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Abstract

The Erdős-Hajnal conjecture says that for every graph H there exists τ > 0 such that every graph
G not containing H as an induced subgraph has a clique or stable set of cardinality at least |G|τ .
We prove that this is true when H is a cycle of length five.

We also prove several further results: for instance, that if C is a cycle and H is the complement
of a forest, there exists τ > 0 such that every graph G containing neither of C,H as an induced
subgraph has a clique or stable set of cardinality at least |G|τ .



1 Introduction

A cornerstone of Ramsey theory is the theorem of Erdős and Szekeres [14] from the 1930s, that every
graph on n vertices has a clique or stable set of size Ω(log n). This order of magnitude cannot be
improved, as Erdős [11] showed that there are infinitely many graphs G whose cliques and stable
sets all have size O(log(|G|)). Indeed, in the class of all graphs, a typical graph only has cliques and
stable sets of at most logarithmic size.

The celebrated Erdős-Hajnal conjecture asserts that for every other hereditary class of graphs,
the picture is dramatically different: in every such class, all the graphs have cliques or stable sets
of polynomial size. We say that a graph G contains a graph H if some induced subgraph of G
is isomorphic to H, and G is H-free otherwise. Let α(G) and ω(G) denote the cardinalities of
(respectively) the largest stable sets and cliques in G. The Erdős-Hajnal conjecture [12, 13] asserts
the following:

1.1 Conjecture: For every graph H, there exists τ > 0 such that every H-free graph G satisfies

max(α(G), ω(G)) ≥ |G|τ .

The Erdős-Hajnal conjecture is only known for a small family of graphs. It is trivially true for
H = K2; it is true for H = P4, the four-vertex path (the P4-free graphs form the well-known class
of cographs); and Chudnovsky and Safra [7] showed that it is true when H is the bull (P4 with an
additional vertex adjacent to the two central vertices). It is easy to see that if the conjecture holds
for H then it also holds for the complement H. An important result of Alon, Pach and Solymosi
[2] shows that if the conjecture holds for H and H ′ then it also holds for the graph obtained by
substituting H ′ into a vertex of H. The Erdős-Hajnal conjecture therefore holds for every graph H
in the closure of {K2, P4,bull} under complements and substitution, but these are all the graphs (with
at least two vertices) for which the conjecture was previously known. In particular, the conjecture
holds for all graphs H with at most four vertices, but until now, has been open for three graphs on
five vertices: C5, P5 and P5.

The five-vertex cycle C5 has been a particularly frustrating open case, and has attracted a good
deal of unsuccessful attention over the last 30 years (for example, it was highlighted by Erdős and
Hajnal [13] and also by Gyárfás [16]). So we are happy to report some progress at last: in this paper,
we will prove the conjecture for C5, and present a number of other results.

It is known that for any H, excluding H makes a difference. Erdős and Hajnal [13] showed the
following (and this is still the best known bound for a general graph H):

1.2 For every graph H, there exists c > 0 such that

max(α(G), ω(G)) ≥ 2c
√

log |G|

for every H-free graph G with |G| ≥ 1.

It was also known that we can do better than 1.2 when H = C5. In an earlier paper [6], with
Jacob Fox, we showed:
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1.3 There exists c > 0 such that

max(α(G), ω(G)) ≥ 2c
√

log |G| log log |G|

for every C5-free graph G with |G| ≥ 2.

Our first result in this paper is the following, proving the Erdős-Hajnal conjecture for C5:

1.4 There exists τ > 0 such that every C5-free graph G satisfies

max(α(G), ω(G)) ≥ |G|τ .

The proof of 1.4 is novel, but the same proof method, with some extra twists, yields some other
results about the Erdős-Hajnal conjecture. It does not seem to show that P5 has the Erdős-Hajnal
property, which, with its complement, is the other open case of 1.1 with |H| = 5; but it does give
other nice things. In particular, it gives results when certain pairs or small families of induced
subgraphs are excluded.

If H is a set of graphs, G is H-free if it is H-free for each H ∈ H. Every hereditary class of
graphs is defined by its excluded subgraphs (that is, the graphs not in the class). Let H be a set
of graphs (or a single graph); we say that H has the Erdős-Hajnal property1 if there exists τ > 0
such that max(α(G), ω(G)) ≥ |G|τ for all H-free graphs (if H = {H} we simply say that H has the
Erdős-Hajnal property). Thus 1.1 says that every graph has the Erdős-Hajnal property, and 1.4 says
that C5 has the Erdős-Hajnal property. Note that if H has the Erdős-Hajnal property then so does
the set {H : H ∈ H} of complements of members of H.

There has been some recent progress on small sets of graphs with the Erdős-Hajnal property.
After partial results by a number of authors (see [4, 5, 17]), the following result was shown in [8]:

1.5 If F and H are forests then {F,H} has the Erdős-Hajnal property.

In this paper, we will show that one of the forests in 1.5 can be replaced by a cycle:

1.6 If C is a cycle and H is a forest then {C,H} has the Erdős-Hajnal property.

We will also show:

1.7 If C is a cycle and ` is an integer, the set consisting of C and the complements of all cycles of
length at least ` has the Erdős-Hajnal property.

This strengthens the result of Bonamy, Bousquet and Thomassé [3] that the set consisting of all cycles
of length at least ` and their complements has the Erdős-Hajnal property (see [9] for a substantial
strengthening of this result).

In addition, we will show that a number of other sets of graphs have the Erdős-Hajnal property.
For instance, let Ĉ5 be the graph obtained from a cycle C of length five by adding a new vertex with
neighbours two adjacent vertices of C. We will show:

1.8 {Ĉ5, Ĉ5} has the Erdős-Hajnal property.

1Some papers say “the class of H-free graphs has the Erdős-Hajnal property” in this situation, but here the definition
we give is more convenient.
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Since Ĉ5 contains P5, this implies that {Ĉ5, P5} has the Erdős-Hajnal property, strengthening the
theorem of [10] that the set of all “cap” graphs has the Erdős-Hajnal property. It also implies the

result of Chudnovsky and Safra [7] that the bull has the Erdős-Hajnal property, because both Ĉ5, Ĉ5

contain the bull.
We will further show

1.9 {C6, C6} has the Erdős-Hajnal property.

and

1.10 {C7, C7} has the Erdős-Hajnal property.

It would be nice to know if the same is true for {C8, C8}, but this remains open. We are hopeful
that the methods in this paper will lead to further results.

An important ingredient in the paper is a lemma about bipartite graphs that we will prove in the
next section. This originated in a powerful lemma that was proved by Tomon [21], and developed
further by Pach and Tomon [19]. We prove a significant strengthening of Tomon’s result, and use it
to prove a key lemma that will be used in the proofs of all our main theorems.

We note that there are a number of different ways to phrase the Erdős-Hajnal conjecture. Let
us define κ(G) = α(G)ω(G). For a set H of graphs, the following are equivalent:

� there exists τ > 0 such that every H-free graph G satisfies max(α(G), ω(G)) ≥ |G|τ ;

� there exists τ > 0 such that every H-free graph G contains as an induced subgraph a cograph
with at least |G|τ vertices (this was implicitly used by Erdős and Hajnal [13]);

� there exists τ > 0 such that every H-free graph G contains as an induced subgraph a perfect
graph with at least |G|τ vertices (this is discussed in [16]);

� there exists τ > 0 such that every H-free graph G satisfies κ(G) ≥ |G|τ .

The version using κ is sometimes easier to work with, and we will frequently use it below.
We use standard notation throughout. All graphs in this paper are finite and have no loops or

parallel edges. We denote by |G| the number of vertices of a graph G. If X ⊆ V (G), G[X] denotes
the subgraph of G induced on X. We write Ck for the cycle of length k, and Pk for the path with k
vertices. Logarithms are to base two.

The paper is organized as follows. First we prove the strengthening of Tomon’s theorem that we
need, and then apply it to prove our key lemma; then we prove 1.4; then we extend this approach
to see what else we can obtain, in particular proving the other theorems mentioned above.

2 A lemma about bipartite graphs

Let G be a graph. We say that two sets of vertices A,B ⊆ V (G) are complete if they are disjoint
and every element of A is adjacent to every element of B, and anticomplete if they are disjoint and
no element of A is adjacent to an element of B. We say that a set H of graphs has the strong
Erdős-Hajnal property if there exists c > 0 such that for every H-free graph G with at least two
vertices there are sets A,B ⊆ V (G) with |A|, |B| ≥ c|G| such that the pair A, B is either complete
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or anticomplete. It is easy to prove that if H has the strong Erdős-Hajnal property then it has the
Erdős-Hajnal property (see [1, 15]). This approach has been used in a number of papers to prove
the Erdős-Hajnal property for various sets H (see, for example, [3, 4, 5, 8, 9, 17]).

If a finite set H of graphs has the strong Erdős-Hajnal property then, by considering sparse
random graphs, it is easy to see that it is necessary for H to contain a forest; and similarly it
is necessary for H to contain the complement of a forest (see [8]). It follows from 1.5 that these
conditions are also sufficient, and so 1.5 characterizes finite sets H that have the strong Erdős-
Hajnal property (infinite sets are a different matter: for example the set of all cycles has the strong
Erdős-Hajnal property, but does not contain a forest).

Tomon [21] made the nice observation that there is a similar but weaker property that can also
be used to prove the Erdős-Hajnal property. Suppose that H is a set of graphs and there are c, k > 0
such that, for every H-free graph G with |G| ≥ 2, there is some t = t(G) ≥ 2 such that V (G)
includes t sets of size at least c|G|/tk that are pairwise complete or pairwise anticomplete (note that
the strong Erdős-Hajnal property is the special case where we can always choose t = 2). We recall
that κ(G) = α(G)ω(G); let us write κ(n) for the minimum of κ(G) over H-free graphs G with n
vertices. It follows that κ(G) ≥ tκ(c|G|/tk), and it is easily checked that this implies that κ(n) ≥ nτ
for all n, provided τ > 0 is sufficiently small, and so H has the Erdős-Hajnal property.

In order to find the required disjoint sets of vertices, Tomon [21] proved a powerful lemma about
bipartite graphs, which was developed further by Pach and Tomon [19]. We will make use of the
same idea, but will need to prove a significantly stronger form of the lemma.

Let G be a graph, and let t, k ≥ 0 where t is an integer. We say ((ai, Bi) : 1 ≤ i ≤ t) is a
(t, k)-comb in G if:

� a1, . . . , at ∈ V (G) are distinct, andB1, . . . , Bt are pairwise disjoint subsets of V (G)\{a1, . . . , at};

� for 1 ≤ i ≤ t, ai is adjacent to every vertex in Bi;

� for i, j ∈ {1, . . . , t} with i 6= j, ai has no neighbour in Bj ; and

� B1, . . . , Bt all have cardinality at least k.

If A,B ⊆ V (G) are disjoint and a1, . . . , at ∈ A, and B1, . . . , Bt ⊆ B, we call this a (t, k)-comb in
(A,B). Our strengthening of Tomon’s lemma [21] is as follows:

2.1 Let G be a graph with a bipartition (A,B), such that every vertex in B has a neighbour in A;
and let Γ,∆, d > 0 with d < 1, such that every vertex in A has at most ∆ neighbours in B. Then
either:

� for some integer t ≥ 1, there is a (t,Γt−1/d)-comb in (A,B); or

� |B| ≤ 3d+1

3/2−(3/2)d Γd∆1−d.

Proof. We define a partition of B, formed by pairwise disjoint subsets C1, C2, . . . of B, defined
inductively as follows. Let s ≥ 1, and suppose that C1, . . . , Cs−1 are defined, and every vertex in A
has at most (2/3)s−1∆ neighbours in D, where D = B \ (C1 ∪ · · · ∪Cs−1). Choose a1, a2, . . . , ak ∈ A
with k maximum such that for 1 ≤ i ≤ k, there are at least (2/3)s∆ vertices in D that are adjacent
to ai and to none of a1, . . . , ai−1. Let Cs be the set of vertices in D adjacent to one of a1, . . . , ak;
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then from the maximality of k, every vertex in A has at most (2/3)s∆ neighbours in D \ Cs. This
completes the inductive definition of C1, C2, . . .. Since every vertex in B has a neighbour in A, it
follows that every vertex in B belongs to some Cs.

(1) For all s ≥ 1, we may assume that |Cs| ≤ 2d+1(2/3)s−sd−1Γd∆1−d.

Let s ≥ 1, and let a1, . . . , ak be as above (that is, chosen with k maximum such that for 1 ≤ i ≤ k,
there are at least (2/3)s∆ vertices in D = B \ (C1∪· · ·∪Cs−1) that are adjacent to ai and to none of
a1, . . . , ai−1.) For 1 ≤ i ≤ k let Pi be the set of vertices in D that are adjacent to ai and to none of
a1, . . . , ai−1; thus each |Pi| ≥ (2/3)s∆. For 1 ≤ i ≤ k, let Qi be the set of vertices in D \Pi adjacent
to ai; thus every vertex in Qi is adjacent to one of a1, . . . , ai−1, and

|Qi| ≤ (2/3)s−1∆− (2/3)s∆ = (2/3)s∆/2

since ai has at most (2/3)s−1∆ neighbours in D. Inductively, for i = k, k − 1, . . . , 1 in turn, we say
that ai is good if at most |Pi|/2 vertices in Pi are adjacent to a good vertex in {ai+1, . . . , ak}. (Thus
ak is good, if k > 0.) Let {ai : i ∈ I} be the set of all good vertices; we claim that |I| ≥ k/2. Let Q
be the union of the sets Qi (i ∈ I); then Q has cardinality at most |I|(2/3)s∆/2. If i ∈ {1, . . . , k}\ I,
then at least |Pi|/2 ≥ (2/3)s∆/2 vertices in Pi belong to Q; and so

(k − |I|)(2/3)s∆/2 ≤ |Q| ≤ |I|(2/3)s∆/2.

Consequently |I| ≥ k/2. For each i ∈ I, let Bi be the set of vertices in Pi that are not in Q; then
|Bi| ≥ (2/3)s∆/2, and ((ai, Bi) : i ∈ I) is an (|I|, (2/3)s∆/2)-comb in (A,B). Let t = |I|; so we may
assume that either t = 0, or (2/3)s∆/2 < Γt−1/d (since otherwise the theorem holds); and in either
case, t < (2Γ(3/2)s/∆)d. Hence k ≤ 2(2Γ(3/2)s/∆)d, and

|Cs| ≤ 2(2Γ(3/2)s/∆)d∆(2/3)s−1.

This proves (1).

Now since d < 1, the sum of (2/3)s−sd−1 over all integers s ≥ 1 equals

(3/2)d

1− (2/3)1−d
,

and so

|B| = |C1|+ |C2|+ · · · ≤
2d+1(3/2)d

1− (2/3)1−d
Γd∆1−d =

3d+1

3/2− (3/2)d
Γd∆1−d.

This proves 2.1.

3 Applying the bipartite lemma

In this section we use 2.1 to prove our key lemma. Given a vertex x ∈ V (G), we will apply 2.1 to the
bipartite graph of edges between A = N(x) and B = V (G) \ (A ∪ {x}). By 2.1, this will either give
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us a large comb ((ai, Bi) : 1 ≤ i ≤ t), or it will show that A has poor expansion. In the first case, we
try to use the comb either to find H or to find many large sets of vertices that are pairwise complete
or pairwise anticomplete; in the second, as there are no edges between G[A] and G[B \ N(A)] we
can handle them separately. In both cases, it will be helpful if the set {a1, . . . , at} is a stable set: it
turns out that we can build this into the key lemma.

Let τ > 0. We say that a graph G is τ -critical if κ(G) < |G|τ , and κ(G′) ≥ |G′|τ for every induced
subgraph G′ of G with G′ 6= G. The next result is the key lemma that unlocked all the main results
in this paper:

3.1 For all δ, ε > 0 with ε < 1/20, there exists τ > 0 with the following property. Let G be a
τ -critical graph, and let X ⊆ V (G) with |X| ≥ δ|G|, such that G[X] has maximum degree at most
εδ|G|. Then there is a (t, δ|G|/(400εt2))-comb ((ai, Bi) : 1 ≤ i ≤ t) of G[X] such that t ≥ 1/(400ε)
and {a1, . . . , at} is stable, and there is a vertex v ∈ X adjacent to a1, . . . , at and with no neighbours
in B1 ∪ · · · ∪Bt.

Proof. Choose τ with 0 < τ < 1 so small that

21−1/τ

δ
+

(
ε+

19

20

)
(εδ)−τ < 1.

(This is possible since ε < 1/20.) We claim that τ satisfies the theorem.
Let G,X be as in the theorem. We may assume that κ(G) ≥ 2. It follows that 2 < |G|τ , and so

|G| > 21/τ .
Let X0 = X. Inductively, given a set Xi−1 ⊆ X with Xi−1 6= ∅, we make the following definitions:

� Let vi ∈ Xi−1 have maximum degree in G[Xi−1].

� Let Ai be the set of neighbours of vi in G[Xi−1] (possibly Ai = ∅).

� Let Ci ⊆ Ai be a stable set with |Ci| ≥ |Ai|τ/ω(G). (This exists, since G is τ -critical. Possibly
Ci = ∅, but only if Ai = ∅.)

� Let Xi be the set of vertices in Xi−1 with no neighbour in {vi} ∪ Ci.

vi CiAi Di Xi

Xi−1

Figure 1: Figure for 3.1

The inductive definition stops when |Xi| = ∅; let this occur when i = s say. Thus we define a nested
sequence of subsets

X = X0 ⊇ X1 ⊇ X2 ⊇ · · · ⊇ Xs = ∅;
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and also vertices vi ∈ Xi−1 \Xi and subsets Ai, Ci ⊆ Xi−1 \Xi for 1 ≤ i ≤ s. Note that there are no
edges between {vi} ∪ Ci and Xj for i < j.

For 1 ≤ i ≤ s, let Di be the set of vertices in Xi−1 not in Ai ∪ {vi}, and with a neighbour in Ci.
Let γ = δ/(400ε).

(1) We may assume that |Di| ≤ 19 (γ|Ai| · |X|/δ)1/2 for 1 ≤ i < s.

From the choice of vi, every vertex in Ci has at most |Ai| neighbours in Di. By 2.1 applied to
the bipartite graph between Ci and Di, replacing Γ,∆, d by γ|X|/δ, |Ai|, 1/2, we deduce that either
for some integer t ≥ 1, there is a (t, γ|X|/(δt2))-comb in (Ci, Di), or

|Di| ≤
33/2

3/2− (3/2)1/2
(γ|X| · |Ai|/δ)1/2.

Suppose the first holds, and let the comb be ((aj , Bj) : 1 ≤ j ≤ t). The sets B1, . . . , Bt are pairwise
disjoint subsets of X, and so tγ|X|/(δt2) ≤ |X|, that is, t ≥ γ/δ = 1/(400ε). Since |X| ≥ δ|G|, it
follows that

γ|X|/(δt2) ≥ γ|G|/t2 = δ|G|/(400εt2);

and therefore in this case the conclusion of the theorem is true. So we may assume that the second
bullet holds. Since 33/2/(3/2− (3/2)1/2) ≤ 19, this proves (1).

For 1 ≤ i ≤ s, let xi = |Ai|/|X|. Since C1 ∪ · · · ∪ Cs is stable, and hence has cardinality at most
α(G), and

|Ci| ≥
|Ai|τ

ω(G)
=

(xi|X|)τ

ω(G)
≥ (xiδ|G|)τ

ω(G)
≥ (xiδ)

τα(G)

for each i, it follows that
∑

1≤i≤s x
τ
i < δ−τ .

Now X is partitioned into the sets {vi} (1 ≤ i ≤ s), Ai (1 ≤ i ≤ s) and Di (1 ≤ i ≤ s), and so∑
1≤i≤s

(1 + |Ai|+ |Di|) = |X|,

that is,
s

|X|
+
∑

1≤i≤s

|Ai|
|X|

+
∑

1≤i≤s

|Di|
|X|

= 1.

We will bound these three terms separately.
First, since {v1, . . . , vs} is stable, it follows that

s

|X|
≤ α(G)

|X|
≤ |G|

τ

|X|
≤ |G|

τ−1

δ
,

and since |G|τ−1 ≤ 21−1/τ (because |G| ≥ 21/τ ), it follows that s/|X| < 21−1/τ/δ.
Second, ∑

1≤i≤s

|Ai|
|X|

=
∑

1≤i≤s
xi =

∑
1≤i≤s

xτi x
1−τ
i ≤

∑
1≤i≤s

xτi ε
1−τ ≤ ε(εδ)−τ
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since xi = |Ai|/|X| ≤ εδ|G|/|X| ≤ ε.
Third, ∑

1≤i≤s

|Di|
|X|
≤ 19

(γ
δ

)1/2 ∑
1≤i≤s

x
1/2
i =

19

20
ε−1/2

∑
1≤i≤s

x
1/2
i

by (1) and the definition of γ; and∑
1≤i≤s

x
1/2
i =

∑
1≤i≤s

xτi x
1/2−τ
i ≤

∑
1≤i≤s

xτi ε
1/2−τ ≤ ε1/2(εδ)−τ .

Consequently ∑
1≤i≤s

|Di|
|X|
≤ 19

20
(εδ)−τ .

Summing, we deduce that
21−1/τ

δ
+

(
ε+

19

20

)
(εδ)−τ ≥ 1,

contrary to the choice of τ . This proves 3.1.

This gives us a (t, δ|G|/(400εt2))-comb. The t2 in the denominator comes from applying 2.1
with d = 1/2; as was observed by Pach and Tomon [19], we could apply 2.1 with d = 1/k, for any
real k > 1, and produced a comb with tk in the denominator, but there is no gain for us in the
applications.

4 The simplest application: excluding C5

In this section we prove 1.4. This is implied by each of several stronger results later in the paper,
but since the C5 result is of great interest, and the argument for C5 is easier than the material
to come later (which will require additional ideas), we give a separate proof. We will need Rödl’s
theorem [20]:

4.1 For every graph H and all ε > 0, there exists δ > 0 such that for every H-free graph G, there
exists X ⊆ V (G) with |X| ≥ δ|G|, such that one of G[X], G[X] has at most ε|X|(|X| − 1) edges.

We also need the following:

4.2 Let G be a graph with at most ε|G|(|G| − 1) edges; then for every integer m ≥ 0 with m ≤
(|G| + 1)/2, there exists X ⊆ V (G) with |X| = m such that G[X] has maximum degree less than
4ε(m− 1).

Proof. By averaging over all subsets Y of V (G) with cardinality 2m− 1, it follows that there exists
such a set Y where G[Y ] has at most ε(2m − 1)(2m − 2) < 4εm(m − 1) edges. Choose X ⊆ Y
with cardinality m, such that |E(G[X])| is as small as possible. Suppose that some u ∈ X has
at least 4ε(m − 1) neighbours in X. It follows from the choice of X that for each v ∈ Y \ X,
|E(G[X ′])| ≥ |E(G[X])|, where X ′ = (X \ {u}) ∪ {v}, and so v has at least 4ε(m − 1) neighbours
in X \ {u}. Since (Y \X) ∪ {u} has cardinality m, the total number of edges between X \ {u} and
(Y \X) ∪ {u} is at least 4εm(m− 1) > |E(G[Y ])|, a contradiction. This proves 4.2.
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We deduce a slight but convenient strengthening of 4.1, the following (this is well-known, but we
include the proof for completeness):

4.3 For every graph H and all ε > 0, there exists δ > 0 such that for every H-free graph G, there
exists X ⊆ V (G) with |X| ≥ δ|G|, such that one of G[X], G[X] has maximum degree at most εδ|G|.

Proof. Let ε′ = ε/4. By 4.1 there exists δ′ > 0 such that for every H-free graph G, there exists
Z ⊆ V (G) with |Z| ≥ δ′|G|, such that one of G[Z], G[Z] has at most ε′|Z|(|Z| − 1) edges. Let
δ = δ′/2; we claim that δ satisfies the theorem. Thus, let G be H-free. By the choice of δ′, there
exists Z ⊆ V (G) with |Z| ≥ δ′|G|, such that one of G[Z], G[Z] has at most ε′|Z|(|Z| − 1) edges. By
replacing G by its complement if necessary, we may assume the first. Let m = dδ|G|e; then

|Z| ≥ dδ′|G|e ≥ 2m− 1.

By 4.2 applied to G[Z], there exists X ⊆ Z with |X| = m such that G[X] has maximum degree less
than 4ε′(m− 1) ≤ εδ|G|. This proves 4.3.

If X ⊆ V (G), we sometimes write α(X) for α(G[X]) and so on. Now we can prove the main
result of this section, which we restate:

4.4 C5 has the Erdős-Hajnal property.

Proof. Choose ε with 0 < ε < 1/400, and choose δ satisfying 4.3 with H = C5. Let τ > 0 satisfy
3.1. Every positive number smaller than τ also satisfies 3.1, and since 400ε < 1, by reducing τ we
may assume that (400ε)2−1/τ > 400ε/δ. We will show that κ(G) ≥ |G|τ for every C5-free graph
G. By the remarks in the introduction, this is equivalent to showing that C5 has the Erdős-Hajnal
property.

Suppose that there is a C5-free graph G with κ(G) < |G|τ , and choose G minimal; then G is
τ -critical. By 4.3 there exists X ⊆ V (G) with |X| ≥ δ|G|, such that one of G[X], G[X] has maximum
degree at most εδ|G|. By replacing G with its complement if necessary (this is legitimate since G
is also C5-free and τ -critical) we may assume that G[X] has maximum degree at most εδ|G|. By
3.1 and the choice of τ , there is a (t, δ|G|/(400εt2))-comb ((ai, Bi) : 1 ≤ i ≤ t) of G[X] such that
t ≥ 1/(400ε) and {a1, . . . , at} is stable, and there is a vertex v ∈ X adjacent to a1, . . . , at and with
no neighbours in B1 ∪ · · · ∪Bt.

If there exist i, j with 1 ≤ i < j ≤ t such that some vertex bi ∈ Bi has a neighbour bj ∈ Bj , then
the subgraph induced on {b1, b2, a1, a2, v} is isomorphic to C5, a contradiction. So the sets B1, . . . , Bt
are pairwise anticomplete. Since G is τ -critical, it follows that κ(Bi) ≥ |Bi|τ for each i, and since
κ(Bi) ≤ α(Bi)ω(G), we have

α(Bi) ≥ |Bi|τ/ω(G) ≥ (δ|G|/(400εt2))τ/ω(G).

Since B1, . . . , Bt are pairwise anticomplete, it follows that

α(G) ≥
∑
1≤i≤t

α(Bi) ≥ t(δ|G|/(400εt2))τ/ω(G),

and so κ(G) ≥ t(δ|G|/(400εt2))τ . Since κ(G) < |G|τ , it follows that 400ε/δ ≥ t1/τ−2. But t ≥
1/(400ε), and τ < 1/2, and so 400ε/δ ≥ (400ε)2−1/τ , contrary to the choice of τ . This proves 4.4.
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5 Blockades

Next we will add some refinements to the proof of 1.4, but first let us set up some more terminology.
Let G be a graph. A pure pair in G is a pair A,B of disjoint subsets of V (G) such that A is either
complete or anticomplete to B. A blockade B in G is a sequence (B1, . . . , Bt) of pairwise disjoint
subsets of V (G) called blocks. (In this paper the order of the blocks B1, . . . , Bt in the sequence will
not matter.) We denote B1 ∪ · · · ∪ Bt by V (B). The length of a blockade is the number of blocks,
and its width is the minimum cardinality of a block.

A blockade B = (B1, . . . , Bt) in G is pure if (Bi, Bj) is a pure pair for all i, j with 1 ≤ i < j ≤ t.
Let P be the graph with vertex set {1, . . . , t}, in which i, j are adjacent if Bi is complete to Bj . We
say P is the pattern of the pure blockade B. A cograph is a P4-free graph. Every cograph P with
more than one vertex admits a pure pair (A,B) with A,B 6= ∅ and with A ∪B = V (P ).

We need:

5.1 Let B = (B1, . . . , Bt) be a pure blockade with a cograph pattern. Then

κ(B1 ∪ · · · ∪Bt) ≥
∑
1≤i≤t

κ(Bi).

Proof. We proceed by induction on t. If t = 1 the claim is true, so we assume t > 1. Hence there is
a partition (I, J) of {1, . . . , t}, with I, J 6= ∅, such that either Bi is complete to Bj for all i ∈ I and
j ∈ J , or Bi is anticomplete to Bj for all i ∈ I and j ∈ J . We may assume the second by replacing
G by its complement if necessary. Let V = V (B), and U =

⋃
i∈I Bi, and W =

⋃
j∈J Bj . Thus U is

anticomplete to W . From the inductive hypothesis, κ(U) ≥
∑

i∈I κ(Bi) and κ(W ) ≥
∑

j∈J κ(Bj).
But

κ(V ) = α(V )ω(V ) = (α(U) + α(W ))ω(V ) ≥ α(U)ω(U) + α(W )ω(W ) = κ(U) + κ(W ),

and the result follows. This proves 5.1.

The following is a slight extension of an idea of Pach and Tomon [19] (which they called the
“quasi-Erdős-Hajnal property”):

5.2 Let τ > 0, and suppose that G is τ -critical. Then for every integer t > 0, there is no pure
blockade in G with a cograph pattern, of length t and width at least |G|t−1/τ , such that Bi 6= V (G)
for each i.

Proof. Suppose that B = (B1, . . . , Bt) is such a blockade. Since G is τ -critical, κ(Bi) ≥ |Bi|τ ≥
|G|τ/t for each i, and so by 5.1,

κ(G) ≥ κ(B1 ∪ · · · ∪Bt) ≥
∑
1≤i≤t

κ(Bi) ≥ |G|τ ,

a contradiction. This proves 5.2.
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6 Forests and their complements

The proof of 4.4 can be developed to give more. We have two ways to do so, and in this section we
explain the first.

If H is a graph, we wish to augment it in two ways. Let the vertices of H be {b1, . . . , bk}, and
add k + 1 new vertices a1, . . . , ak, v to V (H), where ai is adjacent to bi for 1 ≤ i ≤ k, and v is
adjacent to a1, . . . , ak, and there are no other edges. Let the graph we obtain be H ′. We call H ′ a
star-expansion of H.

In this section we will prove:

6.1 Let H be a forest. Let H1 be the star-expansion of H, and let H2 be the star-expansion of H.
Then

{H1, H2, H1, H2}

has the Erdős-Hajnal property.

6.1 is particularly nice when H = P4, since P4 is isomorphic to its complement, and so we only
have to exclude two graphs instead of four. We obtain:

6.2 Let H be the graph of figure 2; then {H,H} has the Erdős-Hajnal property.

Figure 2: The star-expansion of P4.

This contains 1.4, 1.9 and 1.10, because the graph of figure 2 contain C5, C6 and C7. (The
approach via 6.1 does not work for C8, C8, because there is no forest H such that the star-expansion
of H contains one of C8, C8.)

If B = (B1, . . . , Bt) is a blockade in G, we say an induced subgraph H of G is B-rainbow if
V (H) ⊆ V (B) and |Bi ∩ V (H)| ≤ 1 for 1 ≤ i ≤ t. To prove 6.1 we need the following theorem of [8]:

6.3 For every forest H, there exist d > 0 and an integer K with the following property. Let G be
a graph with a blockade B of length at least K, and let W be the width of B. If every vertex of G
has degree less than W/d, and there is no anticomplete pair A,B ⊆ V (G) with |A|, |B| ≥W/d, then
there is a B-rainbow copy of H in G.

We used this in [8] to deduce that for every forest H, the set {H,H} has the Erdős-Hajnal
property. We see that 6.1 (applied to the forest H) will be an extension of that result, since the four
graphs of 6.1 all contain one of H,H.

To prove 6.1, we need to bootstrap 6.3 into something stronger, and we do so in several stages.
We will use a strengthening of 4.1, due to Nikiforov [18], the following:
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6.4 For all ε > 0 and every graph H on h vertices, there exist γ, δ > 0 such that if G is a graph
containing fewer than γ|G|h induced labelled copies of H, then there exists X ⊆ V (G) with |X| ≥ δ|G|
such that one of G[X], G[X] has at most ε|X|(|X| − 1) edges.

Applying 4.2 as before yields:

6.5 For all ε > 0 and every graph H on h vertices, there exist γ, δ > 0 such that if G is a graph
containing fewer than γ|G|h induced labelled copies of H, then there exists X ⊆ V (G) with |X| ≥ δ|G|
such that one of G[X], G[X] has maximum degree at most εδ|G|.

Let us prove a version of 6.3 without the sparsity hypothesis:

6.6 For every forest H, there exist d > 0 and an integer K, such that, for every graph G with a
blockade B of length at least K, if there is no pure pair A,B ⊆ V (G) with |A|, |B| ≥W/d, where W
is the width of B, then there is a B-rainbow copy of one of H,H in G.

Proof. Choose d′,K ′ to satisfy 6.3 (with d,K replaced by d′,K ′). Let ε ≤ 1/(2d′K ′) with ε > 0,
and choose γ, δ > 0 to satisfy 6.5. Choose K ≥ 2K ′/δ, and such that (1− h/K)h > 1− γ. Choose d
such that d ≥ d′K ′/(δK −K ′). We claim that K, d satisfy the theorem.

(1) δK/K ′ − 1 ≥ max (εδd′K, d′/d).

To see that δK/K ′ − 1 ≥ εδd′K, observe that δK/(2K ′) ≥ 1, and δK/(2K ′) ≥ εδd′K. The second
part, that δK/K ′ − 1 ≥ d′/d, is true from the choice of d. This proves (1).

Let G be a graph with a blockade B = (B1, . . . , BK) and of width W . We may assume that
|Bi| = W for each i, and so |V | = KW , where V = B1 ∪ · · · ∪ BK . We assume that there is no
B-rainbow copy of H. But the number of sequences (v1, . . . , vh) with v1, . . . , vh ∈ V , such that
v1, . . . , vh all belong to different blocks of the blockade, is

|V |(|V | −W )(|V | − 2W ) · · · (|V | − (h− 1)W ) > (1− h/K)h|V |h ≥ (1− γ)|V |h,

and since none of them induce a B-rainbow copy of H, it follows that the number of induced labelled
copies of H in G[V ] is less than |V |h − (1 − γ)|V |h = γ|V |h. By 6.5 applied to G[V ], there exists
X ⊆ V with |X| ≥ δKW , such that one of G[X], G[X] has maximum degree less than εδKW ; and
by replacing G by G if necessary, we may assume that G[X] has maximum degree less than εδKW .
By (1), there exists a real number W ′ such that

δK

K ′
− 1 ≥ W ′

W
≥ max

(
εδd′K,

d′

d

)
.

The sets B1 ∩X, . . . , BK ∩X each have cardinality at most W , but their union has cardinality
at least δKW . Let us choose pairwise disjoint subsets I1, . . . , It of {1, . . . ,K}, with t maximum such
that |B′h| ≥W ′ for 1 ≤ h ≤ t, where B′h =

⋃
i∈Ih Bi ∩X. We may assume that I1, . . . , It are minimal

with this property, and so |B′h| ≤W ′ +W for 1 ≤ h ≤ t. From the maximality of t,∑
(|Bi ∩X| : i ∈ {1, . . . , t} \ I1 ∪ · · · ∪ It) < W ′;
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and so δKW ≤ |X| ≤ t(W ′ +W ) +W ′. Since δK/K ′ − 1 ≥W ′/W it follows that t ≥ K ′.
Let B′ be the blockade (B′1, . . . , B

′
K′); it has width at least W ′.

(2) There is a B′-rainbow copy of H.

Suppose not. Let G′ = G[B′1 ∪ · · · ∪B′K′ ]. By 6.3 applied to G′, either

� some vertex of G′ has degree at least W ′/d′; or

� there is an anticomplete pair A,B ⊆ V (G′) with |A|, |B| ≥W ′/d′.

But the first does not hold, since G′ has maximum degree less than εδKW ≤W ′/d′; and the second
does not hold, since W ′/d′ ≥ W/d and there is no pure pair (A,B) in G with |A|, |B| ≥ W/d. This
proves (2).

The B′-rainbow copy of H in (2) is also B-rainbow. This proves 6.6.

6.7 For every forest H, there exist an integer d > 0, such that, for every integer s ≥ 1 and every
graph G, the following holds. Let D = 2s−1d2s−1, and let B be a blockade in G of length D. Then
either

� G admits a pure blockade A with a cograph pattern, of length 2s and width at least W/D, where
W is the width of B; or

� there is a B-rainbow copy of one of H,H in G.

Proof. Choose K, d to satisfy 6.6. Then any pair of numbers K ′, d′ with K ′ ≥ K and d′ ≥ d also
satisfy 6.6, so by increasing K or d if necessary, we may assume that K = d. We claim that d satisfies
6.7. This is true if s = 1, from the choice of d, and so we assume it is true for some s ≥ 1 and prove
it for s+ 1.

Let D = 2sd2s+1, and let G be a graph with a blockade B = (B1, . . . , BD) of width W . Partition
{1, . . . , D} into d sets of cardinality D/d, say I1, . . . , Id. Let B′h =

⋃
i∈Ih Bi for 1 ≤ i ≤ d; then

B′ = (B′1, . . . , B
′
d) is a blockade of length d and width WD/d. Let G′ = G[B1 ∪ · · · ∪ BD]. We may

assume there is no B′-rainbow copy of H or of H in G′; so from the choice of d, there is a pure pair
(A,B) of G′ with |A|, |B| ≥WD/d2.

Let W ′ = W/(2d2), and D′ = 2s−1d2s−1. Let p be the number of i ∈ {1, . . . , D} such that
|A ∩ Bi| ≥ W ′. Then pW + DW ′ ≥ |A| ≥ WD/d2, and so p ≥ D/(2d2) = D′. Let C be the
blockade formed by the D′ largest sets of the form A ∩ Bi; then C has width at least W ′, and we
may assume that there is no C-rainbow copy of H or of H. Thus the inductive hypothesis, applied
to the blockade C of G[A] implies that G[A] admits a pure blockade with a cograph pattern, of width
at least W ′/D′ = W/D and length 2s; and similarly so does G[B]. But then combining these gives
a pure blockade in G with a cograph pattern, of width at least W/D and length 2s+1. This proves
6.7.
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Now finally we can prove 6.1, which we restate:

6.8 Let H be a forest. Let H1 be the star-expansion of H, let H2 be the star-expansion of H, and
let

H = {H1, H2, H1, H2}.
Then H has the Erdős-Hajnal property.

Proof. Much of the proof is the same as for 4.4. Let d satisfy 6.7. Choose ε > 0 with ε < 1/(400d),
choose δ to satisfy 4.3 with H = H1, and let γ = δ/(400ε). Choose τ > 0 satisfying 3.1, such that
1/τ > 3 + 6 log2(d), and such that 2qd2q+1 < 1/(400ε) where

q =
log2(d)− log2(γ)

1/τ − 3− 6 log2(d)
.

(We can satisfy the last condition since by making τ sufficiently small we can make q arbitrarily close
to 0, and hence make 2qd2q+1 arbitrarily close to d < 1/(400ε).)

As in the proof of 4.4, we may assume that there is a τ -critical H-free graph G, and there exists
X ⊆ V (G) with |X| ≥ δ|G|, such that G[X] has maximum degree at most εδ|G|.

By 3.1 and the choice of τ , there is a (t, γ|G|/t2)-comb ((ai, Bi) : 1 ≤ i ≤ t) of G[X] such that
t ≥ 1/(400ε) and {a1, . . . , at} is stable, and there is a vertex v ∈ X adjacent to a1, . . . , at and with
no neighbours in B1 ∪ · · · ∪Bt. Let B = (B1, . . . , Bt).

(1) There is a B-rainbow copy of H or of H.

Suppose not. Choose an integer s maximum such that Ds ≤ t, where Ds = 2s−1d2s−1. Thus
Ds+1 > t. Since Dq+1 ≤ 1/(400ε) ≤ t, it follows that s > q.

By 6.7, G admits a pure blockade A with a cograph pattern, of width at least γ|G|/(t2Ds) and
length 2s. By 5.2, γ|G|/(t2Ds) < |G|(2s)−1/τ , that is, γ < t2Ds2

−s/τ . The maximality of s implies
that 2sd2s+1 ≥ t, and so, substituting for t and for Ds, we obtain

γ < 22sd4s+22s−1d2s−12−s/τ .

It follows that log2(γ) + s/τ − 3s+ 1 < (6s+ 1) log2(d), and so(
1

τ
− 3− 6 log2(d)

)
s < log2(d)− log2(γ).

Hence s < q, a contradiction. This proves (1).

But now the result follows as in 4.4. This proves 6.1.

7 Excluding a forest complement

If H is a forest, then since two of the four graphs of 6.1 contain H, it follows that the set consisting
of H and the remaining two graphs in 6.1 has the Erdős-Hajnal property. But we can do better
than this: it is sufficient just to exclude one of the remaining two, as we show in this section. This
is proved by a slight variation in the proof of 6.1.

We will need the following theorem of [8] (it is a consequence of 6.3):
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7.1 For every forest H, there exists ε > 0 such that if a graph G with |G| > 1 has maximum
degree less than ε|G|, and has no anticomplete pair of sets A,B ⊆ V (G) with |A|, |B| ≥ ε|G|, then
G contains H.

We use this to prove:

7.2 Let H be a forest, and let H ′ be the star-expansion of H. Then H = {H,H ′} has the Erdős-
Hajnal property.

Proof. We define d, ε, δ, τ and the rest, exactly as in the proof of 6.1, except we choose ε satisfying
7.1 as well as the other conditions, and choose τ such that εδ > 2−1/τ as well as the other conditions.

As before, we may assume that there is a τ -critical H-free graph G, and there exists X ⊆ V (G)
with |X| ≥ δ|G|, such that one of G[X], G[X] has maximum degree at most εδ|G|. (We are not
free to replace G by its complement, since the class of H-free graphs is not closed under taking
complements.)

Suppose that G[X] has maximum degree at most εδ|G|. By 7.1 applied to G, there exist disjoint
A,B ⊆ X, with A complete to B, and with |A|, |B| ≥ εδ|G|. By 5.2, εδ|G| < |G|2−1/τ , and so
εδ < 2−1/τ , contrary to the choice of τ .

Thus G[X] has maximum degree at most εδ|G|. Exactly as in the proof of 6.1, we obtain the
blockade B, and prove there is a B-rainbow copy of H or of H. The second is impossible since G is
H-free; and so G contains the star-expansion of H. This proves 7.2.

We see that 1.6 follows from 7.2, by applying 7.2 to a forest H ′ containing H and containing a
path of length at least |E(C)|− 4 (because then the star-expansion of H ′ contains C.) The following
is a theorem of Bonamy, Bousquet and Thomassé [3]:

7.3 For every integer ` > 0, there exists ε > 0 such that if G has maximum degree less than ε|G|,
and G has no anticomplete pair (A,B) with |A|, |B| ≥ ε|G|, then G has a hole of length at least `.

The proof of 7.2 can be modified to show the following, by using 7.3 in place of 7.1 (we omit the
details):

7.4 Let H be the star-expansion of a forest; then for every integer ` ≥ 3,

{H,C`, C`+1, C`+2, . . .}

has the Erdős-Hajnal property.

This implies 1.7, by letting H be the star-expansion of a path of length |E(C)| − 4. (We may
assume that C has length at least five, because it is known that C3, C4 both have the Erdős-Hajnal
property.)

8 C5 with a hat

There is still one result mentioned in the introduction that is not contained in any of the results we
proved so far, namely 1.8, and now we will prove that.

8.1 H = {Ĉ5, Ĉ5} has the Erdős-Hajnal property.
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Proof. We proceed as usual: as in all these proofs, we choose a suitable ε ≤ 1/20, choose δ satisfying
4.3, and then choose τ > 0 satisfying 3.1, and we can also make τ less than any positive function of
the other parameters we choose. Let us see what we need.

We may assume (for a contradiction) that there is a τ -critical H-free graph G; and there exists
X ⊆ V (G) with |X| ≥ δ|G|, such that G[X] has maximum degree at most εδ|G|. (We can pass to the
complement if necessary.) Let γ = δ/(400ε). By 3.1, there is a (t, γ|G|/t2)-comb ((ai, Bi) : 1 ≤ i ≤ t)
of G[X] such that t ≥ 1/(400ε) and {a1, . . . , at} is stable, and there is a vertex v ∈ X adjacent to
a1, . . . , at and with no neighbours in B1 ∪ · · · ∪Bt.

(1) For 1 ≤ i ≤ t, there is a component G[Di] of G[Bi] with |Di| ≥ γ|G|/t3.

Suppose not, say for i = 1. Choose s maximum such that there are s subgraphs F1, . . . , Fs of
G[B1], pairwise disjoint, each a union of components of G[B1], and each with at least γ|G|/t3 ver-
tices. We may assume that each Fj is minimal, and so has at most 2γ|G|/t3 vertices, since each
component of G[B1] has at most γ|G|/t3 vertices. Thus F1 ∪ · · · ∪Fs has at most 2sγ|G|/t3 vertices,
and so there are at least γ|G|/t2 − 2sγ|G|/t3 vertices of B1 not in any of F1, . . . , Fs. From the max-
imality of s, γ|G|/t2 − 2sγ|G|/t3 < γ|G|/t3, and so t− 2s < 1. Hence s ≥ t/2. But this contradicts
5.2, since we will arrange that γ|G|/t3 ≥ |G|(t/2)−1/τ . To ensure this last, arrange at the start of
the proof that t1−3τ ≥ 4, by choosing 1/(400ε) ≥ 16 and τ ≤ 1/6, and arrange that γτ ≥ 1/2, by
choosing τ very small. This proves (1).

(2) D = (D1, . . . , Dt) is a pure blockade.

Suppose not; then there exist distinct i, j ∈ {1, . . . , t}, such that some vertex u ∈ Dj has both
a neighbour and a non-neighbour in Di. Since G[Di] is connected, there is an edge xy of G[Di]
such that u is adjacent to x and not to y; and then the subgraph induced on {v, ai, aj , x, y, u} is

isomorphic to Ĉ5, a contradiction. This proves (2).

(3) There is no D-rainbow triangle.

Suppose there is, and so G contains the star-expansion of K3; but the star-expansion of K3 contains
Ĉ5, a contradiction. This proves (3).

Let P be the pattern of the pure blockade D. Since P is triangle-free by (3), and |P | = t, it
follows that there is a stable set I of P with cardinality at least t1/2/2. Hence the sets Di (i ∈ I)
are pairwise anticomplete, but we will arrange that γ|G|/t3 ≥ |G|(t1/2/2)−1/τ , a contradiction to
5.2. To ensure this last, we arrange at the start of the proof that 1/(400ε) ≥ 256 and τ ≤ 1/12,
implying that t ≥ 256 and t1/2−3τ ≥ 4; and arrange that γτ ≥ 1/2 by choosing τ sufficiently small.
This proves 1.8.
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tipaths”, J. Combinatorial Theory, Ser. B, 113 (2015), 261–264.

[5] K. Choromanski, D. Falik, A. Liebenau, V. Patel, and M. Pilipczuk, “Excluding hooks and their
complements”, Electronic J. Combinatorics 25 #P3.27, arXiv:1508.00634.

[6] M. Chudnovsky, J. Fox, A. Scott, P. Seymour and S. Spirkl, “Towards Erdős-Hajnal for graphs
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Erdős, (R. L. Graham and J. Nešetřil, eds.), Algorithms and Combinatorics 14, Volume II,
Springer-Verlag, Heidelberg, 1997, 93–98.

[17] A. Liebenau, M. Pilipczuk, P. Seymour and S. Spirkl, “Caterpillars in Erdős-Hajnal”, J. Com-
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