such that there is a banana path on (a1, . . . , ah−1)
with interior in

⋃
v∈Tf\Lf

Yv, and b1, . . . , bh−1 ∈ Lz4 similarly. It follows that there are no edges
between any banana of the first banana path and any banana of the second, from the definition of
a pineapple tree. Moreover, each of a1, . . . , ah−1 has distance at least n from each of b1, . . . , bh−1.
Let P ∗e denote the set of vertices of T in the interior of Pe. Now each ai is adjacent to a mem-
ber of

⋃
u∈L(T )Cu, and the corresponding limb includes P ∗e , and the same for each bj . Since there

are 2n3 − 1 > (n − 1)2h(2h − 1)/2 vertices of T in the interior of Pe, 7.1 implies that there ex-
ist ai ∈ {a1, . . . , ah−1} and bj ∈ {b1, . . . , bh−1}, and a banana B with ends ai, bj and thickness n
and interior a subset of

⋃
w∈P ∗e Yw, such that no other member of {a1, . . . , ah−1, b1, . . . , bh−1} has

a neighbour in V (B). By reversing the sequence (a1, . . . , ah−1) if necessary, we may assume that
i ≥ h/2, and similarly j ≤ h/2. Now no vertex of the interior of B belongs to or has a neighbour in⋃
v∈Tf\Lf

Yv, and the same for
⋃
v∈Tg\Lg

Yv; and so there is a banana path on (a1, . . . , ai, bj , . . . , bh−1)
with interior in ⋃

v∈Tf\Lf

Yv ∪
⋃

v∈Tg\Lg

Yv ∪
⋃
v∈P ∗e

Yv ⊆
⋃

v∈Te\Le

Yv.
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This proves (1).

In particular, since r has height m, from (1) applied to some edge e = rs of S incident with r,
there exist m vertices x1, . . . , xm ∈ Xe such that there is a banana path on (x1, . . . , xm) with interior
a subset of

⋃
v∈Te\Le

Yv. Now choose a path between x1, xm with interior in Yr such that x2, . . . , xm−1
have no neighbours in it (this is possible since the pineapple (Xr, Yr) is levelled). Adding this to the
banana path gives a subdivision of J . This proves 7.3.

8 The fat triangle

Now we turn to the third of our theorems, 1.14. We need a lemma, as follows.

8.1 Let ρ ≥ 4, τ ≥ 0, and n ≥ 0, let G be a graph with χρ(G) ≤ τ , and let X,Z ⊆ V (G) be disjoint,
such that X covers Z and χ(Z) > nτ . Then there exist x1, . . . , xn ∈ X with the following properties:

• x1, . . . , xn pairwise have distance at least ρ in G; and

• for all distinct i, j ∈ {1, . . . , n}, there is a path between xi, xj with interior in Z, such that no
other vertex in {x1, . . . , xn} has a neighbour in this path.

Proof. By a {1, . . . , k}-colouring of a graph we mean a colouring using {1, . . . , k} as the set of
colours. If X1, X2 ⊆ V (G) with X1 ∩X2 = ∅, and κi is a colouring of G[Xi] for i = 1, 2, we say they
are compatible if their union in the natural sense is a colouring of G[X1 ∪X2]. For each x ∈ X, the
subgraph Gx induced on the set of neighbours of x in Z has chromatic number at most τ ; choose
some {1, . . . , τ}-colouring κx of Gx for each such v. Now choose C ⊆ Z and x1, . . . , xk ∈ X where
0 ≤ k ≤ n, with the following properties:

• G[C] is connected, and x1, . . . , xk have no neighbours in C;

• x1, . . . , xk pairwise have G-distance at least ρ;

• no {1, . . . , nτ}-colouring of G[C] is compatible with each of the colourings κxi(1 ≤ i ≤ k); and

• subject to these conditions, C is minimal.

(This is possible, since taking C to be a component of G[Z] with maximum chromatic number and
k = 0 satisfies all bullets except the last.) If some Gxi contains no vertex with a neighbour in
C then we may remove xi from the list x1, . . . , xk; so we may assume that x1, . . . , xk each have a
neighbour in Z which has a neighbour in C. Now k ≤ n, and if k = n then the theorem holds, so we
may suppose for a contradiction that k < n. Since only colours 1, . . . , τ are used by the colourings
κ1, . . . , κk, it follows that χ(C) > (n − 1)τ ≥ kτ ; and so there exists v ∈ C with G-distance more
than ρ from each of x1, . . . , xk. Choose xk+1 ∈ X adjacent to v. Thus xk+1 has G-distance at least
ρ from each of x1, . . . , xk. Let C ′ be the set of vertices in C nonadjacent to xk+1. Since κxk+1

is
compatible with each of the colourings κxi(1 ≤ i ≤ k) (because xk+1 has G-distance at least four
from each of x1, . . . , xk), it follows that no {1, . . . , nτ}-colouring of G[C ′] is compatible with each
of the colourings κxi(1 ≤ i ≤ k + 1). Consequently there is a component C ′′ of G[C ′] such that no
{1, . . . , nτ}-colouring of G[C ′′] is compatible with each of the colourings κxi(1 ≤ i ≤ k+ 1). But this
contradicts the minimality of C. Hence k = n. This proves 8.1.
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We deduce 1.14, reformulating it in the same way that 6.4 is a reformulation of 1.12:

8.2 Let H be the multigraph obtained from K3 by fattening two of its edges and replacing the third
by two parallel edges, and let J be a subdivision of H. Let n = |V (J)|. For all κ, τ ≥ 0 there exists
c ≥ 0 such that χ(G) ≤ c for every J-subdivision-free graph G with χ2n+7(G) ≤ τ and ω(G) ≤ κ.

Proof. We may assume that n ≥ 3. Let (T, r) be the rooted tree where T is a path of length
3n and r is one end of T . Let the vertices of T be t0, . . . , t3n where r = t0; thus L(T ) = {t3n}.
We write u = t3n. Choose ν such that K1

ν contains J . Choose c′ to satisfy 5.4 with c = 3τ and
d = n; we claim that setting c = c′ satisfies the theorem. For let G be J-subdivision-free and hence
K1
ν -subdivision-free, with χ2n+7(G) ≤ τ and ω(G) ≤ κ, and suppose that χ(G) > c′, By 5.4, there is

a pineapple tree
(T, r, ((Xv, Yv) : v ∈ V (T ) \ L(T )), (Cv : v ∈ L(T )))

in G, such that

• χ(Cu) > cτ ; and

• for every aligned triple (u, v, w) every vertex in Xu
v has a neighbour in Yw.

For 0 ≤ i < 3n let Xi = Xti and Yi = Yti . We may assume that every vertex in Xi has a neighbour
in Cu, because any other vertices in Xi may be removed from Xi (thus Xti = Xt3n

ti
in the earlier

notation). Consequently for all i, j with 0 ≤ i < j < 3n, every vertex in Xi has a neighbour in Yj .
By 8.1, there exist x, x′, x′′ ∈ X0, pairwise at G-distance at least n, such that every two of them

are joined by a path with interior in Cu in which the third has no neighbours. Now for 1 ≤ i < 3n,
let R(xx′) be the set of i ∈ {1, . . . , 3n− 1} such that there is a path between x, x′ with interior in Yi
containing no neighbour of x′′; and define (xx′′) and R(x′x′′) similarly. It follows that since x, x′, x′′

all have neighbours in Yi and G[Yi] is connected, each value of i ∈ {1, . . . , 3n− 1} belongs to at least
two of R(xx′), R(xx′′), R(x′x′′). Consequently there exists I ⊆ {1, . . . , 3n−1} with |I| = n such that
I is a subset of one of R(xx′), R(xx′′), R(x′x′′), say R(xx′′); and since |{1, . . . , 3n− 1} \ I| = 2n− 1,
there exists J ⊆ {1, . . . , 3n − 1} \ I with |J | = n such that J is a subset of one of R(xx′), R(x′x′′),
say R(x′x′′). As in the proof of 6.4, there is a banana consisting of n paths with ends x, x′′, one path
with interior in each of the sets Yi(i ∈ I); and similarly there is a banana with ends x′, x′′ with the
interiors of its paths in the sets Yi(i ∈ J). The union of these two bananas is induced.

To obtain a subdivision of J , we need to add to this union two paths joining x, x′; and we will
obtain these, one with interior in Cu via 8.1, and one with interior in Y0. The first is immediate
from the definition of x, x′, x′′. For the second we use the fact that (X0, Y0) is a levelled pineapple.
Let z0 ∈ Y0 such that for some k, every vertex in Y0 is joined to z0 by a path of G[Y0] of length less
than k, and there is no path in G[X0 ∪ Y0] from z0 to X0 of length less than k. For 0 ≤ i ≤ k, let Li
be the set of vertices in X0 ∪ Y0 with G[X0 ∪ Y0]-distance i from z0. Thus Y0 = L0 ∪ · · · ∪ Lk−1 and
X0 = Yk. Now x, x′ both have neighbours in Lk−1, say y, y′ respectively, and since the G-distance
between x, x′ is at least n, it follows that 2k ≥ n, and in particular k > 1. Since G[L0 ∪ · · · ∪Lk−2] is
connected and y, y′ both have neighbours in it, there is an induced path between y, y′ with interior
in L0 ∪ · · · ∪ Lk−2, and which consequently contains no neighbours of x′′. Adding the edges xy and
x′y′ to this path gives the required path from x to x′. The subgraph consisting of the two bananas
and these two paths is induced, and isomorphic to a subdivision of H. Since x, x′, x′′ pairwise have
distance at least n, all these paths between pairs of x, x′, x′′ have length at least n; and so this same
subgraph is also isomorphic to a subdivision of J , a contradiction. This proves 8.2.
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9 Bigger widespread graphs

The same methods can be combined to prove that more complicated graphs are widespread. For
instance, in the proof of 1.13, all the limbs we used started from the root r, and all the limbs
eventually become disjoint. We are free to make the tree T bigger by adding more vertices to its
leaves, and extend the old limbs further to make new limbs, and add more limbs meeting the old
paths just in their new sections. By this process we can make not just one cycle as in 1.13, but any
multigraph each of whose blocks is such a cycle. We omit the details.

Can we make more 2-connected widespread graphs? Here is one construction. Take a path with
vertices v1- · · · -vk in order where k ≥ 4, fatten each edge, and add two more vertices a, b and edges
av1, av2, bvk−1, bvk and ab, making a multigraph H. We claim:

9.1 H is widespread.

Proof. We merely sketch the proof, since the result is such an oddity. Let J be a subdivision of
H. Let us proceed as in the proof of 7.2, with a subdivided 2-ary tree T ; but apply 5.4 to this
tree with c larger than zero, large enough that 8.1 can be applied. For each u ∈ L(T ), choose three
vertices xu, yu, zu ∈ Xu

r , such that for every two of them there is a path between them with interior
in Cu containing no neighbour of the third; and choose xu, yu, zu with G-distance at least n + 2.
Now because the limb of T from r to u has a final section W consisting of many vertices w each
with only one child, these vertices are incomparable with the other leaves of T , and so there are two
orthogonal bananas Bu, B

′
u in G, both with interior in the union of Yw(w ∈W ), and each with both

ends in {xu, yu, zu} (and joining distinct pairs from this set). This defines a banana path of length
two. Now we apply the method of 7.2; we generate longer and longer banana paths, starting from
the ones we just made of length two. The procedure of 7.2 has the convenient feature that the first
and last banana of every banana path it generates is a banana of one of the initial banana paths of
length two. So we may assume that we generate a k − 1-term banana path where the first banana
is Bu and the last is Bu′ for some u, u′ ∈ L(T ). Let Bu have ends xu, yu say. By choosing one path
from the banana B′u (not to be confused with Bu′), joining zu with one of xu, yu, and choosing one
path via 8.1 joining zu with the other of xu, yu, we obtain an induced path from xu to yu in which zu
is an internal vertex. Now do the same thing for u′, and then add a path joining zu, zu′ with interior
in Yr. This provides the induced subgraph which is a subdivision of J .
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