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Abstract

For any graph H, let Forb∗(H) be the class of graphs with no induced
subdivision of H. It was conjectured in [A.D. Scott, Induced trees in
graphs of large chromatic number, Journal of Graph Theory, 24:297–
311, 1997] that, for every graph H, there is a function fH : N → R
such that for every graph G ∈ Forb∗(H), χ(G) ≤ fH(ω(G)). We prove
this conjecture for several graphs H, namely the paw (a triangle with
a pendant edge), the bull (a triangle with two vertex-disjoint pendant
edges), and what we call a “necklace,” that is, a graph obtained from
a path by choosing a matching such that no edge of the matching
is incident with an endpoint of the path, and for each edge of the
matching, adding a vertex adjacent to the ends of this edge.

1 Introduction

All graphs in this paper are finite and simple. A clique (respectively: stable
set) in a graph G is a set of pairwise adjacent (respectively: non-adjacent)
vertices in G. Given a graph G, we denote by ω(G) the clique number of
G (i.e. the maximum number of vertices in a clique in G), and we denote
by χ(G) the chromatic number of G. A class G of graphs is said to be
hereditary if it is closed under isomorphism and taking induced subgraphs.
A hereditary class G is said to be χ-bounded if there is a non-decreasing
function f : N → R such that χ(G) ≤ f(ω(G)) for all graphs G ∈ G; under
such circumstances, we say that the class G is χ-bounded by f , and that f
is a χ-bounding function for G. Given a graph H, we say that a graph G is
an H∗ provided that G is a subdivision of the graph H (in particular, the
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graph H itself is an H∗). Given a graph H, we say that a graph G is H-free
if it does not contain H as an induced subgraph, and we say that G is
H∗-free if it does not contain any subdivision of H as an induced subgraph.
We denote by Forb(H) the class of all H-free graphs, and we denote by
Forb∗(H) the class of all H∗-free graphs. Clearly, Forb(H) and Forb∗(H)
are hereditary classes for every graph H.

Gyárfás [4] and Sumner [16] independently conjectured that for any
tree T , the class Forb(T ) is χ-bounded. The conjecture has been proven for
trees of radius 2 and a few trees of larger radius (see [5], [6], [7], [8], [14]).
Scott [14] proved a weakened (“topological”) version of the conjecture: for
any tree T , the class Forb∗(T ) is χ-bounded. (Since every forest is an in-
duced subgraph of some tree, this result immediately implies that Forb∗(F )
is χ-bounded for every forest F .) Scott further conjectured that for any
graph H, the class Forb∗(H) is χ-bounded; this generalized a still-open
conjecture of Gyárfás [5], that the class Forb∗(Cn) is χ-bounded for every
n, where Cn is the chordless cycle of length n (see also [15]). The aim of
this paper is to investigate Scott’s conjecture for several particular graphs H.

The paw is the graph with vertex-set {x1, x2, x3, y} and edge-set
{x1x2, x2x3, x3x1, x1y}. In section 2, we give a structural description
of the class Forb∗(paw), which we then use to compute the best possible
χ-bounding function for the class (see 2.2). Together with previously
known results, this theorem implies that the class Forb∗(H) is χ-bounded
for all graphs H on at most four vertices. Indeed, if H is a forest, then
the result follows from the result of Scott [14] mentioned above. If H is
the triangle (i.e. the complete graph on three vertices), then Forb∗(H) is
the class of all forests. If H is the graph with vertex-set {x, y, z, w} and
edge-set {xy, yz, zx}, then any graph G in Forb∗(H) can be partitioned into
a forest and a graph whose clique number is smaller than ω(G) (indeed,
take any vertex v of G, and note that the subgraph of G induced v and its
non-neighbors is a forest, while the subgraph of G induced by the neighbors
of v has clique number smaller than ω(G)), and consequently, Forb∗(H) is
χ-bounded by the function f(n) = 2n. If H is the diamond (i.e. the graph
obtained by deleting an edge from the complete graph on four vertices),
then the result follows from a theorem of Trotignon and Vušković, see
[17]. If H is the complete graph on four vertices, Scott’s conjecture follows
from the work of several authors, see [10]. Finally, if H is the square (i.e.
the chordless cycle on four vertices), then Forb∗(H) is the famous class of
chordal graphs, see [13].

The bull is the graph with vertex-set {x1, x2, x3, y1, y2} and edge-set
{x1x2, x2x3, x3x1, x1y1, x2y2}. In section 3, we prove a decomposition
theorem for bull∗-free graphs, see 3.1. In section 4, we use this theorem to
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prove that the class Forb∗(bull) is χ-bounded by the function f(n) = n2,
see 4.4. We note that this is the best possible polynomial χ-bounding
function for Forb∗(bull) in the following sense: there do not exist positive
constants c, r ∈ R, with r < 2, such that Forb∗(bull) is χ-bounded by the
function f(n) = cnr. As Forb∗(bull) contains all graphs with no stable set
of size three, this follows immediately from a result of Kim [9] that the

Ramsey number R(t, 3) has order of magnitude t2

log t (in fact, it is enough

that R(t, 3) = t2−o(1), which also follows from an earlier result of Erdős [3]).

Finally, in section 5, we consider graphs that we call “necklaces.” A
necklace is a graph obtained from a path by choosing a matching such that
no edge of the matching is incident with an endpoint of the path, and for
each edge of the matching, adding a vertex adjacent to the ends of this edge
(see section 5 for a more formal definition). We prove that for any given
necklace N , the class Forb∗(N) is χ-bounded by an exponential function
(see 5.2). We observe that the bull is a special case of a necklace, and so
the results of section 5 imply that Forb∗(bull) is χ-bounded; however, the
χ-bounding function for Forb∗(bull) from 4.4 is polynomial, whereas the
one from 5.2 is exponential. Further, we note that for all positive integers
m, the m-edge path, denoted by Pm+1, is a necklace; furthermore, since
any subdivision of an m-edge path contains an m-edge path as an induced
subgraph, we know that Forb(Pm+1) = Forb∗(Pm+1). Thus, 5.2 implies a
result of Gyárfás (see [5]) that the class Forb(Pm+1) is χ-bounded by an
exponential function (we note, however, that our χ-bounding function is
faster growing than that of Gyárfás).

We end this section with some terminology and notation that will be
used throughout the paper. The vertex-set of a graph G is denoted by VG.
Given a vertex v ∈ VG, ΓG(v) is the set of all neighbors of v in G. The
complement of G is denoted by G. Given a set S ⊆ VG, the subgraph of G
induced by S is denoted by G[S]; if S = {v1, ..., vn}, we sometimes write
G[v1, ..., vn] instead of G[S]. Given a set S ⊆ VG, we denote by G r S
the graph obtained by deleting from G all the vertices in S; if S = {v},
we often write G r v instead of G r S. Given a vertex v ∈ VG and a set
A ⊆ VG r {v}, we say that v is complete (respectively: anti-complete) to
A provided that v is adjacent (respectively: non-adjacent) to every vertex
in A; we say that v is mixed on A provided that v is neither complete
nor anti-complete to A. Given disjoint sets A,B ⊆ VG, we say that A is
complete (respectively: anti-complete) to B provided that every vertex in A
is complete (respectively: anti-complete) to B.
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2 Subdivisions of the Paw

In this section, we give a structure theorem for paw∗-free graphs (2.1), and
then use it to derive the fact that Forb∗(paw) is χ-bounded by a linear
function (2.2). We first need a definition: a graph is said to be complete
multipartite if its vertex-set can be partitioned into stable sets, pairwise
complete to each other.

2.1. A graph G is paw∗-free if and only if each of its components is either
a tree, a chordless cycle, or a complete multipartite graph.

Proof. The ‘if’ part is established by routine checking. For the ‘only
if’ part, suppose that G is a connected paw∗-free graph. Our goal is
to show that if G is both triangle-free and square-free, then G is either
a tree or a chordless cycle, and otherwise G is a complete multipartite graph.

Suppose first that G is both triangle-free and square-free. If G con-
tains no cycles, then it is a tree, and we are done. So assume that G does
contain a cycle, and let v0 − v1 − ... − vk−1 − v0 (with the indices in Zk)
be a cycle in G of length as small as possible; note that the minimality
of k implies that this cycle is induced, and the fact that G is triangle-free
and square-free implies that k ≥ 5. If VG = {v0, v1, ..., vk−1}, then G is
a chordless cycle, and we are done. So assume that {v0, ..., vk−1} $ VG.
Since G is connected, there exists a vertex v ∈ VG r {v0, ..., vk−1} that has
a neighbor in {v0, ..., vk−1}. Note that v must have at least two neighbors
in {v0, v1, ..., vk−1}, for otherwise, G[v, v0, v1, ..., vk−1] would be a paw∗. By
symmetry, we may assume that for some i ∈ Zk r {0}, v is complete to
{v0, vi} and anti-complete to {v1, ..., vi−1} in G. By the minimality of k, the
cycle v − v0 − v1 − ...− vi − v is of length at least k, and so it follows that
either i = k − 2 or i = k − 1. But then v − vi − vi+1 − ...− v0 − v is a (not
necessarily induced) cycle of length at most four in G, which contradicts
the fact that G is triangle-free and square-free.

It remains to consider the case when G contains a triangle or a square. Let
H be an inclusion-wise maximal complete multipartite induced subgraph of
G such that H contains a cycle. (The existence of such a graph H follows
from the fact that a triangle or a square is itself a complete multipartite
graph that contains a cycle.) If G = H, then G is complete multipartite,
and we are done. So assume that this is not the case. Since G is connected,
there exists a vertex v ∈ VG r VH with a neighbor in VH .

Let H1, H2, ...,Hk be a partition of VH into stable sets, pairwise complete
to each other. First, we claim that v is not mixed on any set among
H1, ...,Hk. Suppose otherwise. By symmetry, we may assume that v is
adjacent to some h1 ∈ H1 and non-adjacent to some h′1 ∈ H1. Then v is

4



anti-complete to H2 ∪ ... ∪ Hk, for if v had a neighbor h ∈ H2 ∪ ... ∪ Hk,
then G[v, h, h1, h

′
1] would be a paw. Now, since H contains a cycle, we

know that |H2 ∪ ...∪Hk| ≥ 2; fix distinct vertices h, h′ ∈ H2 ∪ ...∪Hk. But
if hh′ is an edge then G[h, h′, h1, v] is a paw, and if hh′ is a non-edge then
G[h, h′, h1, h

′
1, v] is a paw∗. This proves our claim. Now v is anti-complete

to at least two sets among H1, ...,Hk (say H1 and H2), for otherwise,
G[VH ∪ {v}] would contradict the maximality of H. Let h ∈ H3 ∪ ... ∪Hk

be some neighbor of v, and fix h1 ∈ H1 and h2 ∈ H2. Then G[h1, h2, h, v] is
a paw, which is a contradiction. This completes the argument.

We note that our structure theorem for paw∗-free graphs (2.1) is similar
to the structure theorem for paw-free graphs (due to Olariu [12]), which
states that a graph G is paw-free if and only if every component of G is
either triangle-free or complete multipartite. In fact, our proof of 2.1 could
be slightly shortened by using [12], but in order to keep the section self-
contained, we include an independent proof. We now turn to proving that
the class Forb∗(paw) is χ-bounded by a linear function.

2.2. Forb∗(paw) is χ-bounded by the function f : N→ R defined by f(2) = 3
and for all n 6= 2, f(n) = n.

Proof. LetG ∈ Forb∗(paw). We may assume thatG is connected (otherwise,
we consider the components of G separately). By 2.1 then, G is either a tree,
or a chordless cycle, or a complete multipartite graph, and in each of these
cases, we have that χ(G) = 3 or χ(G) = ω(G).

It is easy to see that the χ-bounding function given in 2.2 is the best possible
for the class Forb∗(paw). Indeed, on the one hand, we have that ω(G) ≤
χ(G) for every graph G, and on the other hand, there exist paw∗-free graphs
with clique number 2 and chromatic number 3 (any chordless cycle of odd
length greater than three is such a graph.)

3 Decomposing Bull∗-Free Graphs

In this section, we prove a decomposition theorem for bull∗-free graphs. We
begin with some definitions. Let G be a graph. A hole in G is an induced
cycle in G of length at least four. An anti-hole in G is an induced subgraph
of G whose complement is a hole in G. We often denote a hole (respectively:
anti-hole) H in G by h0 − h1 − ... − hk − h0, where VH = {h0, h1, ..., hk}
and h0 − h1 − ... − hk − h0 is an induced cycle in G (respectively: in G).
The length of a hole or anti-hole is the number of vertices that it contains.
An odd hole (respectively: odd anti-hole) is a hole (respectively: anti-hole)
of odd length. Given a vertex v ∈ VG and a set S ⊆ VG r {v}, we say that
v is a center (respectively: anti-center) for S or for G[S] provided that v
is complete (respectively: anti-complete) to S. We say that G is basic if it

5



contains neither an odd hole with an anti-center nor an odd anti-hole with
an anti-center. A non-empty set S $ VG is said to be a homogeneous set in
G provided that no vertex in VGrS is mixed on S; a homogeneous set S in
G is said to be proper if |S| ≥ 2. We say that a vertex v ∈ VG is a cut-vertex
of G provided that G r v has more components than G. Our goal in this
section is to prove the following decomposition theorem.

3.1. Let G ∈ Forb∗(bull). Then either G is basic, or it contains a proper
homogeneous set or a cut-vertex.

We will need the following result, which is an immediate consequence of 1.4
from [2].

3.2 (Chudnovsky and Safra [2]). Let G ∈ Forb∗(bull). If G contains an odd
hole with a center and an anti-center, or an odd anti-hole with a center and
an anti-center, then G has a proper homogeneous set.

The proof of 3.1 proceeds as follows. We assume that a graph G ∈
Forb∗(bull) is not basic, and then we consider two cases: when G contains
an odd anti-hole of length at least seven with an anti-center; and when G
contains an odd hole with an anti-center. In the former case, we show that
G contains a proper homogeneous set (see 3.3 below). The latter case is
more difficult, and our approach is to prove a series of lemmas that describe
how vertices that lie outside of our odd hole “attach” to this odd hole and to
each other, and then to use these results to prove that G contains a proper
homogeneous set or a cut-vertex (see 3.8). Since an anti-hole of length five
is also a hole of length five, these two results (3.3 and 3.8) imply 3.1.

3.3. Let G ∈ Forb∗(bull), let h0 − h1 − ... − hk−1 − h0 (with k ≥ 7 and
the indices in Zk) be an odd anti-hole in G, and set H = {h0, h1, ..., hk−1}.
Assume that G contains an anti-center for H. Then G contains a proper
homogeneous set.

Proof. We may assume that G is connected, for otherwise, G contains
a proper homogeneous set and we are done. Since G is connected and
contains an anti-center for H, there exist adjacent a, a′ ∈ VG rH such that
a is anti-center for H and a′ has a neighbor in H. Our goal is to show that
a′ is a center for H, for then we are done by 3.2.

First, we claim that there is no index i ∈ Zk such that a′ is anti-
complete to {hi, hi+1}. Suppose otherwise. Since a′ has a neighbor in H,
we may assume by symmetry that a′ is adjacent to h0 and anti-complete to
{h1, h2}. But then if a′h4 is an edge, then G[h0, h1, h4, a, a

′] is a bull; and
if a′h4 is a non-edge, then G[h0, h1, h2, h4, a

′] is a bull. This proves our claim.

Next, since H has an odd number of vertices, there exists some i ∈ Zk
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such that a′ is either complete or anti-complete to {hi, hi+1}; by what we
just showed, the latter is impossible, and so the former must hold. Now,
if a′ is not a center for H, then we may assume by symmetry that a′ is
non-adjacent to h0 and complete to {h1, h2}; but then a′hk−1 is an edge
(because a′ is not anti-complete to {hk−1, h0}), and so G[h0, h2, hk−1, a, a

′]
is a bull. Thus, a′ is a center for H, which completes the argument.

For the remainder of this section, we focus on graphs in Forb∗(bull) that
contain an odd-hole with an anti-center. We begin with some definitions.
Let G be a graph, let h0 − h1 − ...− hk−1 − h0 (with k ≥ 5 and the indices
in Zk) be a hole in G, let H = {h0, h1, ..., hk−1}, and let v ∈ VG rH. Then
for all i ∈ Zk:

• v is a leaf for H at hi if v is adjacent to hi and anti-complete to
H r {hi};

• v is a star for H at hi if v is complete to H r {hi} and non-adjacent
to hi;

• v is an adjacent clone for H at hi if v is complete to {hi−1, hi, hi+1}
and anti-complete to H r {hi−1, hi, hi+1};

• v is a non-adjacent clone for H at hi if v is complete to {hi−1, hi+1}
and anti-complete to H r {hi−1, hi+1};

• v is a clone for H at hi if v is an adjacent clone or a non-adjacent
clone for H at hi.

We say that v is a leaf (respectively: star, adjacent clone, non-adjacent clone,
clone) for H if there exists some i ∈ Zk such that v is a leaf (respectively:
star, adjacent clone, non-adjacent clone, clone) for H at hi. If |H| = k is
odd, then we say that a vertex v ∈ VG rH is appropriate for H or for G[H]
provided that one of the following holds:

• v is a center for H;

• v is an anti-center for H;

• v is a leaf for H;

• v is an adjacent clone for H;

• v is a non-adjacent clone for H and |H| = 5;

• v is a star for H and |H| = 5.

3.4. Let G ∈ Forb∗(bull), let h0 − h1 − ...− hk−1 − h0 (with k ≥ 5 and the
indices in Zk) be an odd hole in G, and set H = {h0, h1, ..., hk−1}. Then
every vertex in VG rH is appropriate for H.
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Proof. Fix v ∈ VG rH. We may assume that v has at least two neighbors
and at least one non-neighbor in H, for otherwise, v is a center, an
anti-center, or a leaf for H, and we are done.

Suppose first that v has two adjacent neighbors in H. Fix a
path hi − hi+1 − ... − hj of maximum length in G[H ∩ ΓG(v)]; set
P = {hi, hi+1, ..., hj}. Note first that |P | ≥ 3, for otherwise, we would
have that j = i + 1, and then G[v, hi−1, hi, hi+1, hi+2] would be a bull.
Now, we claim that v is anti-complete to H r P . Suppose otherwise.
Fix hl ∈ H r P such that vhl is an edge; by the maximality of P ,
we know that l /∈ {i − 1, j + 1}. Since neither G[v, hi−1, hi, hi+1, hl] nor
G[v, hj−1, hj , hj+1, hl] is bull, we get that l = i−2 = j+2, and consequently,
that |H| = |P |+ 3. Since |H| is odd and |P | ≥ 3, this means that |P | ≥ 4,
and so G[v, hi−1, hi, hi+1, hi+3] is a bull, which is a contradiction. It follows
that v is anti-complete to H r P . Now, if |P | = 3, then v is an adjacent
clone for H at hi+1, and we are done. So assume that |P | ≥ 4. Since
G[v, hi−1, hi, hi+1, hi+3] is not a bull, hi+3 is adjacent to hi−1, and so
|H| = 5 and v is a star for H at hi−1.

Suppose now that H ∩ ΓG(v) is a stable set. Fix distinct i, j ∈ Zk

such that v is complete to {hi, hj} and the path hi − hi+1 − ... − hj is as
short as possible (in particular, v is non-adjacent to the interior vertices of
the path). Since the neighbors of v in H are pairwise non-adjacent, and v
is complete to {hi, hj}, we know that v is anti-complete to {hi−1, hj+1}.
Since G[v, hi−1, hi, hi+1, ..., hj , hj+1] is not a bull∗, this implies that either
hi−1 = hj+1, or hi−1hj+1 is an edge, and in either case, v is anti-complete
to Hr {hi, hj}. We now know that the path hj −hj+1− ...−hi has at most
three edges and that v is adjacent to the ends of this path and non-adjacent
to its interior vertices. The minimality of the path hi − hi+1 − ...− hj then
implies that |H| ≤ 6. Since |H| is odd and |H| ≥ 5, it follows that |H| = 5.
The minimality of the path hi − hi+1 − ... − hj now implies that v is a
non-adjacent clone for H at hi+1. This completes the argument.

Given a graph G with a hole h0 − h1 − ...− hk−1 − h0 (with k ≥ 5 and the
indices in Zk), and setting H = {h0, h1, ..., hk−1}, we let AH denote the set
of all anti-centers for H in G, and for all i ∈ Zk:

• we let Li
H denote the set of all leaves for H at hi;

• we let N i
H denote the set of all non-adjacent clones for H at hi;

• we let Ci
H denote the set of all adjacent clones for H at hi;

• we let Si
H denote the set of all stars for H at hi.
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3.5. Let G ∈ Forb∗(bull), let h0 − h1 − ...− hk−1 − h0 (with k ≥ 5 and the
indices in Zk) be an odd hole in G, and set H = {h0, h1, ..., hk−1}. Assume
that G contains an anti-center for H, and that G does not contain a proper
homogeneous set. Then there exists an index i ∈ Zk such that all of the
following hold:

(i) Li
H 6= ∅, and for all j ∈ Zk r {i}, Lj

H = ∅;

(ii) AH is not anti-complete to Li
H ;

(iii) AH is anti-complete to VG r (AH ∪ Li
H).

Proof. First, since G does not contain a proper homogeneous set and
|VG| ≥ 3, we know that G is connected. Further, since G does not contain a
proper homogeneous set and contains an anti-center for H, 3.2 implies that
G does not contain a center for H.

Now, we claim that every vertex in VG r (H ∪ AH) that has a neighbor in
AH is a leaf for H. Suppose otherwise; fix adjacent v ∈ VG r (H ∪ AH)
and a ∈ AH such that v is not a leaf for H. Since v is appropriate for
H (by 3.4), and since v is not a leaf, or a center, or an anti-center for H,
we know that v is either a star, or an adjacent clone, or a non-adjacent
clone for H. Suppose first that v is a star or an adjacent clone for H.
Then there exists an index i ∈ Zk such that v is complete to {hi, hi+1} and
non-adjacent to hi+2; but now G[a, v, hi, hi+1, hi+2] is a bull. Suppose now
that v is a non-adjacent clone for H. Then there exists an index i ∈ Zk

such that v is complete to {hi−1, hi+1} and anti-complete to {hi, hi+2}; but
now G[a, v, hi−1, hi, hi+1, hi+2] is a bull∗. This proves our claim.

Since G is connected and AH is non-empty, what we just showed im-
plies that there exists an index i ∈ Zk such that Li

H is non-empty and is

not anti-complete to AH . The only thing left to show is that Lj
H = ∅ for all

j ∈ Zk r {i}. Suppose otherwise. Fix some j ∈ Zk r {i} such that Lj
H 6= ∅.

First, note that Lj
H is complete to Li

H , for if some li ∈ Li
H and lj ∈ Lj

H

were non-adjacent, G[H ∪ {li, lj}] would be a bull∗. By symmetry and the
fact that |H| is odd, we may assume that the path hi − hi+1 − ... − hj is
shorter than the path hj − hj+1 − ... − hi; since |H| ≥ 5, this means that
i − 1 /∈ {j, j + 1}. Note furthermore that j 6= i + 1, for otherwise, we fix
some li ∈ Li

H and li+1 ∈ Li+1
H and note that G[li, li+1, hi−1, hi, hi+1, hi+2] is

a bull∗. Next, fix an anti-center a for H such that a is adjacent to some
li ∈ Li

H . Fix lj ∈ Lj
H . But then if alj is an edge, G[a, li, lj , hi, hj ] is a bull;

and if alj is a non-edge, then G[a, li, lj , hi−1, hi, hi+1, ..., hj−1, hj ] is a bull∗.
This completes the argument.

3.6. Let G ∈ Forb∗(bull), let h0 − h1 − ... − hk−1 − h0 (with k ≥ 5 and
the indices in Zk) be an odd hole in G, and set H = {h0, h1, ..., hk−1}.
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Assume that G contains an anti-center for H, and that G does not contain
a proper homogeneous set. Then there exists an index i ∈ Zk such that
VG = H ∪ AH ∪ Li

H ∪ Si
H ∪

⋃
j∈Zk

(N j
H ∪ C

j
H), where Li

H is non-empty, Li
H

is anti-complete to Si
H , and if k ≥ 7, then Si

H and
⋃

j∈Zk
N j

H are empty.

Proof. If k ≥ 7, then the result is immediate from 3.2, 3.4, and
3.5. So assume that k = 5. By 3.2, 3.4, and 3.5, we know that
VG = H ∪ AH ∪ Li

H ∪
⋃

j∈Z5
(Sj

H ∪ N
j
H ∪ C

j
H), with Li

H 6= ∅, for some

i ∈ Z5. We need to show that Sj
H = ∅ for all j ∈ Z5 r {i}, and that Li

H is
anti-complete to Si

H .

We first show that Sj
H = ∅ for all j ∈ Z5 r {i}. By symmetry, it

suffices to show that Si+1
H and Si+2

H are empty. Fix some li ∈ Li
H .

Suppose first that Si+1
H 6= ∅, and fix si+1 ∈ Si+1

H . But then if si+1li is an
edge, then G[li, si+1, hi−2, hi, hi+1] is a bull; and if si+1li is a non-edge,
then G[li, si+1, hi−1, hi, hi+2] is a bull. Thus, Si+1

H = ∅. Suppose now
that Si+2

H 6= ∅, and fix si+2 ∈ Si+2
H . But then if si+2li is an edge, then

G[si+2, li, hi−2, hi−1, hi+2] is a bull; and if si+2li is a non-edge, then
G[si+2, li, hi, hi+1, hi+2] is a bull. Thus, Si+2

H = ∅.

It remains to show that Li
H is anti-complete to Si

H . Suppose other-
wise. By 3.5, AH is not anti-complete to Li

H , and AH is anti-complete
to H ∪ Si

H . We first note that every vertex in Li
H is anti-complete to at

least one of AH and Si
H , for otherwise, we fix some li ∈ Li

H , si ∈ Si
H , and

a ∈ AH such that li is adjacent to both si and a, and we observe that
G[li, si, a, hi−1, hi, hi+2] is a bull∗. Now, fix some adjacent li ∈ Li

H and
si ∈ Si

H . By what we just showed, li is anti-complete to AH . Since AH is
not anti-complete to Li

H , there exist adjacent a ∈ AH and l′i ∈ Li
H r {li}.

Since l′i ∈ Li
H has a neighbor in AH , we know that l′i is anti-complete

to Si
H , and in particular, that l′isi is a non-edge. But now if lil

′
i is

an edge, then G[li, l
′
i, a, si, hi] is a bull; and if lil

′
i is a non-edge, then

G[li, l
′
i, si, hi−1, hi, hi+2] is a bull∗. This completes the argument.

3.7. Let G ∈ Forb∗(bull), let h0 − h1 − ... − hk−1 − h0 (with k ≥ 5 and
the indices in Zk) be an odd hole in G, and set H = {h0, h1, ..., hk−1}.
Assume that G contains an anti-center for H, and that G does not contain
a proper homogeneous set. Then there exists an index i ∈ Zk such that
VG = H ∪ AH ∪ Li

H ∪ Si
H , where Li

H is non-empty, Li
H is anti-complete to

Si
H , and if k ≥ 7, then Si

H is empty.

Proof. By 3.6, we just need to show that N j
H ∪ C

j
H = ∅ for all j ∈ Zk. It

suffices to show that for all j ∈ Zk, {hj}∪N j
H ∪C

j
H is a homogeneous set in

G, for then the fact that G contains no proper homogeneous set will imply
that {hj} ∪N j

H ∪ C
j
H is a singleton, and therefore, that N j

H ∪ C
j
H = ∅.
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Fix j ∈ Zk, and suppose that {hj} ∪ N j
H ∪ C

j
H is not a homogeneous

set in G. Fix some v ∈ VG r ({hj} ∪ N j
H ∪ C

j
H) such that v is mixed on

{hj} ∪ N j
H ∪ C

j
H . Clearly, v /∈ H. Fix some cj , c

′
j ∈ {hj} ∪ N

j
H ∪ C

j
H such

that v is adjacent to cj and non-adjacent to c′j . Set Ĥ = (H r {hj}) ∪ {cj}
and Ĥ ′ = (H r {hj}) ∪ {c′j}. Then G[Ĥ] and G[Ĥ ′] are both odd holes of
length k. Next, by 3.5, AH is anti-complete to {cj , c′j}, and so since AH is

non-empty, G contains an anti-center for both Ĥ and Ĥ ′; thus, 3.6 applies
to both Ĥ and Ĥ ′. This, together with the fact that v has exactly one more
neighbor in Ĥ than in Ĥ ′, implies that either:

(a) v is a leaf for Ĥ and an anti-center for Ĥ ′; or

(b) k = 5 and one of the following holds:

(b1) v is a non-adjacent clone for Ĥ and a leaf for Ĥ ′;

(b2) v is an adjacent clone for Ĥ and a non-adjacent clone for Ĥ ′;

(b3) v is a star for Ĥ and an adjacent clone for Ĥ ′.

Suppose that (a) holds. Since v is adjacent to cj , v is a leaf for Ĥ at cj .
But now if cjc

′
j is an edge, then G[v, cj , c

′
j , hj+1, hj+2] is a bull; and if cjc

′
j

is a non-edge, then G[v, cj , c
′
j , hj−1, hj+1, hj+2] is a bull∗. From now on, we

assume that (b) holds, and so k = 5.

Suppose first that (b1) holds. Since v is a non-adjacent clone for Ĥ
and is adjacent to cj , we know that v is a non-adjacent clone for Ĥ at either
hj−1 or at hj+1; by symmetry, we may assume that v is a non-adjacent
clone for Ĥ at hj+1. But now if cjc

′
j is an edge, then G[v, cj , c

′
j , hj−2, hj−1]

is a bull; and if cjc
′
j is a non-edge, then G[v, cj , c

′
j , hj−2, hj−1, hj+1] is a bull∗.

Suppose next that (b2) holds. Since v is a clone for both Ĥ and Ĥ ′, and
since v is adjacent to cj and non-adjacent to c′j , it is easy to see that v is an

adjacent clone for Ĥ at cj and a non-adjacent clone for Ĥ ′ at c′j . But now

v is a clone for H at hj , contrary to the fact that v ∈ VGr({hj}∪N j
H ∪C

j
H).

Suppose finally that (b3) holds. Since v is adjacent to cj and non-
adjacent to c′j , it is easy to see that v is a star for Ĥ at either hj−1 or hj+1;

by symmetry, we may assume that v is a star for Ĥ at hj+1. Since 3.6
applies to Ĥ, it follows that G contains a leaf lj+1 for Ĥ at hj+1, and that
lj+1 is non-adjacent to v. Since lj+1 is appropriate for Ĥ ′, it is non-adjacent
to c′j . But now if cjc

′
j is an edge, then G[v, cj , c

′
j , lj+1, hj+1] is a bull; and if

cjc
′
j is a non-edge, then G[v, cj , c

′
j , hj−1, hj+2] is a bull. This completes the

argument.
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3.8. Let G ∈ Forb∗(bull), let h0 − h1 − ... − hk−1 − h0 (with k ≥ 5 and
the indices in Zk) be an odd hole in G, and set H = {h0, h1, ..., hk−1}.
Assume that G contains an anti-center for H. Then G contains a proper
homogeneous set or a cut-vertex.

Proof. We assume that G does not contain a proper homogeneous set and
show that it contains a cut-vertex. By 3.7, there exists an index i ∈ Zk such
that VG = H∪AH∪Li

H∪Si
H and Li

H is non-empty and anti-complete to Si
H .

Now, by 3.5, AH is anti-complete to Si
H . Thus, AH ∪Li

H is anti-complete to
(Hr{hi})∪Si

H . Since VG = H ∪AH ∪Li
H ∪Si

H , and since hi has neighbors
both in Li

H and in H r {hi}, it follows that hi is a cut-vertex of G.

We now restate and prove 3.1, the main result of this section.

3.1. Let G ∈ Forb∗(bull). Then either G is basic, or it contains a proper
homogeneous set or a cut-vertex.

Proof. Since an anti-hole of length five is also a hole of length five, the result
is immediate from 3.3 and 3.8.

4 A χ-Bounding Function for Forb∗(bull)

In this section, we use 3.1 to prove that the class Forb∗(bull) is χ-bounded
by the function f(n) = n2. We begin with some definitions. Given graphs
G1 and G2 with VG1 ∩ VG2 = {u}, we say that a graph G is obtained by
gluing G1 and G2 along u provided that the following hold:

• VG = VG1 ∪ VG2 ;

• for all i ∈ {1, 2}, G[VGi ] = Gi;

• VG1 r {u} is anti-complete to VG2 r {u} in G.

We observe that if a graph G has a cut-vertex, then G is obtained by gluing
smaller graphs (i.e. graphs that have strictly fewer vertices than G) along a
vertex.

Given graphs G1 and G2 with disjoint vertex-sets, a vertex u ∈ VG1 ,
and a graph G, we say that G is obtained by substituting G2 for u in G1

provided that the following hold:

• VG = (VG1 r {u}) ∪ VG2 ;

• G[VG1 r {u}] = G1 r u;

• G[VG2 ] = G2;

12



• for all v ∈ VG1 r {u}, if v is adjacent (respectively: non-adjacent) to
u in G1, then v is complete (respectively: anti-complete) to VG2 in G.

Under these circumstances, we also say that G is obtained by substitution
from G1 and G2. We note that if a graph G has a proper homogeneous set,
then it is obtained by substitution from smaller graphs.

We say that a graph G is perfect if for every induced subgraph H of
G, χ(H) = ω(H). We now state two results about perfect graphs that we
will need in this section.

4.1 (Chudnovsky, Robertson, Seymour, and Thomas [1]). A graph G is
perfect if and only if it contains no odd holes and no odd anti-holes.

4.2 (Lovász [11]). Let G1 and G2 be perfect graphs with disjoint vertex-sets,
and let u ∈ VG1. Let G be the graph obtained by substituting G2 for u in G1.
Then G is perfect.

We note that 4.1 is called the strong perfect graph theorem, and 4.2 is
called the replication lemma.

In this paper, a weighted graph is a graph G such that each vertex
v ∈ VG is assigned a positive integer called its weight and denoted by wv.
The weight of a non-empty set S ⊆ VG is the sum of weights of the vertices
in S. We denote by WG the weight of a clique of maximum weight in G.
Given an induced subgraph H of G, and a vertex v ∈ VG, we say that H
covers v provided that v ∈ VH . We now prove a technical lemma, which we
then use to prove the main result of this section.

4.3. Let G ∈ Forb∗(bull) be a weighted graph. Then there exists a family
PG of at most WG perfect induced subgraphs of G such that for every vertex
v ∈ VG, at least wv members of PG cover v.

Proof. We assume inductively that the claim holds for graphs with fewer
than |VG| vertices. By 3.1, we know that either G is basic, or G contains a
proper homogeneous set, or G contains a cut-vertex.

Suppose first that VG is basic. Fix u ∈ VG such that wu is maximal.
Let A be the set of all neighbors of u in G, and let B be the set of all
non-neighbors of u in G. Since G is basic, and u is an anti-center for B,
we know that G[B] contains no odd holes and no odd anti-holes. Since
u is anti-complete to B, it follows that G[B ∪ {u}] contains no odd holes
and no odd anti-holes, and so by the strong perfect graph theorem (4.1),
G[B ∪ {u}] is perfect. Let PB be the family consisting of wu copies of the
perfect graph G[B ∪ {u}]. Note that by the maximality of wu, every vertex
v ∈ B ∪ {u} is covered by at least wv graphs in PB. If A = ∅ (so that
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VG = B ∪ {u}), then we set PG = PB, and we are done. So assume that
A 6= ∅. Now by the induction hypothesis, there exists a family PA of at
most WG[A] perfect induced subgraphs of G[A] such that each vertex v ∈ A
is covered by at least wv graphs in PA. Since u is complete to A, we have
that wu +WG[A] ≤WG. Since the family PB contains exactly wu graphs, it
follows that the family PG = PA ∪PB contains at most WG graphs, and by
construction, every vertex v ∈ VG is covered by at least wv graphs in PG.

Suppose now that G contains a proper homogeneous set; let S be a
proper homogeneous set in G, let A be the set of all vertices in VG that
are complete to S, and let B be the set of all vertices in VG that are
anti-complete to S. Let H be the graph whose vertex-set is {s} ∪ A ∪ B,
with H[A ∪B] = G[A ∪B], and s complete to A and anti-complete to B in
H. We turn H into a weighted graph by letting the vertices in A ∪ B have
the same weights in H as they do in G, and setting ws = WG[S]. Clearly,
WH = WG. Using the induction hypothesis, we let PH be a family of at
most WH = WG perfect induced subgraphs of H such that every vertex
v ∈ VH is covered by at least wv graphs in PH , and we let PG[S] be the family
of at most WG[S] = ws perfect inducted subgraphs of G[S] such that every
vertex v ∈ S is covered by at least wv graphs in PG[S]. We may assume that
the vertex s is covered by exactly ws graphs in PH ; let P1, ..., Pws be the
graphs in PH covering s, and let P ′H = PH r {P1, ..., Pws}. We may assume
that PG[S] contains exactly WG[S] = ws graphs; say PG[S] = {Q1, ..., Qws}.
Now, for each i ∈ {1, ..., ws}, let P ′i be the graph obtained by substituting
the graph Qi for s in Pi; by the replication lemma (4.2), the graph P ′i is
perfect for all i ∈ {1, ..., ws}. We then set PG = {P ′1, ..., P ′ws

} ∪ P ′H . By
construction, PG is a family of at most WG perfect induced subgraphs of G
such that for every vertex v ∈ VG, at least wv members of PG cover v.

Suppose finally that G contains a cut-vertex. Then there exist u ∈ VG and
C1, C2 ⊆ VG r {u} such that VG = {u} ∪ C1 ∪ C2, where C1 and C2 are
non-empty, disjoint, and anti-complete to each other. For i ∈ {1, 2}, let
Gi = G[Ci ∪ {u}]. (Note that G is obtained by gluing G1 and G2 along
u.) Using the induction hypothesis, for each i ∈ {1, 2}, we get a family
PGi of at most WGi perfect induced subgraphs of Gi such that each vertex
v ∈ VGi is covered by at least wv graphs in PGi . We may assume that for
all i ∈ {1, 2}, PGi contains exactly WGi graphs, and that ui is covered by
exactly wui graphs in PGi . By symmetry, we may assume that WG1 ≤WG2 .
For each i ∈ {1, 2}, let P i

1, ..., P
i
wu

be the graphs in PGi covering u, let
P i
wu+1, ..., P

i
WG1

be WG1 − wu graphs in PGi that do not cover u, and let

P 2
WG1

+1, ..., P
2
WG2

be the remaining WG2 − WG1 graphs in PG2 . Now, for

all j ∈ {1, ..., wu}, let Pj be the graph obtained by gluing P 1
j and P 2

j along

u; for all j ∈ {wu + 1, ....,WG1}, let Pj be the disjoint union of P 1
j and
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P 2
j ; and for all j ∈ {WG1 + 1, ...,WG2}, let Pj = P 2

j . It is easy to see that
Pj is perfect for all j ∈ {1, ...,WG2}. Now set PG = {P1, ..., PWG2

}. Since
WG = max{WG1 ,WG2} = WG2 , PG is a family of at most WG perfect
induced subgraphs of G such that for every vertex v ∈ VG, at least wv

members of PG cover v.

4.4. The class Forb∗(bull) is χ-bounded by the function f(n) = n2.

Proof. Let G ∈ Forb∗(bull). Using 4.3, we obtain a family P of at most
ω(G) perfect induced subgraphs of G such that each vertex in VG is covered
by at least one graph in P. Clearly, we may assume that each vertex in VG
is covered by exactly one graph in P. Since the graphs in P are perfect,
each graph P ∈ P can be colored with ω(P ) ≤ ω(G) colors; we may assume
that the sets of colors used on the graphs in P are pairwise disjoint. Now
we take the union of the colorings of the graphs in P to obtain a coloring of
G that uses at most ω(G)2 colors.

5 Necklaces

We begin with some definitions. Let n be a non-negative integer, and
let m0, ...,mn be positive integers. Let H be a graph whose vertex-set is⋃n

i=0{xi,0, xi,1, ..., xi,mi} ∪ {y1, ..., yn}, with adjacency as follows:

• x0,0− ...−x0,m0−x1,0− ...−x1,m1− ...−xn,0− ...−xn,mn is a chordless
path;

• {y1, ..., yn} is a stable set;

• for all i ∈ {1, ..., n}, the vertex yi has exactly two neighbors in the set⋃n
i=0{xi,0, xi,1, ..., xi,mi}, namely xi−1,mi−1 and xi,0.

Under these circumstances, we say that H is an (m0, ...,mn)-necklace with
base x0,0 and hook xn,mn , or simply that H is an (m0, ...,mn)-necklace. If G
is a subdivision of H, then we say that G is an (m0, ...,mn)-necklace∗ with
base x0,0 and hook xn,mn , or simply that G is an (m0, ...,mn)-necklace∗.
To simplify notation, given a non-negative integer n and a positive integer
m, we often write “(m)n-necklace” instead of “(m, ...,m)︸ ︷︷ ︸

n+1

-necklace,” and

“(m)n-necklace∗” instead of “(m, ...,m)︸ ︷︷ ︸
n+1

-necklace∗.” (We remark that a

(1)1-necklace is the bull, and that for all positive integers m, an (m)0-
necklace with base x0 and hook xm is a chordless m-edge path between x0
and xm.)

Our goal in this section is to prove that for all non-negative integers
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n and positive integers m0, ...,mn, the class Forb∗((m0, ...,mn)− necklace)
is χ-bounded by an exponential function (see 5.2 below). We ob-
serve that in order to prove 5.2, it suffices to consider only the
(m)n-necklaces. Indeed, if m = max{m0, ...,mn}, then an (m)n-
necklace is a subdivision of an (m0, ...,mn)-necklace, and consequently,
Forb∗((m0, ...,mn)− necklace) ⊆ Forb∗((m)n − necklace). Thus, it suffices
to show that Forb∗((m)n − necklace) is χ-bounded by an exponential
function.

We now need some more definitions. First, in this paper, the local
chromatic number of a graph G, denoted by χl(G), is the number
maxv∈VG

χ(G[ΓG(v)]). Next, let n be a non-negative and m a positive inte-
ger. Let G be a graph whose vertex-set is the disjoint union of non-empty
sets N and X, let x0 and x be distinct vertices in N , and assume that the
adjacency in G is as follows:

• G[N ] is an (m)n-necklace∗ with base x0 and hook x;

• G[X] is connected;

• N r {x} is anti-complete to X;

• x has a neighbor in X.

Under these circumstances, we say that (G, x0, x) is an (m)n-alloy or simply
an alloy. The graph G is referred to as the base graph of the alloy (G, x0, x),
and the ordered pair (N,X) is the partition of the alloy (G, x0, x). The
potential of the alloy (G, x0, x) is the chromatic number of the graph G[X].

We now state the main technical lemma of this section.

5.1. Let G be a connected graph, and let x0 ∈ VG. Let n and β be non-
negative integers, and let m and α be positive integers. Assume that χl(G) ≤
α and χ(G) > 2n+1((m+3)α+β). Then there exists an induced subgraph H
of G and a vertex x ∈ VG such that (H,x0, x) is an (m)n-alloy of potential
greater than β.

Since the base graph of an (m)n-alloy contains an (m)n-necklace∗ as an
induced subgraph, 5.1 easily implies the main result of this section (5.2), as
we now show. (We note that our proof of 5.2 relies only on the special case
of 5.1 when β = 0.)

5.2. Let n be a non-negative integer, let m0, ...,mn be positive integers, and
let m = max{m0, ...,mn}. Then the class Forb∗((m0, ...,mn)− necklace) is
χ-bounded by the exponential function f(k) = (2n+1(m+ 3))k−1.
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Proof. Since an (m)n-necklace is a subdivision of an (m0, ...,mn)-necklace,
we know that Forb∗((m0, ...,mn) − necklace) ⊆ Forb∗((m)n − necklace),
and so it suffices to show that Forb∗((m)n − necklace) is χ-bounded by the
function f . Suppose that this is not the case, and let k ∈ N be minimal
with the property that there exists a graph G ∈ Forb∗((m)n − necklace)
such that ω(G) = k and χ(G) > f(k). Clearly, k ≥ 2. Furthermore, we
may assume that G is connected, for otherwise, instead of G, we consider
a component of G with maximum chromatic number. Note that for all
v ∈ VG, we have that ω(G[ΓG(v)]) ≤ k − 1, and so by the minimality of k,
χ(G[ΓG(v)]) ≤ f(k−1); thus χl(G) ≤ f(k−1). Now, set α = f(k−1); then
χl(G) ≤ α and χ(G) > 2n+1(m + 3)α. Fix x0 ∈ VG. Then 5.1 implies that
there exists an induced subgraph H of G and a vertex x ∈ VG such that
(H,x0, x) is an (m)n-alloy. But then H contains an (m)n-necklace∗ as an
induced subgraph, contrary to the fact that G ∈ Forb∗((m)n−necklace).

The rest of the section is devoted to proving 5.1. The idea of the proof
is to show that, given a connected graph G whose chromatic number is
sufficiently large relative to its local chromatic number, it is possible to
recursively “chisel” an (m)n-alloy out of the graph G. At each recursive
step, the “length” of the alloy (i.e. the number n) increases, and the potential
of the alloy decreases (but in a controlled fashion, so as to allow the next
recursive step). We begin with a technical lemma, which we will use many
times in this section.

5.3. Let G be a graph, let x0 ∈ VG, and let S ⊆ VGr{x0} be such that G[S]
is connected and x0 has a neighbor in S. Let k be a non-negative integer, let
α be a positive integer, and assume that χl(G) ≤ α, and that χ(G[S]) > kα.
Then there exist vertices x1, ..., xk ∈ S and a set X ⊆ S such that:

a. x0 − x1 − ...− xk is an induced path in G;

b. G[X] is connected;

c. x1, ..., xk /∈ X;

d. xk has a neighbor in X;

e. vertices x0, ..., xk−1 are anti-complete to X;

f. χ(G[X]) ≥ χ(G[S])− kα.

Proof. Let i ∈ {0, ..., k} be maximal such that there exist vertices x1, ..., xi ∈
S and a set X ⊆ S such that:

• x0 − x1 − ...− xi is an induced path in G;

• G[X] is connected;

17



• x1, ..., xi /∈ X;

• xi has a neighbor in X;

• vertices x0, ..., xi−1 are anti-complete to X;

• χ(G[X]) ≥ χ(G[S])− iα.

(The existence of such an index i follows from the fact that x0 is an
induced path in G, G[S] is connected, x0 has a neighbor in S, and
χ(G[S]) ≥ χ(G[S])− 0 · α.)

We need to show that i = k. Suppose otherwise, that is, suppose
that i < k. Then:

χ(G[X]) ≥ χ(G[S])− iα
> kα− iα
= (k − i)α
≥ α,

and so χ(G[X]) > α. Since χ(G[ΓG(xi)]) ≤ α (because χl(G) ≤ α),
it follows that xi is not complete to X; let X ′ be the vertex-set of a
component of G[X r ΓG(xi)] with maximum chromatic number. Then
χ(G[X]) ≤ χ(G[ΓG(xi)]) + χ(G[X ′]), and so:

χ(G[X ′]) ≥ χ(G[X])− χ(G[ΓG(xi)])
≥ (χ(G[S])− iα)− α
= χ(G[S])− (i+ 1)α

Fix a vertex xi+1 ∈ X ∩ ΓG(xi) such that xi+1 has a neighbor in X ′. But
now the sequence x1, ..., xi, xi+1 and the set X ′ contradict the maximality
of i. It follows that i = k, which completes the argument.

The following is an easy consequence of 5.3, and it will serve as the base for
our recursive construction of an (m)n-alloy.

5.4. Let G be a connected graph, let x0 ∈ VG, let β be a non-negative integer,
and let m and α be positive integers. Assume that χl(G) ≤ α, and that
χ(G) > (m + 1)α + β. Then there exists a vertex x ∈ VG r {x0} and an
induced subgraph H of G such that (H,x0, x) is an (m)0-alloy of potential
greater than β.

Proof. Let S be the vertex-set of a component of G r x0 of maximum
chromatic number. Clearly then, χ(G) ≤ χ(G[S]) + 1, and consequently,
χ(G[S]) > mα + β. Since G is connected, x0 has a neighbor in S. By 5.3
then, there exist vertices x1, ..., xm ∈ S and a set X ⊆ S such that:

• x0 − x1 − ...− xm is an induced path in G;

• G[X] is connected;
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• x1, ..., xm /∈ X;

• xm has a neighbor in X;

• vertices x0, ..., xm−1 are anti-complete to X;

• χ(G[X]) ≥ χ(G[S])−mα.

The fact that χ(G[X]) ≥ χ(G[S]) − mα and χ(G[S]) > mα + β implies
that χ(G[X]) > β. Now set H = G[{x0, ..., xm0} ∪ X] and x = xm. Then
(H,x0, x) is an (m)0-alloy of potential greater than β.

Our goal now is to show that, given an (m)n-alloy with large potential and
small local chromatic number of the base graph, we can “chisel” out of this
(m)n-alloy an (m)n+1-alloy of large potential. More formally, we wish to
prove the following lemma.

5.5. Let n and β be non-negative integers, and let m and α be positive
integers. Let (G, x0, x) be an (m)n-alloy of potential greater than 2((m +
3)α+β), and let (N,X) be the partition of the alloy (G, x0, x). Assume that
χl(G) ≤ α. Then there exist disjoint sets N ′, X ′ ⊆ VG such that N ⊆ N ′

and X ′ ⊆ X, and a vertex x′ ∈ X such that (G[N ′ ∪ X ′], x0, x′) is an
(m)n+1-alloy of potential greater than β and with partition (N ′, X ′).

We now need some definitions. Let n be a non-negative and m a pos-
itive integer, and let (G, x0, x) be an (m)n-alloy with partition (N,X).
Assume that the potential of (G, x0, x) is greater than 2β (where β is
some non-negative integer). For each i ∈ N ∪ {0}, let S′i be the set of all
vertices in {x} ∪ X that are at distance i from x in G[{x} ∪ X]; thus,
S′0 = {x}. Let t ∈ N be such that χ(G[S′t]) is as large as possible. As the
sets S1, S3, S5, ... are pairwise anti-complete to each other, as are the sets
S2, S4, S6, ..., it is easy to see that χ(G[X]) ≤ 2χ(G[S′t]), and consequently,
χ(G[S′t]) > β. Now, let St be the vertex-set of a component of G[S′t]
with maximum chromatic number (thus, χ(G[St]) > β), and for each
i ∈ {0, 1, ..., t − 1}, let Si be an inclusion-wise minimal subset of S′i such
that every vertex in Si+1 has a neighbor in Si; clearly, S0 = {x}. Let
H = G[N ∪

⋃t
i=1 Si]. We then say that (H,x0, x) is a reduction of the

(m)n-alloy (G, x0, x), and that {Si}ti=0 is the stratification of (H,x0, x).
Clearly, (H,x0, x) is itself an (m)n-alloy, and (N,

⋃t
i=1 Si) is the associated

partition. Further, as χ(G[St]) > β and H is an induced subgraph of G, we
know that χ(H[St]) > β. Next, given vertices a ∈ Sp and b ∈ Sq for some
p, q ∈ {0, ..., t}, a path P in H between a and b is said to be monotonic
provided that it has |p− q| edges. This means that if p = q then a = b, and

if p 6= q then all the internal vertices of the path P lie in
⋃max{p,q}−1

r=min{p,q}+1 Sr,

with each set Sr (with min{p, q} + 1 ≤ r ≤ max{p, q} − 1) containing
exactly one vertex of the path. Clearly, every monotonic path is induced.
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We observe that for all p ∈ {0, ..., t} and a ∈ Sp, there exists a monotonic
path between x and a.

The idea of the proof of 5.5 is as follows. First, we let (H,x0, x) be
a reduction of the (m)n-alloy (G, x0, x), and we let {Si}ti=0 be the associ-
ated stratification. From now on, we work only with the graph H (and not
G). We find the needed vertex x′ in the set St, and the set X ′ is chosen to
be a suitable subset of the set St. Our proof splits into two cases. The first
(and easier) case is when at least one of the sets S1, ..., St−2 is not stable (in
this case, we necessarily have t ≥ 3); the second (and harder) case is when
the sets S1, ..., St−2 are all stable. We treat these two cases in two separate
lemmas (the first case is treated in 5.6, and the second case in 5.7).

5.6. Let n and β be non-negative integers, and let m and α be positive
integers. Let (G, x0, x) be an (m)n-alloy of potential greater than 2(mα+β),
and let (N,X) be the partition of the alloy (G, x0, x). Assume that χl(G) ≤
α. Let (H,x0, x) be a reduction of the (m)n-alloy (G, x0, x), and let {Si}ti=0

be the associated stratification. Assume that t ≥ 3 and that at least one of the
sets S1, ..., St−2 is not stable. Then there exist disjoint sets N ′, X ′ ⊆ VH such
that N ⊆ N ′ and X ′ ⊆ St, and a vertex x′ ∈ St such that (H[N ′∪X ′], x0, x′)
is an (m)n+1-alloy of potential greater than β and with partition (N ′, X ′).

Proof. First, as pointed out above, we know that χ(H[St]) > mα+β. Now,
let r ∈ {1, ..., t − 2} be minimal with the property that Sr is not stable;
fix adjacent a, b ∈ Sr. Let p ∈ {0, ..., r − 1} be maximal with the property
that there exists some z ∈ Sp such that for each d ∈ {a, b}, there exists
a monotonic path Pd between z and d (such an index p and a vertex z
exist because x0 ∈ S0 and there exist monotonic paths between x0 and
a and between x0 and b). Since S0, ..., Sr−1 are all stable, this means that
H[VPa∪VPb

] is a chordless cycle, and by construction, (VPa∪VPb
)∩Sp = {z}

and (VPa ∪ VPb
) ∩ Sr = {a, b}. Next, let Q be a monotonic path between

x and z. By the minimality of Sr, there exists some sr+1 ∈ Sr+1 that is
adjacent to a and non-adjacent to b. Now, fix some st−1 ∈ St−1 such that
there exists a monotonic path R between sr+1 and st−1 (the existence of st−1
follows from the fact that for all i ∈ {0, ..., t−1} and v ∈ Si, v has a neighbor
in Si+1). Since st−1 has a neighbor in St, and since χ(H[St]) > mα, we can
apply 5.3 to the vertex st−1 and the set St to obtain vertices u1, ..., um ∈ St
and a set X ′ ⊆ St r {u1, ..., um} such that the following hold:

• st−1 − u1 − ...− um is an induced path in G;

• um has a neighbor in X ′;

• vertices st−1, u1, ..., um−1 are anti-complete to X ′;

• H[X ′] is connected;
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• χ(H[X ′]) ≥ χ(H[St])−mα.

Set N ′ = N ∪ VQ ∪ VPa ∪ VPb
∪ VR ∪ {u1, ..., um} and x′ = um. Clearly

then, (H[N ′ ∪X ′], x0, x′) is an (m)n+1-alloy with partition (N ′, X ′). Since
χ(H[X ′]) ≥ χ(H[St])−mα and χ(H[St]) > mα+β, we get that χ(H[X ′]) >
β. This completes the argument.

5.7. Let n and β be non-negative integers, and let m and α be positive
integers. Let (G, x0, x) be an (m)n-alloy of potential greater than 2((m +
3)α+β), and let (N,X) be the partition of the alloy (G, x0, x). Assume that
χl(G) ≤ α. Let (H,x0, x) be a reduction of the (m)n-alloy (G, x0, x), and
let {Si}ti=0 be the associated stratification. Assume that the sets S1, ..., St−2
are all stable. Then there exist disjoint sets N ′, X ′ ⊆ VH such that N ⊆ N ′
and X ′ ⊆ St, and a vertex x′ ∈ St such that (H[N ′ ∪ X ′], x0, x′) is an
(m)n+1-alloy of potential greater than β and with partition (N ′, X ′).

Proof. First, since the potential of the alloy (G, x0, x) is greater than 2((m+
3)α+β), we know that χ(H[St]) > (m+3)α+β. Next, fix a ∈ St−1, and set
A = St ∩ ΓH(a). Note that χ(H[St]) > 2α, and so we can apply 5.3 to the
vertex a and the set St in H to obtain vertices u′0, u

′
1 ∈ St and a non-empty

set C ⊆ St r {u′0, u′1} such that a− u′0 − u′1 is an induced path in H, a and
u′0 are anti-complete to C (note that this implies that C ∩A = ∅), u′1 has a
neighbor in C, H[C] is connected, and

χ(H[C]) ≥ χ(H[St])− 2α
> ((m+ 3)α+ β)− 2α
= (m+ 1)α+ β.

Now, fix some b ∈ St−1 adjacent to u′1; since a is not adjacent to u′1, this
means that a 6= b. Set B = St ∩ ΓH(b); clearly, u′1 ∈ B. Since χ(H[C]) > α
and χ(H[B]) ≤ α, we know that C 6⊆ B; let U be the vertex-set of a
component of H[C rB] with maximum chromatic number. Then

χ(H[C]) ≤ χ(H[B]) + χ(H[U ])
≤ α+ χ(H[U ]),

and so χ(H[U ]) > mα + β. Note that by construction, neither A nor B
intersects U .

Let us define a path of type one in H to be an induced path u0 − ... − up
(with p ≥ 1) in H[St r U ] such that u0 ∈ A ∪ B, exactly one vertex
among u1, ..., up is in A∪B, up has a neighbor in U , and u0, ..., up−1 are all
anti-complete to U . We define a path of type two in H to be an induced
path u0 − ... − up (with p ≥ 1) in H[St r U ] such that u0 = u′0, no vertex
among u1, ..., up lies in A ∪ B (in particular, u′1 /∈ {u1, ..., up}), up has a
neighbor in U , vertices u0, ..., up−1 are all anti-complete to U , and u′1 is
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complete to {u0, u1} and anti-complete to {u2, ..., up} ∪ U .

Our goal now is to show that H contains a path of type one or two.
Suppose that there is no path of type one in H. Since H[St] is connected,
and u′0 is anti-complete to U , there exists an induced path u0− ...−up (with
p ≥ 1) in H[St rU ] such that u0 = u′0, up has a neighbor in U , and vertices
u0, ..., up−1 are anti-complete to U . Note that u0 ∈ A (because u0 = u′0 and
u′0 ∈ A). Clearly then, u1, ..., up /∈ A∪B, for otherwise, at least two vertices
among u0, u1, ..., up would lie in A∪B, and then up′ −up′+1− ...−up would
be a path of type one in H for p′ ∈ {0, ..., p − 1} chosen maximal with
the property that at least two vertices among up′ , up′+1, ..., up lie in A ∪ B.
Since u0 = u′0 and u1, ..., up /∈ A ∪B, we know that u′1 /∈ {u0, ..., up}. Next,
note that u′1 is anti-complete to U , for otherwise, u′0 − u′1 would be a path
of type one in H. Further, u′1 is anti-complete to {u2, ..., up}, for otherwise,
we let p′ ∈ {2, ..., p} be maximal with the property that u′1 is adjacent to
up′ , and we observe that u′0 − u′1 − up′ − up′+1 − ... − up is a path of type
one in H. Finally, u′1 is adjacent to u1, for otherwise, u′1− u0− u1− ...− up
would be a path of type one in H. Thus, u0 − ...− up is a path of type two
in H. This proves that H contains a path of type one or two.

Let u0 − ... − up (with p ≥ 1) be a path of type one or two in H.
Recall that χ(H[U ]) > mα + β. We now apply 5.3 to the vertex up
and the set U in H to obtain vertices up+1, ..., up+m ∈ U and a set
X ′ ⊆ U r {up+1, ..., up+m} such that the following hold:

• up − up+1 − ...− up+m is an induced path in H;

• up+m has a neighbor in X ′;

• vertices up, ..., up+m−1 are anti-complete to X ′;

• H[X ′] is connected;

• χ(H[X ′]) ≥ χ(H[U ])−mα;

note that the last condition, together with the fact that χ(H[U ]) > mα+β,
implies that χ(H[X ′]) > β. Set x′ = up+m. Our goal is to construct a set
N ′ with N ⊆ N ′ such that (H[N ′ ∪ X ′], x0, x′) is an (m)n+1-alloy with
partition (N ′, X ′). Since χ(H[X ′]) > β, the potential of any such alloy is
greater than β, as desired.

First, if u0 − ... − up is a path of type two in H, then we let P be a
monotonic path between a and x, we set N ′ = N∪VP ∪{u0, ..., up+m}∪{u′1},
and we are done. From now on, we assume that u0 − ... − up is a path
of type one in H. Fix l ∈ {1, ..., p} such that ul ∈ A ∪ B; then by
the definition of a path of type one in H, we get that u0, ul ∈ A ∪ B,
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and no other vertex on the path u0 − ... − up lies in A ∪ B. If some
vertex d ∈ {a, b} is complete to {u0, ul}, then we let P be a monotonic
path between x and d, we set N ′ = N ∪ VP ∪ {u0, ..., up+m}, and we
are done. From now on, we assume that neither a nor b is complete to
{u0, ul}. Then one of a and b is adjacent to u0 and non-adjacent to ul,
and the other is adjacent to ul and non-adjacent to u0. Now, fix maximal
q ∈ {0, ..., t − 2} such that there exists a vertex z ∈ Sq with the property
that for each d ∈ {a, b}, there exists a monotonic path Pd between z and
d. Since S0, ..., St−2 are all stable, we get that if a and b are adjacent then
H[VPa ∪ VPb

] is a chordless cycle, and if a and b are non-adjacent then
H[VPa ∪ VPb

] is an induced path between a and b; in either case, we have
that (VPa ∪ VPb

) ∩ St−1 = {a, b} and (VPa ∪ VPb
) ∩ Sq = {z}. Let Q be

a monotonic path between z and x. Now, if a and b are adjacent, then
we set N ′ = N ∪ VQ ∪ VPa ∪ VPb

∪ {ul, ul+1, ..., up+m}; and if a and b are
non-adjacent, then we set N ′ = VQ ∪ VPa ∪ VPb

∪ {u0, ..., up+m}. This
completes the argument.

We can now prove 5.5, restated below.

5.5. Let n and β be non-negative integers, and let m and α be positive
integers. Let (G, x0, x) be an (m)n-alloy of potential greater than 2((m +
3)α+β), and let (N,X) be the partition of the alloy (G, x0, x). Assume that
χl(G) ≤ α. Then there exist disjoint sets N ′, X ′ ⊆ VG such that N ⊆ N ′

and X ′ ⊆ X, and a vertex x′ ∈ X such that (G[N ′ ∪ X ′], x0, x′) is an
(m)n+1-alloy of potential greater than β and with partition (N ′, X ′).

Proof. Let (H,x0, x) be a reduction of the (m)n-alloy (G, x0, x), and let
{Si}ti=0 be the associated stratification. If t ≥ 3 and at least one of the sets
S1, ..., St−2 is not stable, then the result follows from 5.6. Otherwise, the
result follows from 5.7.

Finally, we use 5.4 and 5.5 to prove 5.1, restated below.

5.1. Let G be a connected graph, and let x0 ∈ VG. Let n and β be non-
negative integers, and let m and α be positive integers. Assume that χl(G) ≤
α and χ(G) > 2n+1((m+3)α+β). Then there exists an induced subgraph H
of G and a vertex x ∈ VG such that (H,x0, x) is an (m)n-alloy of potential
greater than β.

Proof. For all j ∈ {0, ..., n}, set βj = β + (Σn−j
i=1 2i)((m + 3)α + β). Our

goal is to prove inductively that for all j ∈ {0, ..., n}, there exist disjoint
sets Nj , Xj ⊆ VG and a vertex xj ∈ VG such that (G[Nj ∪Xj ], x0, x

j) is an
(m)j-alloy of potential greater than βj . Since βn = β, the result will follow.
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For the base case (when j = 0), we observe that

χ(G) > 2n+1((m+ 3)α+ β)
> (Σn

i=02
i)((m+ 3)α+ β)

= (m+ 3)α+ β + (Σn
i=12

i)((m+ 3)α+ β)
= (m+ 3)α+ β0
> (m+ 1)α+ β0,

and so 5.4 implies that there exist sets N0, X0 ⊆ VG and a vertex x0 ∈ VG
such that (G[Nj ∪Xj ], x0, x

j) is an (m)j-alloy of potential greater than β0.

For the induction case, suppose that j ∈ {0, ..., n − 1} and that there exist
disjoint sets Nj , Xj ⊆ VG and a vertex xj ∈ VG such that (G[Nj∪Xj ], x0, x

j)
is an (m)j-alloy of potential greater than βj . Since

βj = β + (Σn−j
i=1 2i)((m+ 3)α+ β)

≥ (Σn−j
i=1 2i)((m+ 3)α+ β)

= 2((m+ 3)α+ β + (Σ
n−(j+1)
i=1 2i)((m+ 3)α+ β))

= 2((m+ 3)α+ βj+1),

5.5 implies that there exist sets Nj+1, Xj+1 ⊆ VG and a vertex xj+1 such
that (G[Nj+1 ∪Xj+1], x0, x

j+1) is an (m)j+1-alloy of potential greater than
βj+1. This completes the induction.
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