RANDOM GRAPHS FROM A BLOCK CLASS

COLIN MCDIARMID AND ALEXANDER SCOTT

Abstract. A block class is a class of graphs such that a graph is in the class if and only if each of its blocks is. We show that, as for trees, for most random \(n \)-vertex graphs in such a class, each vertex is in at most \((1 + o(1)) \log n / \log \log n\) blocks, and each path passes through at most \(5(n \log n)^{1/2}\) blocks. Further, these results remain true when we condition on the numbers of components and blocks, and on the list of blocks appearing; and if there are at most \(k\) blocks (where \(k = k(n) \to \infty\)) we may replace \(n\) by \(k\) to obtain improved bounds.

1. Introduction

A block in a graph is a maximal 2-connected subgraph or the subgraph formed by a bridge or an isolated vertex. (A bridge is an edge the deletion of which increases the number of components.) Call a class of graphs (always assumed to be closed under isomorphism) a block class when a graph \(G\) is in the class if and only if each block of \(G\) is in the class. For example, the class of all forests is a block class and more generally so is any minor-closed class of graphs with 2-connected excluded minors. A different example is the class of all graphs in which each block is a triangle.

In this paper, we are interested in typical properties of graphs from such a class, and in particular in the maximum number of blocks containing a given vertex, and the maximum number of blocks a path can pass through. For a connected graph \(G\), these are essentially properties of the block tree \(BT(G)\) of \(G\), which is the bipartite graph with a node \(x_v\) for each vertex \(v\) and a node \(y_B\) for each block \(B\), where \(x_v\) and \(y_B\) are adjacent if and only if \(v \in B\). (There is an alternative slimmer version of the block tree, in which vertices which are not cut-vertices are ignored.) If \(G\) is not necessarily connected, we let the block forest \(BF(G)\) be the disjoint union of the block trees of the components.

Given a class \(\mathcal{A}\) of graphs, for each positive integer \(n\) let \(\mathcal{A}_n\) denote the set of graphs in \(\mathcal{A}\) on vertex set \([n] := \{1, \ldots, n\}\). Also, let \(R_n \in_u \mathcal{A}\) mean that \(R_n\) is sampled uniformly from \(\mathcal{A}_n\). When we use this

Date: August 4, 2014.
notation we implicitly consider only integers n such that A_n is non-empty. We say that a sequence (E_n) of events holds with high probability (whp) if $P(E_n) \to 1$ as $n \to \infty$. Let T denote the class of trees, and let $T_n \in_u T$. It will be natural for us to compare the block tree $BT(R_n)$ and T_n.

We are interested in typical properties of R_n when A is a block class, or the connected graphs in a block class; and in particular we focus on degrees of nodes x_v and in long paths in $BT(R_n)$ or $BF(R_n)$. Our results, which we state in the next two subsections, are robust general inequalities, and they hold for example even when we specify precisely how often each possible block appears.

Consider briefly a related but distinct setting, where there are very different results. Suppose that our block class is the class of all series-parallel graphs or another ‘subcritical’ graph class, or it is the class of planar graphs, or another such class where we know the corresponding generating functions suitably well. In such cases, we may be able to deduce precise asymptotic results, for example about vertex degrees or the numbers and sizes of blocks, by using analytic techniques or by analysing Boltzmann samplers: see for example [2], [6], [8], [15], and for an authoritative overview of related work on random planar graphs and beyond see the recent article [14] by Marc Noy.

The main tools we use in our proofs are a tree-like graph \tilde{G} related to the block-tree of a graph G, and a corresponding tree T_G, together with a slight extension of Prüfer coding; these are discussed in the next section. The proofs of Theorem 1.1 and Theorem 1.2 are completed in Sections 3 and 4, and we make some brief concluding remarks in Section 5.

1.1. Block-degrees of vertices. First consider the number of blocks in G containing a vertex v, that is, the degree of the node x_v in the block tree $BT(G)$: let us call this number the block-degree of v, and denote it by $\tilde{d}_G(v)$. Observe that if G is a tree then $\tilde{d}_G(v)$ is just the degree $d_G(v)$ of v in G. Denote the maximum of the numbers $\tilde{d}_G(v)$ by $\tilde{\Delta}(G)$. Recall that, for $T_n \in_u T$, the maximum degree Δ satisfies

\begin{equation}
\Delta(T_n) \sim \log n / \log \log n \ \text{whp},
\end{equation}

see [13], [3]. Also, for any constant $c > 0$,

\begin{equation}
P(\Delta(T_n) \geq cn / \log n) = e^{-(c+o(1))n}.
\end{equation}

Both these results follow easily from considering Prüfer coding.
The following theorem says roughly that block degrees are no larger than those for a random tree T_n. In particular, if we sample R_n uniformly from the connected graphs in a block class, then the maximum block degree $\widetilde{\Delta}(R_n)$ is stochastically at most $\Delta(T_n)$, and so whp it is no more than about $\log n / \log \log n$. Further, the same result holds if we fix an n-vertex connected graph G in the class, and sample uniformly from the connected graphs with the same blocks as G; and indeed we can improve the bound if there are few blocks.

Theorem 1.1. Let \mathcal{A} be a block class of graphs and let \mathcal{C} be the class of connected graphs in \mathcal{A}.

(a) For $R_n \in_u \mathcal{C}$, the list of block degrees $(\tilde{d}_{R_n}(v) : v \in [n])$ is stochastically at most $(d_{T_n}(v) : v \in [n])$, where $T_n \in_u \mathcal{T}$ is a uniformly random tree on $[n]$; and in particular the maximum block degree $\widetilde{\Delta}(R_n)$ is stochastically at most $\Delta(T_n)$. These results continue to hold if we condition on the number of blocks, and on the list of blocks appearing.

(b) For $R_n \in_u \mathcal{A}$,

\begin{equation}
\widetilde{\Delta}(R_n) \leq (1 + o(1)) \log n / \log \log n \quad \text{whp},
\end{equation}

and for any constant $c > 0$

\begin{equation}
P[\widetilde{\Delta}(R_n) \geq cn / \log n] \leq e^{-(c+o(1))n}.
\end{equation}

These results continue to hold if we condition on the numbers of components and blocks, and on the list of blocks appearing; and further, if the number of blocks is at most $k = k(n)$ where $k(n) \to \infty$ as $n \to \infty$, then

\begin{equation}
\widetilde{\Delta}(R_n) \leq (1 + o(1)) \log k / \log \log k \quad \text{whp}.
\end{equation}

When we condition on an event as in this theorem, we assume implicitly that the conditioning event has positive probability. Thus in part (b), if there are j components and k blocks and the list of blocks is B_1, \ldots, B_k, then we are assuming that

\[\sum_{i=1}^{k} (v(B_i) - 1) = n - j. \]

For $R_n \in_u \mathcal{A}$ as in part (b), there is no detailed result on stochastic dominance like that for $R_n \in_u \mathcal{C}$ in part (a), see the comment following Lemma 3.2 below. Of course the inequality (5) implies the earlier inequality (3) since there can be at most $n - 1$ blocks. Theorem 1.1 will be deduced from more precise non-asymptotic results, Lemmas 3.1 and 3.2 below.
1.2. **Block length of paths.** Now we consider paths, and see that graphs in \(A \) are unlikely to contain any path which passes through many blocks (that is, any path which has edges in many different blocks). The **diameter** of a graph is the maximum distance between any two vertices in the same component.

For \(T_n \in_u T \), with probability near 1 the diameter is of order \(\sqrt{n} \) [16]: more exactly, for any \(\epsilon > 0 \) there are constants \(0 < c_1 < c_2 \) such that with probability at least \(1 - \epsilon \) the diameter is between \(c_1 \sqrt{n} \) and \(c_2 \sqrt{n} \). See [7] for a precise result on the maximum length of a path from a root vertex to another vertex (see also Theorem 4.8 of [5]). (For contrast, note that given \(\epsilon > 0 \) the diameter of a random planar graph \(R_n \) lies whp in the interval \((n^{\frac{1}{4}} - \epsilon, n^{\frac{1}{4}} + \epsilon) \), see [4].) Also, observe that for \(n \geq 2 \) the probability that \(T_n \) has diameter \(n - 1 \) (that is, \(T_n \) is a path) is \(\frac{n!}{(2^n)^{n-2}} = e^{-\frac{n}{2} + O(\log n)} \).

The following theorem shows in particular that, if we sample \(R_n \) uniformly from the connected graphs in a block class, then whp the block tree \(BT(R_n) \) has diameter at most \(5 \sqrt{n \log n} \). Further, the same result holds if we fix an \(n \)-vertex connected graph \(G \) in the class, and sample uniformly from the connected graphs with the same blocks as \(G \).

We conjecture that the extra factor \(\sqrt{\log n} \) (compared with the random tree \(T_n \)) could be replaced by any function tending to \(\infty \).

Theorem 1.2. Let \(A \) be a block class of graphs, and let \(R_n \in_u A \). Then whp the block forest \(BF(R_n) \) has diameter at most \(5 \sqrt{n \log n} \); and for each \(\epsilon > 0 \) the probability that \(BF(R_n) \) has diameter at least \(\epsilon n \) is \(e^{-\Omega(n)} \).

These results continue to hold if we condition on the numbers of components and blocks, and on the list of blocks appearing; and further if the number of blocks is at most \(k = k(n) \) where \(k(n) \to \infty \) as \(n \to \infty \), then whp the block forest \(BF(R_n) \) has diameter at most \(5 \sqrt{k \log k} \).

Observe that if the blocks in the class are of bounded size (for example in the block class \(\text{Ex}(C_4) \) of graphs with no minor \(C_4 \) each block has at most 3 vertices) then these results transfer easily from block trees or forests to \(R_n \) itself.

To prove Theorem 1.2 we give a precise non-asymptotic lemma, Lemma 4.4 below, from which the theorem will follow easily.

2. Trees and coding following Prüfer

Let \(C \) be the class of connected graphs in a block class. We shall show that \(C_n \) may be partitioned naturally into parts, such that in each part \(G \) each graph has the same family of \(k \) blocks (up to isomorphism),
and there is a bijection between G and $[n]^{k-1}$, similar to that in Prüfer coding, see for example the book by van Lint and Wilson [17]. The encoding that we use here is essentially the same as that introduced by Kajimoto [9].

Given a connected graph G on vertex set $V = [n]$ with k blocks, we will ‘explode’ G into a tree-like graph \tilde{G} rooted at vertex n. The graph \tilde{G} will contain vertex-disjoint copies of the blocks of G (plus one additional root vertex), joined together in a tree structure that indicates how the blocks are joined together in G. See the graphs H and \tilde{H} in Figure 1.

Informally, \tilde{G} is constructed as follows: we begin by taking vertex-disjoint copies B_1, \ldots, B_k of the k blocks of G and add an extra block containing the single vertex n. Thus we get one copy of a vertex for each block it belongs to, and an additional copy of n (so a vertex appears more than once if and only if it is a cutvertex or n). For each vertex i that occurs more than once, we let v_i be the copy of i in the block that lies closest to n in G. We give new labels to the other copies of i and refer to these as ‘ghost’ vertices. Finally, we join each vertex v_i to its corresponding ghost vertices.

More formally, we apply the following procedure:

- For each block B of G, let v_B be the vertex n if n is in B, and otherwise let v_B be the cut-vertex in B which separates B from vertex n. Let $Q_B = V(B) \setminus \{v_B\}$. Note that every vertex other than n appears in exactly one set Q_B, so the k sets Q_B partition $[n - 1]$.
- Relabel the blocks B as B_1, \ldots, B_k in some canonical order (say in increasing order of the largest vertex in Q_B). For each $i = 1, \ldots, k$, denote Q_{B_i} by Q_i and v_{B_i} by v_i (the vertices v_i need not be distinct). Additionally, set $Q_{k+1} = \{n\}$.
- For each $i = 1, \ldots, k$, add a new ‘ghost’ vertex g_i to Q_i, and add edges from g_i to the neighbours of v_i in B_i. We set $P_i = Q_i \cup \{g_i\}$, and set $P_{k+1} = \{n\}$. Thus the P_i partition $V(G) \cup \{g_1, \ldots, g_k\}$ and, for $i = 1, \ldots, k$, P_i induces a copy of B_i.
- Finally, we delete all edges between the sets P_i, and then add edges g_iv_i for each i.

Let \tilde{G} be the resulting graph, with vertex-partition $P_G = \{P_1, \ldots, P_{k+1}\}$.

The edges g_iv_i join up the P_i in a tree structure encoding the block structure of G. Observe that each edge g_iv_i is a bridge in \tilde{G}, and if we contract each of the edges g_iv_i we obtain the original graph G. If we start with \tilde{G} and contract each set P_i to a single node i then we form a tree on $[k + 1]$, which we denote by T_G. Note that if G has a path
Figure 1. Construction of \(\tilde{H} \) and \(T_H \) from \(H \). The graph \(H \) has three blocks, giving \(Q_1 = \{1\} \), \(Q_2 = \{2\} \), \(Q_3 = \{3, 4\} \) and \(v_1 = v_3 = 2 \), \(v_2 = 5 \). Note that in \(\tilde{H} \) the ghost vertices \(g_1 \) and \(g_3 \) are clones of 2, and \(g_2 \) is a clone of 5.

with edges in \(t + 1 \) distinct blocks then \(T_G \) has a path of length \(t \) (as edges in distinct blocks correspond to edges in distinct sets \(P_i \), which are contracted into distinct vertices of \(T_G \)).

Let \(C \) be the class of connected graphs in a block class. Let \(G \) be a (fixed) graph in \(C_n \), and suppose that \(G \) has \(k \geq 2 \) blocks. Let \(\mathcal{P}_G = \{P_1, \ldots, P_{k+1}\} \). Let the explosion class \(\mathcal{G}_G \) of \(G \) be the set of all connected graphs \(H \) on \([n]\) such that \(\mathcal{P}_H = \mathcal{P}_G \), and the induced graphs \(\tilde{H}[P_i] = \tilde{G}[P_i] \) for each \(i = 1, \ldots, k \). Then for each graph \(H \) in \(\mathcal{G}_G \), the blocks of \(G \) and \(H \) are the same up to isomorphism (although they may be attached to each other differently), and thus \(H \) must be in \(C_n \). Also, notice that if \(H \) is in \(\mathcal{G}_G \) and the trees \(T_H \) and \(T_G \) are the same, then the only differences between \(\tilde{H} \) and \(\tilde{G} \) are the choices of ‘external’ neighbours for the ghost vertices \(g_i \). Recall that \(v_i \) is the neighbour of \(g_i \) outside \(P_i \) in \(\tilde{G} \). If \(v_i \) is in \(P_j \) (and so \(v_i \) is in \(Q_j \)) then in \(\tilde{H} \) we may have any vertex in \(Q_j \) as neighbour of \(g_i \).

Further, suppose that we start from \(\mathcal{P}_G = \{P_1, \ldots, P_{k+1}\} \), and construct a graph \(K \) as follows. For each \(i = 1, \ldots, k \) we choose any neighbour \(u_i \) for \(g_i \) such that

- \(u_i \in P_j \) for some \(j \neq i \) and \(u_i \) is not a ghost vertex (that is, \(u_i \notin Q_j \)), and
- the graph obtained from \(K \) by contracting each \(P_i \) to a single node \(i \) is a tree \(T \) on \([k + 1]\).

Then the graph \(H \) obtained from \(K \) by contracting each newly added edge \(g_i u_i \) is in \(\mathcal{G}_G \), \(K \) is the tree-like graph \(\tilde{H} \) corresponding to \(H \), and \(T \) is the corresponding tree \(T_H \).
The distinct parts \(G \in \mathcal{C}_n \) partition \(\mathcal{C}_n \), and so it will suffice for us to fix one graph \(G \in \mathcal{C}_n \) where \(G \) has \(k \geq 2 \) blocks, and consider the part \(\mathcal{G}_G \). We shall see that there is a natural bijection between \(\mathcal{G}_G \) and \([n]^{k-1}\), obtained by a slight extension of Prüfer coding. Recall that the Prüfer coding of a labelled tree \(T \) is obtained by repeatedly deleting the leaf with smallest label and recording the label of its neighbour, repeating until two vertices remain; this gives a bijection between trees on \([n]\) and elements of \([n]^{n-2}\). Given a tree \(T \) on \([n]\) for some \(n \geq 2 \) let \(t = t(T) \in [n]^{n-2} \) denote its Prüfer codeword; and given \(t \in [n]^{n-2} \) let \(T = T(t) \) be the corresponding tree.

For a graph \(H \in \mathcal{G}_G \), let us consider the tree-like graph \(\tilde{H} \) and the tree \(T_H \) on \([k+1]\). We construct a codeword \(x_H = (x_1, \ldots, x_{k-1}) \in [n]^{k-1} \) as follows: if \(i \) is the leaf of \(T_H \) with smallest label, and \(j \) is the neighbour of \(i \) in \(T_H \), then record the neighbour of \(g_i \) in \(P_j \) and delete vertex \(i \); repeat until two vertices remain. Further, let \(f : [n] \to [k+1] \) be given by setting \(f(i) = j \) if vertex \(i \) is in \(P_j \). If \(x_H = (x_1, \ldots, x_{k-1}) \) then the Prüfer codeword \(t(T_H) \) is \((f(x_1), \ldots, f(x_{k-1}))\).

Just as Prüfer coding gives a bijection between trees on \([k+1]\) and vectors in \([k+1]^{k-1}\), so the map \(\tilde{H} \to x_H \) gives a bijection as required, between \(\mathcal{G}_G \) and \([n]^{k-1}\). Also, for each vertex \(j \) of \(H \), the number of blocks of \(H \) containing \(j \) is \(1 + a(j, x_H) \), where \(a(j, x) \) is the number of appearances of \(j \) in the vector \(x \), that is, the number of co-ordinates of \(x \) which are equal to \(j \).

For each \(j = 1, \ldots, k \) let \(w_j = |f^{-1}(j)| = |Q_j| = |P_j| - 1 \), and let \(w_{k+1} = 1 \) (thus, for \(j = 1, \ldots, k+1 \), \(w_j \) is the number of choices for the neighbour \(v_i \) of \(g_i \) in \(Q_j \), and \(\sum_j w_j = n \)). Let \(T \) be a tree on \([k+1]\), with corresponding codeword \(t = (t_1, \ldots, t_{k-1}) \in [k+1]^{k-1} \). Then by the above the number of graphs \(H \in \mathcal{G}_G \) with \(T_H = T \) is
\[
\prod_{i=1}^{k-1} w_{t_i} = \prod_{j=1}^{k+1} w_j^{a(j,t)} = \prod_{j=1}^{k+1} w_j^{d_r(j)-1}.
\]

Let \(n \geq 3 \). Consider a connected graph \(G \) with vertex set \(V = [n] \) and with \(k \geq 2 \) blocks, and with corresponding class \(\mathcal{G}_G \) as above. Let \(R \in \mathcal{G}_G \). Consider the corresponding tree-like graph \(\tilde{R} \) and tree \(T_R \). We shall identify the distributions of the extended Prüfer codeword \(x_R \in [n]^{k-1} \) corresponding to \(\tilde{R} \), and of the Prüfer codeword \(t(T_R) \in [k+1]^{k-1} \) corresponding to \(T_R \).

For \(x_R \) this is easy: for we have already noted that there is a bijection between the graphs in \(\mathcal{G}_G \) and the codewords, and so \(x_R \) is uniformly distributed over \([n]^{k-1}\). For \(t(T_R) \), let the random variable \(X \) take values in \([k+1]\), with \(\mathbb{P}[X = j] = w_j / \sum_{i=1}^{k+1} w_i \), and
Thus for each integer \(X \) let

\[
\text{Lemma 3.1. Let } \mathcal{C} \text{ be the class of connected graphs in a block class, and let } R_n \in_u \mathcal{C}. \text{ Then } (\tilde{d}_{R_n}(v) : v \in [n]) \text{ is stochastically at most } (d_{T_n}(v) : v \in [n]), \text{ where } T_n \in_u \mathcal{T} \text{ is a uniformly random tree on } [n].
\]

Indeed, let \(G \) be a fixed graph in \(\mathcal{C}_n \) with \(k \) blocks, let \(G_G \) be the explosion class of \(G \), and let \(R \in_u G_G \). Then \((\tilde{d}_R(v) : v \in [n]) \) is stochastically at most \((d_{T_n}(v) : v \in [n]) \). Further, for real \(s \geq 1 \),

\[
(7) \quad \mathbb{P}[\tilde{\Delta}(R) \geq s+1] \leq n \left(\frac{ek}{ns} \right)^s \leq k(e/s)^s.
\]

Proof. It suffices to prove the statements concerning \(R \in_u G_G \). Recall that \(x_R \in_u [n]^{k-1} \). The block-degrees \(\tilde{d}_R(j) \) of the vertices \(j \) of \(R \) satisfy

\[
(8) \quad (\tilde{d}_R(1), \ldots, \tilde{d}_R(n)) = (a(1, x_R) + 1, \ldots, a(n, x_R) + 1).
\]

Now let \(T \in_u T_n \). Recall that \(t = t(T) \in_u [n]^{n-2} \), and

\[
(d_T(1), \ldots, d_T(n)) = (a(1, t) + 1, \ldots, a(n, t) + 1).
\]

But \(k - 1 \leq n - 2 \), and so \((\tilde{d}_R(v) : v \in [n]) \) is stochastically at most \((d_{T_n}(v) : v \in [n]) \). Also, by (8), for each integer \(s > 0 \),

\[
\mathbb{P}[\tilde{d}_R(1) \geq s + 1] = \mathbb{P}[a(1, x_R) \geq s] = \mathbb{P}[\text{Bin}(k - 1, n^{-1}) \geq s] \\
\leq \left(\frac{k - 1}{s} \right) n^{-s} \leq \left(\frac{ek}{ns} \right)^s.
\]

Thus for each integer \(s \geq 1 \)

\[
\mathbb{P}[\tilde{\Delta}(R) \geq s + 1] \leq n(ek/ns)^s \leq k(e/s)^s.
\]

Finally, since \((e/x)^x \) is decreasing in \(x \) for \(x \geq 1 \) we may drop the assumption that \(s \) is integral, to obtain (7).

Lemma 3.1 proves part (a) of Theorem 1.1. The next lemma is a more detailed version of part (b) of that theorem, and will quickly yield that result.
Lemma 3.2. Let \mathcal{A} be a block class of graphs. Fix a graph $G \in \mathcal{A}_n$, with components G_1, \ldots, G_j for some $j \geq 1$, and with a total of k blocks. Let $\mathcal{B}(G)$ be the set of graphs in \mathcal{A}_n which have j components H_1, \ldots, H_j where $V(H_i) = V(G_i)$ and H_i has the same (up to isomorphism) list of k_i blocks as G_i (so $\sum_i k_i = k$). Let $R_n \in \mathcal{B}(G)$. Then, for each real $s \geq 1$ we have

$$\mathbb{P}[\tilde{\Delta}(R_n) \geq s + 1 | R_n \in \mathcal{B}(G)] \leq k(e/s)^s. \tag{9}$$

Life would have been tidier if there had been a detailed stochastic dominance result here corresponding to that in Lemma 3.1 - but unfortunately that is not the case. For example, let \mathcal{A} be the class of forests, let $n = 6$, let $G \in \mathcal{A}_6$ have two components both of which are paths of length 2, and let $R_n \in \mathcal{B}(G)$. Let \mathcal{P} be the increasing set in $\{0, 1, \ldots\}^6$ where $x \in \mathcal{P}$ when we can partition the set $[6]$ of co-ordinates into two 3-sets I and J such that both $\sum_{i \in I} x_i \geq 4$ and $\sum_{j \in J} x_j \geq 4$. Then the probability that the (block) degree sequence of R_n is in \mathcal{P} is 1, but the probability that the degree sequence of T_n is in \mathcal{P} is < 1, since for example T_n can be a star. Thus here (with $n = 6$) it is not true that $(d_{R_n}(v) : v \in [n])$ is stochastically at most $(d_{T_n}(v) : v \in [n])$.

Proof of Lemma 3.2. Let \mathcal{C} be the set of connected graphs in \mathcal{A}. For each $i = 1, \ldots, j$ let $W_i = V(G_i)$, and let \mathcal{D}_i be the set of graphs on W_i with the same list of k_i blocks as G_i (these graphs are in \mathcal{C}). Let \mathcal{E} be the set of graphs on $[n]$ with no edges between distinct sets W_i and W_i'. Then for a graph H on $[n]$, $H \in \mathcal{B}(G)$ iff $H \in \mathcal{E}$ and $H[W_i] \in \mathcal{D}_i$ for each i.

For each i, let S_i be uniformly distributed over the graphs on $[n_i]$ with the same list of blocks as G_i (these graphs are in \mathcal{C}). Then

$$\mathbb{P}(\tilde{\Delta}(R_n[W_i]) \geq s + 1 | R_n \in \mathcal{B}(G)) = \mathbb{P}(\tilde{\Delta}(S_i) \geq s + 1 | \{R_n[W_i] \in \mathcal{D}_i\} \cap \{R_n \in \mathcal{E}\}) \leq k_i(e/s)^s$$

by Lemma 3.1. Hence, by the union bound

$$\mathbb{P}(\tilde{\Delta}(R_n) \geq s + 1 | R_n \in \mathcal{B}(G)) \leq \sum_{i=1}^j \mathbb{P}(\tilde{\Delta}(R_n[W_i]) \geq s + 1 | R_n \in \mathcal{B}(G)) \leq \sum_{i=1}^j k_i(e/s)^s = k(e/s)^s$$

as required.

We may now complete the proof of Theorem 1.1.
Proof of Theorem 1.1. It suffices to establish the last sentence of part (b) of the theorem. Fix \(G \in \mathcal{A}_n \) with \(j \) components and \(k \) blocks. Let \(\mathcal{B} \) be the set of graphs in \(\mathcal{A}_n \) with \(j \) components and the same list of \(k \) blocks as \(G \). We shall show that for each \(s \geq 1 \) we have
\[
P[\tilde{\Delta}(R_n) \geq s + 1 \mid R_n \in \mathcal{B}] \leq k(e/s)^s.
\]
To see this, note that the left hand side above is a weighted average, over graphs \(H \in \mathcal{A}_n \) with \(j \) components and the same list of \(k \) blocks as \(G \), of the values
\[
P[\tilde{\Delta}(R_n) \geq s + 1 \mid R_n \in \mathcal{B}(G)].
\]
But by the last lemma each of these values is at most the right hand side of (10), and (10) follows.

Now set \(s + 1 = (1 + \epsilon) \log k/\log \log k \) to deduce (5), and \(s + 1 = cn/\log n \) to deduce (4).

\[\square\]

4. Path lengths

Let \(Q(t) \) denote the class of graphs \(G \) which have a path containing edges in at least \(t \) different blocks. Thus a forest is in \(Q(t) \) if and only if it has a path of length at least \(t \). We first consider connected graphs.

Lemma 4.1. Let \(C \) be the class of connected graphs in a block class, let \(G \) be a fixed graph in \(\mathcal{C}_n \) with \(k \) components, let \(\mathcal{G}_G \) be the explosion class of \(G \), and let \(R \in \mathcal{G}_G \). Then for each \(t \geq 0 \),
\[
P(R \in Q(t + 2)) \leq 2k^2e^{-\pi^2/(\pi + \pi t)}.
\]

In order to prove Lemma 4.1 we need two lemmas: the first preliminary lemma may well be known but we give a proof for completeness.

Lemma 4.2. Let \(2 \leq j \leq n \), and let \(X_1, \ldots, X_j \) be iid taking values in \([n]\). Then (a) the probability that \(X_1 \) is not repeated is at most \((1 - 1/n)^{j-1}\); and (b) the probability that \(X_1, \ldots, X_j \) are all distinct is at most \((n/j)^j\).

Proof. Denote \(\mathbb{P}(X_1 = i) \) by \(p_i \) for each \(i = 1, \ldots, n \).

(a) The probability that \(X_1 \) is not repeated is \(g(p) = \sum_{i=1}^{n} p_i (1 - p_i)^{j-1} \). Suppose first that \(j = 2 \). Then \(g(p) = 1 - \sum_{i=1}^{n} p_i^2 \leq 1 - 1/n \) since, as is well known, \(\sum_{i=1}^{n} p_i^2 \) is minimised when each \(p_i = 1/n \).

Now suppose that \(j \geq 3 \). Let \(f(x) = x(1 - x)^{j-1} \) for \(0 \leq x \leq 1 \). Then \(g(p) = \sum_{i=1}^{n} f(p_i) \). Let \(m \) be the maximum value of this quantity, achieved at \(q = (q_1, \ldots, q_n) \). Now \(f'(x) = (1-x)^{j-2}(1-jx) \), which is > 0 for \(0 < x < 1/j \), = 0 at \(x = 1/j \) and < 0 for \(1/j < x < 1 \). Also \(f''(x) = (j-1)(1-x)^{j-3}(2-jx) \), which is > 0 for \(0 < x < 2/j \).
Clearly each $q_i \in [0, 1)$. If $q_i > 1/j$ for some i then there is k with $q_k < 1/j$ (as $\sum_k q_k = 1$); increasing q_i and decreasing q_k slightly would then increase $g(q)$. We must therefore have $\max_i q_i \leq 1/j$, and so by (strict) convexity $g(q)$ is (uniquely) maximized when all the q_i take the same value, which must be $1/n$. Hence $m = (1 - 1/n)^{j-1}$, which completes the proof of (a).

(b) Consider any positive integer n. The result is trivially true for $j = 1$. Let $2 \leq j \leq n$ and suppose that it holds for $j - 1$. Let A_i be the event that none of X_2, \ldots, X_j are equal to i. Then by conditioning on X_1 and using the induction hypothesis, we find

$$\mathbb{P}(X_1, \ldots, X_j \text{ distinct}) = \sum_{i=1}^{n} \mathbb{P}(X_1 = i, A_i) \mathbb{P}(X_2, \ldots, X_j \text{ distinct}|A_i) \leq \sum_{i=1}^{n} \mathbb{P}(X_1 = i, A_i) \frac{(n-1)^{j-1}}{(n-1)^{j-1}} = \mathbb{P}(X_1 \text{ not repeated}) \frac{(n-1)^{j-1}}{(n-1)^{j-1}} \leq \left(\frac{n-1}{n}\right)^{j-1} \frac{(n-1)^{j-1}}{(n-1)^{j-1}} = \frac{(n)_j}{n^j}$$

as required. □

Lemma 4.3. Let $m \geq 3$ and let $w_1, \ldots, w_m > 0$. Let the random variable X take values in $[m]$, with $\mathbb{P}[X = j] = w_j / \sum_{i=1}^{m} w_i$. Let $X = (X_1, \ldots, X_{m-2})$ where X_1, \ldots, X_{m-2} are independent, each distributed like X. Consider the random tree $T(X)$ on $[m]$. For each integer $t \geq 1$,

$$\mathbb{E}[\text{number of paths of length } \geq t+1] \leq \binom{m}{2} e^{-(i)/m} \leq 2(m-1)^2 e^{-\frac{t^2}{2m}}.$$

Before we prove this lemma, let us note that it will yield Lemma 4.1. For let G have k blocks, and set $m = k + 1$ in the last lemma. Now recall from the end of Section 2 that, for a suitable choice of w_1, \ldots, w_m, T_R has the same distribution as $T(X)$. But if $H \in Q(t+2)$ then T_H has a path of length $t + 1$.

Proof. Consider any vector $x \in [m]^{m-2}$. If the path between vertices $m-1$ and m in $T(x)$ has length at least $t+1$ then the last t co-ordinates of x are distinct (this follows by considering the algorithm for Prüfer coding applied to a tree T on $[m]$: running the algorithm for as long as it removes leaves with labels from $[m-2]$, we are left with the path from $m - 1$ to m in T; the remaining t steps of the algorithm run
through the path, starting from the $m - 1$ end, and record the internal vertices of the path in order). Hence the probability that the path between vertices $m - 1$ and m in $T(X)$ has length at least $t + 1$ is at most the probability that the last t of the X_i are distinct, which is at most $(m)_t/m^t$ by Lemma 4.2. But

$$(m)_t/m^t = \prod_{i=0}^{t-1} (1 - i/m) \leq \exp \left(- \sum_{i=0}^{t-1} i/m \right) = e^{-\left(\frac{t}{m}\right)}.$$

Hence the expected number of paths in $T(X)$ of length at least $t + 1$ is at most

$$\left(\frac{m}{2}\right) e^{-\left(\frac{t}{m}\right)} \leq (m - 1)^2 e^{-\frac{t(t+1)}{2m}} \leq 2(m - 1)^2 e^{-\frac{t^2}{2m}},$$

since we may assume that $t \leq m$ and then $e^{\frac{t}{m}} \leq e^{\frac{1}{2}} < 2$.

The next lemma is a more detailed version of Theorem 1.2, and will quickly yield that result. It may be deduced from Lemma 4.1 just as Lemma 3.2 was deduced from Lemma 3.1.

Lemma 4.4. Let A be a block class of graphs. Fix a graph $G \in A_n$, with components G_1, \ldots, G_j for some $j \geq 1$, and with a total of k blocks. Let $B(G)$ be the set of graphs in A_n which have j components H_1, \ldots, H_j where $V(H_i) = V(G_i)$ and H_i has the same (up to isomorphism) list of k_i blocks as G_i (so $\sum_i k_i = k$). Let $R_n \in_n A$. Then for each $t \geq 0$,

$$(12) \quad \mathbb{P}(R_n \in Q(t + 2) \mid R_n \in B(G)) \leq 2k^2 e^{-\frac{t^2}{2(m+1)}}.$$

We may now complete the proof of Theorem 1.2, much as we did for Theorem 1.1.

Proof of Theorem 1.2. It suffices to establish the last sentence in the theorem. Fix $G \in A_n$ with j components and k blocks. Let B be the set of graphs in A_n with j components and the same list of k blocks as G. We shall show that for each $s \geq 1$ we have

$$(13) \quad \mathbb{P}(R_n \in Q(t + 2) \mid R_n \in B) \leq 2k^2 e^{-\frac{s^2}{4(1+t)}}.$$

To see this, note that the left hand side above is a weighted average, over graphs $H \in A_n$ with j components and the same list of k blocks as G, of the values

$$\mathbb{P}(R_n \in Q(t + 2) \mid R_n \in B(H)).$$

But by the last lemma each of these values is at most the right hand side of (13), and (13) follows.
Observe that if $BF(H)$ has a path of length t then $H \in Q(t/2)$. Thus

$$
\mathbb{P}(BF(R_n) \text{ has a path of length } \geq a((k+1) \log k)^{\frac{1}{2}} + 4 \mid R_n \in \mathcal{B})
\leq \mathbb{P}(R_n \in Q((a/2)((k+1) \log k)^{\frac{1}{2}} + 2) \mid R_n \in \mathcal{B})
\leq 2k^2e^{-(a^2/8)\log k} = o(1) \text{ if } a > 4.
$$

Further, since $k + 1 \leq n$,

$$
\mathbb{P}(BF(R_n) \text{ has diameter } \geq \epsilon n \mid R_n \in \mathcal{B})
\leq \mathbb{P}(R_n \in Q(\frac{\epsilon n}{3} + 2) \mid R_n \in \mathcal{B})
\leq 2n^2e^{-\frac{\epsilon^2n}{18}}
$$

for $n > 12/\epsilon$ (so that $2(\frac{\epsilon n}{3} + 2) \leq \epsilon n$).

\begin{flushright}
\Box
\end{flushright}

5. Concluding remarks

We have seen that for a random graph R_n from a block class (or from the connected graphs in such a class), the maximum number of blocks containing a vertex is roughly no more than for a random tree T_n, and the maximum number of blocks through which a path may pass is at most a factor $O(\sqrt{\log n})$ times the maximum length of a path in T_n.

Let us briefly consider connectedness. A minor-closed class is a block class if and only if it is addable; that is, each excluded minor is 2-connected, see [11]. Indeed, any block class \mathcal{A} containing the single edge K_2 is bridge-addable, and so by [12] the probability that $R_n \in u \mathcal{A}$ is connected is at least $1/e$, and indeed $\lim \inf \mathbb{P}(R_n \text{ is connected }) \geq e^{-\frac{1}{2}}$, see [1, 10]. However, consider the block class \mathcal{A} in which the only allowed block is the triangle C_3: the set \mathcal{A}_n is non-empty for each $n \geq 5$, but for each even n each graph in \mathcal{A}_n is disconnected.

Acknowledgement Thanks to Oliver Riordan for useful discussions.

REFERENCES

1 Department of Statistics 1 South Parks Road Oxford, OX1 3TG United Kingdom; 2 Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK