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Abstract

A hole in a graph is an induced subgraph which is a cycle of length at least four. We prove that
for all ν > 0, every triangle-free graph with sufficiently large chromatic number contains holes of ν
consecutive lengths.



1 Introduction

All graphs in this paper are finite and without loops or parallel edges. A hole in a graph is an induced
subgraph which is a cycle of length at least four, and a hole is odd if its length is odd. A triangle in
G is a three-vertex complete subgraph, and a graph is triangle-free if it has no triangle. In this paper
we are concerned with the chromatic number of triangle-free graphs that have no holes of certain
specified lengths.

What can we say about the hole lengths in triangle-free graphs with large chromatic number?
There are three well-known conjectures of Gyárfás [6], the third implying the first two, as follows:

1.1 Conjecture: For all k, `, there exists n such that if G has no clique of cardinality k and has
chromatic number at least n, then

• G has an odd hole;

• G has a hole of length at least `; and

• G has an odd hole of length at least `.

The first conjecture was proved in [7], and the second in [4]. There are a few other results about the
lengths of holes in a graph G with (sufficiently) large chromatic number:

• G contains a large clique or an even hole [1];

• G contains a large clique or a hole of length 5 or a long hole [3];

• G contains a triangle or an odd hole of length at least seven [3]; and

• G contains a triangle or a hole of length a multiple of three [2].

Since this paper was submitted, there has been some further progress. In joint work with Maria
Chudnovsky and Sophie Spirkl [5], we proved the third conjecture of Gyárfás. Finally, in recent work
[8], we proved the following result, which gives a common generalization of all the results mentioned
above.

1.2 For all k, s, t, there exists n such that if G has no clique of cardinality k and has chromatic
number at least n, then G has a hole of length s modulo t.

In this paper we consider the case k = 3. In this case, we show that a far stronger result holds.
The main result of this paper is:

1.3 For all integers ν > 0 there exists n such that if G is triangle-free with chromatic number at
least n, then for some t, G has a hole of length t+ i for 1 ≤ i ≤ ν.

This contains as special cases the k = 3 cases of all the results mentioned above. We conjecture that
the corresponding result is true for graphs with bounded clique number rather than just triangle-free
graphs, but so far we have made no progress in proving this.

Let us mention in passing a much more general question, which seems to be interesting even
though we cannot answer it. Let us say a set F of integers is k-constricting if there exists n such
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that every graph with chromatic number at least n contains either a clique with k vertices or a
hole with length in F . Say that F is constricting if it is k-constricting for every k. Which sets are
constricting? Certainly every constricting set is infinite, because there are graphs with arbitrarily
large chromatic number and arbitrarily large girth. On the other hand, a consequence of our main
result is the following.

1.4 Let F be an infinite set of positive integers with bounded gaps. Then F is 3-constricting.

As noted above, we conjecture that the following more general result should hold.

1.5 Conjecture: Let F be an infinite set of positive integers with bounded gaps. Then F is con-
stricting.

The only source we know for examples of infinite sets that are not constricting is the following.
Let G1 be the null graph; for each i > 1; let Gi be a triangle-free graph with girth at least 2|V (Gi−1)|

and chromatic number at least i; and let F be the set of all cycle lengths that do not occur in any
Gi. Then F is not constricting, and yet F has upper density 1. This shows that not every infinite
set is constricting, not even sets with upper density one. Lower density seems to be closer to the
truth. We have not been able to rule out the possibility a set is constricting if and only if it has
strictly positive lower density, although this does not seem likely. It would be interesting to answer
the following question.

1.6 Problem: Is there an infinite set F of positive integers such that F is constricting and has
density 0?

We conjecture that the answer is positive. In fact, perhaps an even stronger statement holds.

1.7 Problem: Is there an infinite set F = {f1, f2, . . . } of positive integers such that F is constrict-
ing and fi+1 − fi →∞ as i→∞?

It would be very interesting to answer these questions even in the case of 3-constricting sets.

2 Chromatic number and radius

The proof of 1.3 breaks into three cases, depending on the chromatic number of the subgraphs within
a fixed distance of a vertex (even if we just want to prove the long odd holes conjecture). Let us
describe this more exactly. If X ⊆ V (G), the subgraph of G induced on X is denoted by G[X], and
we often write χ(X) for χ(G[X]). The distance (denoted by dG(u, v) or d(u, v)) between two vertices
u, v of G is the length of a shortest path between u, v, or ∞ if there is no such path. If v ∈ V (G)
and ρ ≥ 0 is an integer, Nρ

G(v) or Nρ(v) denotes the set of all vertices with distance exactly ρ from
v, and Nρ

G[v] or Nρ[v] denotes the set of all vertices with distance at most ρ from v. We denote the
maximum over all v ∈ V (G) of χ(Nρ

G[v]) by χρ(G) (setting χρ(G) = 0 for the null graph).
Since we are only concerned with triangle-free graphs, it follows that χ1(G) ≤ 2, but there may be

vertices v such that χ(N2
G[v]) is large, and such vertices cause difficulties. If we can find an induced

subgraph H with large chromatic number such that χ2(H) is bounded, then we might as well replace
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G by H. If we cannot find such a subgraph, then we will prove that for all ` ≥ 5, G has a hole of
length ` (if its chromatic number is large enough in terms of `).

Next we assume χ2(G) is bounded. If there is an induced subgraph H with large chromatic
number and with χ3(H) bounded, we might as well pass to that; and if not, we prove that G
contains holes of any fixed length (except very short ones) if χ(G) is large enough. And the same
for χρ(G) for all bounded ρ.

Finally, we assume χρ(G) is bounded, for some appropriately large ρ. (We need ρ to be expo-
nentially large in terms of ν.) In that case we prove that G contains holes of ν consecutive lengths
(but the smallest of them might be arbitrarily large).

Let us say this more precisely. Let ν ≥ 0; a hole ν-interval in a graph G is a sequence C1, . . . , Cν
of holes in G, such that |E(Ci+1)| = |E(Ci)|+1 for 1 ≤ i < ν (thus, ν holes with consecutive lengths).
Let N denote the set of nonnegative integers, and let φ : N → N be a non-decreasing function. For
ρ ≥ 1, let us say a graph G is (ρ, φ)-controlled if χ(H) ≤ φ(χρ(H)) for every induced subgraph H of
G. Roughly, this says that in every induced subgraph H of G with large chromatic number, there is
a vertex v such that H[Nρ

H [v]] has large chromatic number.
We will show the following three statements:

2.1 Let φ : N → N be a non-decreasing function; then for all ` ≥ 5 there exists n such that every
(2, φ)-controlled triangle-free graph with chromatic number more than n has an `-hole.

2.2 Let ρ > 2 and ` ≥ 4ρ(ρ + 2) be integers. For every non-decreasing function φ : N → N there
is a non-decreasing function φ′ with the following property. Let G be a (ρ, φ)-controlled triangle-free
graph. Then either G is (2, φ′)-controlled or G has an `-hole.

2.3 Let ν ≥ 2; then there exist ρ > 0 and a non-decreasing function φ with the following property.
If G is a triangle-free graph then either G is (ρ, φ)-controlled or G admits a hole ν-interval.

2.1 might be true when ` = 4 as well, but we have not been able to decide this. 2.1 is easy for
` ≤ 6, and in another paper [3] (with Maria Chudnovsky) we proved it for ` = 7, expecting that to be
the easiest of the open cases. By a happy coincidence, ` = 7 turns out to be the one case that is not
handled by the proof method of the present paper. Let us see that these three together imply 1.3.

Proof of 1.3, assuming 2.1, 2.2, 2.3. Let ν ≥ 2, and let ρ and φ be as in 2.3. Let `0 = 4ρ(ρ+ 2),
and for i = 1, . . . , ν − 1 let `i = `0 + i. By 2.2, for each i ∈ {0, . . . , ν − 1} there is a function φ′ as in
2.2 (with ` replaced by `i); define φi = φ′. Thus φ0, . . . , φν−1 are all non-decreasing functions; define

ψ(κ) = max(φ0(κ), . . . , φν−1(κ))

for κ ≥ 0. Thus ψ is non-decreasing. Now by 2.1 (with φ replaced by ψ) for ` = 5, . . . , ν + 4 there
exists n as in 2.1; let n` = n. Let n = max(n5, . . . , nν+4).

We claim that every triangle-free graph with chromatic number more than n admits a hole ν-
interval. For let G be such a graph, and suppose it admits no hole ν-interval. From the choice of ρ
and φ, it follows that G is (ρ, φ)-controlled. For some i ∈ {0, . . . , ν − 1}, G has no `i-hole; so from
the choice of φi, G is (2, φi)-controlled and hence (2, ψ)-controlled. For some ` ∈ {5, . . . , ν + 4}, G
has no `-hole; and so from the choice of n`, χ(G) ≤ n` ≤ n. This proves 1.3.
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The three statements 2.1, 2.2, 2.3 will be proved in separate parts of the paper. By far the most
difficult is 2.3. If all we want is the long odd holes conjecture, then we still need most of the two
easier results 2.2 and 2.1, but we could skip most of the proof of 2.3; indeed, we need nothing after
8.1.

3 Radius 2

In this section we prove 2.1. We begin with the following:

3.1 Let φ : N→ N be non-decreasing, and let G be triangle-free and (2, φ)-controlled.

• If χ(G) > φ(2) then G has a 5-hole.

• If χ(G) > φ(3) then G has a 6-hole.

• If χ(G) > φ(φ(φ(2φ(2) + 2) + 1) + 1) then G has a 7-hole.

Proof. The first statement was proved in [3], but we repeat the proof because it is easy. Suppose
that χ(G) > φ(2), and let v be a vertex such that χ(G) ≤ φ(χ(N2[v])). It follows that χ(N2[v]) > 2,
and so there are two adjacent vertices x, y ∈ N2(v). Since G is triangle-free, x, y, v, together with
two vertices of N1(v) adjacent to x, y respectively, form a 5-hole.

For the second statement, let χ(G) > φ(3), and choose a vertex v such that χ(G) ≤ φ(χ(N2[v])).
It follows that χ(N2[v]) > 3, and so χ(N2(v)) > 2; and hence there is an odd hole P in G[N2(v)].
Let P have vertices p1-p2- · · · -pn-p1 in order, where n ≥ 5. Choose S ⊆ N1(v) minimal such that
every vertex in V (P ) has a neighbour in S. Let si ∈ S be adjacent to pi for 1 ≤ i ≤ n. (Possibly
s1, . . . , s5 are not all distinct.) For each s ∈ S, some vertex in P is adjacent to s and to no other
vertex in S, from the minimality of S. Consequently we may assume that p3 is adjacent to s3 ∈ S
and has no other neighbour in S. If p1 is nonadjacent to s3 then v-s1-p1-p2-p3-s3-v is a 6-hole as
required, so we may assume that p1 is adjacent to s3, and similarly p5 is adjacent to s3. Hence p1, p5
are nonadjacent since G is triangle-free, and so n ≥ 7. If s2, s4 are nonadjacent to p4, p2 respectively
then v-s2-p2-p3-p4-s4-v is a 6-hole, so we may assume that one of s2, s4 is adjacent both of p2, p4, say
s2. But then s3-p1-p2-s2-p4-p5-s3 is a 6-hole.

The third statement is proved in [3]. This proves 3.1.

Let X ⊆ V (G). A t-trellis on X in G is a subgraph H of G with the following properties.

• X ⊆ V (H), and V (H) \X consists of the disjoint union of four sets {a1, . . . , at}, {b1, . . . , bt},
{ax,j : x ∈ X, 1 ≤ j ≤ t} and {bx,j : x ∈ X, 1 ≤ j ≤ t}.

• The edges of H are as follows:

– ajbj for 1 ≤ j ≤ t;
– xax,j and xbx,j for x ∈ X and 1 ≤ j ≤ t; and

– ax,jaj and bx,jbj for x ∈ X and 1 ≤ j ≤ t.
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(Thus, to construct H we start with Ks,2t, with bipartition X and Y say, where |X| = s;
subdivide all its edges; and then add a matching pairing up the vertices in Y .)

• For all distinct u, v ∈ V (H), if u, v are adjacent in G and nonadjacent in H then there exist
x, x′ ∈ X and j ∈ {1, . . . , t} such that {u, v} = {ax,j , bx′,j}. (In particular, X is stable.)

We also need a modification of this. An extended t-trellis on X in G is a subgraph H of G with
the following properties.

• X ⊆ V (H), and V (H)\X consists of the disjoint union of four sets {a0, a1, , . . . , at}, {b0, b1, . . . , bt},
{ax,j : x ∈ X, 0 ≤ j ≤ t} and {bx,j : x ∈ X, 0 ≤ j ≤ t}, together with one more vertex c0.

• The edges of H are as follows:

– a0c0 and c0b0;

– ajbj for 1 ≤ j ≤ t;
– xax,j and xbx,j for x ∈ X and 0 ≤ j ≤ t; and

– ax,jaj and bx,jbj for x ∈ X and 0 ≤ j ≤ t.

• For all distinct u, v ∈ V (H), if u, v are adjacent in G and nonadjacent in H then there exist
x, x′ ∈ X and j ∈ {0, . . . , t} such that {u, v} = {ax,j , bx′,j}.

We need both these definitions; we will show that certain graphs contain extended trellises, and
to do so we first show they contain trellises, and then find the extension.

3.2 For every integer ` ≥ 8, there exists t ≥ 0 with the following property. Let G be a graph, let
X ⊆ V (G) with |X| = t, and let H be an extended t-trellis on X. Then G has an `-hole.

Proof. By Ramsey’s theorem, there exists t ≥ 0 such that if A is the set of all triples (i, i′, j)
with 1 ≤ i < i′ ≤ t and 1 ≤ j ≤ t, and we partition A into two subsets A1, A2, then there exist
R,S ⊆ {1, . . . , n} with |R|, |S| ≥ `, such that the triples (i, i′, j) with i < i′ ∈ R and j ∈ S either all
belong to A1 or all belong to A2. We claim that n satisfies the theorem.

For let G,X,H be as in the theorem. Let X = {x1, . . . , xt}, and let us write ai,j , bi,j for axi,j
and bxi,j respectively. Let A1 be the set of all triples (i, i′, j) with 1 ≤ i < i′ ≤ t and 1 ≤ j ≤ t
such that ai,j , bi′,j are nonadjacent, and let A2 be the set of all such triples such that ai,j , bi′,j are
adjacent. From the choice of t, we may assume that for some k ∈ {1, 2}, (i, i′, j) ∈ Ak for all i, i′, j
with 1 ≤ i < i′ ≤ ` and 1 ≤ j ≤ `.

For 1 ≤ i < ` let Pi be the path xi-ai,i+1-ai+1-ai+1,i+1-xi+1. If k = 1 let Qi be the path
xi-ai,i+1-ai+1-bi+1-bi+1,i+1-xi+1, and if k = 2 let Qi be the path xi-ai,i+1-bi+1,i+1-xi+1. Thus Pi has
length four, and Qi has length five if k = 1, and three if k = 2.

Suppose that ` is a multiple of four, say ` = 4p. Then the union of P1, . . . , Pp−1 and the path
x1-a1,1-a1-ap,1-xp is a hole of length ` as required. Thus we may assume that ` is not a multiple of
four.

If k = 2, choose integers p, q ≥ 0 such that ` = 4p+3q and q > 0; then the union of Qi (1 ≤ i < q),
Pi (q ≤ i < p+ q), and x1-a1,1-bp+q,1-xp+q is the desired hole.
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Thus we may assume that k = 1. If ` 6= 11, then, since 4 does not divide `, ` can be expressed
as 4p + 5q where p, q are nonnegative integers and q > 0; and the union of Qi (1 ≤ i < q),
Pi (q ≤ i < p+ q), and x1-a1,1-a1-b1-bp+q,1-xp+q is the desired hole.

Finally we may assume that ` = 11. If a1,0, b2,0 are nonadjacent then the union of Q1 and
x1-a1,0-a0-c0-b0-b2,0-x2 is the desired hole; while if a1,0, b2,0 are adjacent then the union of P2,
x1-a1,0-b2,0-x2, and x1-a1,3-a3-a3,3-x3 is the desired hole. This proves 3.2.

We remark that we only used the “extended” part of the trellis in 3.2 for the case ` = 11. To
prove the result just for ` ≥ 8 and ` 6= 11, the same proof would work for a (non-extended) trellis.

We also need another definition. Let x ∈ V (G), let N be some set of neighbours of x, and let
C ⊆ V (G) be disjoint from N ∪ {x}, such that every vertex in C is nonadjacent to x and has a
neighbour in N . In this situation we call (x,N) a cover of C in G. For C,X ⊆ V (G), a multicover
of C in G is a family (Nx : x ∈ X) such that

• for each x ∈ X, (x,Nx) is a cover of C;

• for all distinct x, x′ ∈ X, x′ has no neighbour in {x}∪Nx (and in particular all the sets {x}∪Nx

are pairwise disjoint).

If in addition we have

• for all distinct x, x′ ∈ X, no vertex in Nx′ has a neighbour in Nx,

we call (Nx : x ∈ X) an independent multicover.

3.3 For all t, κ ≥ 0, there exist τ,m ≥ 0 with the following property. Let G be a triangle-free
graph such that every induced subgraph of G with chromatic number more than κ has a 5-hole. Let
C ⊆ V (G) with chromatic number more than τ ; and let (Nx : x ∈ X) be a multicover of C in G with
|X| ≥ m. Then there exist Y ⊆ X with |Y | = t and an extended t-trellis on Y in G.

Proof. For 0 ≤ s ≤ t let m′s = 5t · 5t−s, and let m′ = m′0. For 0 ≤ s ≤ t let ms = 5t(20m′)t−s, and
let m = m0. Let τ ′t = κ+ 1, and for s = t− 1, . . . , 0 let

τ ′s = 5(m′s + 1) + 5m
′
sτ ′s+1.

Let τ ′ = τ0. Let τt = κ+ 1, and for s = t− 1, . . . , 0 let

τs = 5(ms + 1) +mm′+1
s 5msτ ′ + 2ms5msτs+1.

Let τ = τ0. We claim that τ,m satisfy the theorem. Let G be a triangle-free graph such that
every induced subgraph of G with chromatic number more than κ has a 5-hole. We shall prove the
following, which implies the theorem:

(1) Let C ⊆ V (G) and let (Nx : x ∈ X) be a multicover of C, such that either

• χ(C) > τ and |X| = m, or

• χ(C) > τ ′ and |X| = m′ and (Nx : x ∈ X) is independent.
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Then there exist Y ⊆ X with |Y | = t and an extended t-trellis on Y in G.

If X ′ ⊆ X, and N ′x ⊆ Nx for each x ∈ X ′, and C ′ ⊆ C, and every vertex in C ′ has a neigh-
bour in N ′x for each x ∈ X ′, then (N ′x : x ∈ X ′) is a multicover of C ′, and we say it is contained in
(Nx : x ∈ X). Consequently, to prove (1), we may assume that:

(2) Either

(Case 1) χ(C) > τ and |X| ≥ m and there do not exist C ′ ⊆ C with χ(C ′) > τ ′ and X ′ ⊆ X with
|X ′| ≥ m′ and an independent multicover (N ′x : x ∈ X ′) of C ′ contained in (Nx : x ∈ X), or

(Case 2) χ(C) > τ ′ and |X| ≥ m′ and (Nx : x ∈ X) is independent.

Now we construct a t-trellis on a subset of X as follows (later we will enlarge it to an extended
trellis). We begin with the 0-trellis on X, H0 say, and let C0 = C. Inductively, suppose that s < t,
and we have constructed an s-trellis Hs on a subset Xs ⊆ X, with vertex set the disjoint union of
Xs, {a1, , . . . , as}, {b1, . . . , bs}, {ax,j : x ∈ Xs, 1 ≤ j ≤ s} and {bx,j : x ∈ Xs, 1 ≤ j ≤ s} in the usual
notation, and a subset Cs ⊆ C, satisfying:

• aj , bj ∈ C for 1 ≤ j ≤ s;

• ax,j , bx,j ∈ Nx for each x ∈ Xs and 1 ≤ j ≤ s;

• in case 1, |Xs| = ms, and in case 2, |Xs| = m′s;

• no vertex in V (Hs) has a neighbour in Cs;

• for each v ∈ Cs and each x ∈ Xs, there is a neighbour of v in Nx that has no neighbour in
V (Hs) except x; and

• in case 1, χ(Cs) > τs, and in case 2, χ(Cs) > τ ′s.

For each x ∈ Xs, let N ′x be the set of vertices in Nx with no neighbour in V (Hs) except x. Then
(N ′x : x ∈ Xs) is a multicover of Cs, and is independent in case 2.

Since χ(Cs) > τ ′s ≥ κ, there is a 5-hole P in G[Cs], with vertices p1-p2- · · · -p5-p1 say, in order.
For each x ∈ Xs, and 1 ≤ i ≤ 5, let Di(x) be the set of vertices in N ′x adjacent to pi, and select
di(x) ∈ Di(x). Thus the union of V (P ) and {di(x) : 1 ≤ i ≤ 5, x ∈ Xs} has cardinality at most
5(|Xs|+ 1), and since G is triangle-free, there exists C1

s ⊆ Cs with χ(C1
s ) ≥ χ(Cs)−5(|Xs|+ 1), such

that no vertex in C1
s is adjacent to any of the vertices di(x) or to any vertex in P (and in particular,

C1
s ∩ V (P ) = ∅).

For each x ∈ Xs, no vertex is in more than two of D1(x), . . . , D5(x), because G is triangle-free.
For each v ∈ C1

s and x ∈ Xs, since v has a neighbour in N ′x, it follows that there exist adjacent
vertices pk, pk+1 of P such that some neighbour of v belongs to N ′x \ (Dk(x) ∪ Dk+1(x)) (reading
subscripts modulo 5); choose some such k and define cx(v) = k. There are 5|Xs| possibilities for
the Xs-tuple (cx(v) : x ∈ Xs), and so there exists C2

s ⊆ C1
s with χ(C2

s ) ≥ χ(C1
s )/5|Xs|, such that

cx(v) = cx(v′) for all x ∈ Xs and all v, v′ ∈ C2
s . Moreover, since there are only five possibilities for

cx(v), there exists k ∈ {1, . . . , 5} and Ys ⊆ Xs with |Ys| = |Xs|/5 such that cx(v) = k for all x ∈ Ys
and v ∈ C2

s . Thus χ(C2
s ) ≥ (χ(Cs)− 5(|Xs|+ 1))/5|Xs|, and so in case 1

χ(C2
s ) > (τs − 5(ms + 1))/5ms = mm′+1

s τ ′ + 2msτs+1,
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and in case 2
χ(C2

s ) > (τ ′s − 5(m′s + 1))/5m
′
s = τ ′s+1.

Let as+1 = pk and bs+1 = pk+1, and for each x ∈ Ys let ax,s+1 = dk(x) and bx,s+1 = dk+1(x). To
complete the inductive definition it remains to define Xs+1 and Cs+1.

In case 2 we define Xs+1 = Ys and Cs+1 = C2
s ; so we assume we are in case 1. The issue that we

need to handle in this case is that for v ∈ Cs+1 and x ∈ Ys, while we know that v has a neighbour
u ∈ N ′x that has no neighbours in V (Hs) except x, it may be that every such neighbour u is adjacent
to one of ax′,s+1, bx′,s+1 for some x′ ∈ Ys. We shall show that if this happens for “many” choices of
v then we can move into case 2.

Let Z be the union of the sets {ax,s+1, bx,s+1} over all x ∈ Ys; then |Z| = 2ms/5 ≤ ms. Let
z ∈ Z, and let Y ⊆ Ys with |Y | = m′. Let Dz,Y be the set of vertices v ∈ C2

s such that for each
x ∈ Y there exists a vertex in N ′x adjacent to both v, z. For each x ∈ Y , let N ′′x denote the set of
vertices in N ′x adjacent to z; then (N ′′x : x ∈ Y ) is a multicover of Dz,Y ; and it is independent, since
G is triangle-free. Since we are in case 1, it follows that χ(Dz,Y ) ≤ τ ′. Now let Dz denote the set
of vertices v ∈ C2

s such that for at least m′ values of x ∈ Ys there exists a vertex in N ′x adjacent to
both v, z; that is, Dz is the union of the sets Dz,Y over all choices of Y . Since there are only at most
mm′
s choices of Y , it follows that χ(Dz) ≤ mm′

s τ ′. Thus the union of the sets Dz over all z ∈ Z has
chromatic number at most mm′+1

s τ ′, and so there exists C3
s ⊆ C2

s with

χ(C3
s ) ≥ χ(C2

2 )−mm′+1
s τ ′ > 2msτs+1,

such that for every v ∈ C3
s , and every z ∈ Z, there are fewer than m′ values of x ∈ Ys such that some

vertex in N ′x is adjacent to both v, z.
Fix v ∈ C3

s for the moment, and make a digraph Jv with vertex set Ys in which for distinct
x, y ∈ Ys, y is adjacent from x in Jv if some vertex in N ′y is adjacent to v and to one of ax,s+1, bx,s+1.
We have just seen that for all v, every vertex of the digraph Jv has indegree in J at most 2m′ − 2.
It follows that in Jv, some vertex has indegree plus outdegree at most 4m′ − 4, and the same holds
for every nonnull subdigraph of Jv; and so the undirected graph underlying Jv can be 4m′-coloured.
Hence there is a subset Uv say of Ys of cardinality |Ys|/(4m′) = ms+1 such that no edge of Jv has
both ends in Uv. There are only 2|Ys| possibilities for Uv, and so there exists C4

s ⊆ C3
s with

χ(C4
s ) ≥ χ(C3

s )/2|Ys| > τs+1

such that the sets Uv are equal for all v ∈ C4
s . Let Xs+1 be this common value of Uv, and let

Cs+1 = C4
s . This completes the definition of Cs+1 in case 1.

In both cases, the pairs aj , bj(1 ≤ j ≤ s+ 1) and the vertices ax,j , bx,j(x ∈ Xs+1, 1 ≤ j ≤ s+ 1)
define an (s + 1)-trellis Hs+1 on Xs+1, and no vertex in Hs+1 has a neighbour in Cs+1, and for all
v ∈ Cs+1 and x ∈ Xs+1, some neighbour of v in Nx has no neighbour in V (Hs+1) except x. This
completes the inductive definition of Hs and Cs for 0 ≤ s ≤ t.

Thus there is a t-trellis on the set Xt, where |Xt| = 5t; next we need to convert it to an extended
t-trellis on a subset of Xt of cardinality t. With the same notation as before (with s = t), since
χ(Ct) > τ ′t > κ, there is a 5-hole P in G[Ct], with vertices p1-p2- · · · -p5-p1 say, in order. Let x ∈ Xt;
a handle for x means a 3-vertex path a-c-b of P such that some vertex in N ′x is adjacent to a, and not
to b, c, and some vertex in N ′x is adjacent to b and not to a, c. We claim that there is a handle for x.
Choose S ⊆ N ′x minimal such that every vertex in V (P ) has a neighbour in S. For 1 ≤ i ≤ 5, choose
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si ∈ S adjacent to pi. Suppose first that some s1 ∈ S has only one neighbour in V (P ), say p1. Then
no other vertex in S is adjacent to p1, from the minimality of S, and since s3 is nonadjacent to p2 it
follows that p1-p2-p3 is a handle for x. We may assume therefore that each si has at least two (and
hence exactly two) neighbours in V (P ). Let s1 be adjacent to p1, p4 say. From the minimality of S,
one of p1, p4 has no more neighbours in S, say p1. But then again p1-p2-p3 is a handle for x. This
proves the claim that for each x ∈ Xt there is a handle for x. Since there are only five possibilities
for handles, there exists X0 ⊆ Xt with |X0| = |Xt|/5 = t such that every vertex in X0 has the same
handle, say a0-c0-b0. For each x ∈ X0 let ax,0 ∈ N ′x be adjacent to a0 and not to b0, c0, and let bx,0 be
adjacent to b0 and not to a0, c0. Then the pairs aj , bj(1 ≤ j ≤ t), the path a0-c0-b0, and the vertices
ax,j , bx,j(x ∈ Xs+1, 0 ≤ j ≤ s+ 1) define an extended t-trellis on X0. This proves 3.3.

From 3.2 and 3.3 we deduce:

3.4 For all κ ≥ 0 and ` ≥ 8, there exist τ,m ≥ 0 with the following property. Let G be a triangle-free
graph such that every induced subgraph of G with chromatic number more than κ has a 5-hole. Let
C ⊆ V (G) with chromatic number more than τ ; and let (Nx : x ∈ X) be a multicover of C with
|X| ≥ m. Then G has an `-hole.

Let G be a graph and let t ≥ 0 be an integer. A t-cable in G consists of:

• t distinct vertices x1, . . . , xt, pairwise nonadjacent;

• for 1 ≤ i ≤ t, a subset Ni of the set of neighbours of xi, such that the sets N1, . . . , Nt are
pairwise disjoint;

• for 1 ≤ i ≤ t, disjoint subsets Zi,i+1, . . . , Zi,t, Yi of Ni; and

• a subset C ⊆ V (G) disjoint from {x1, . . . , xt} ∪N1 ∪ · · · ∪Nt

satisfying the following conditions:

• for 1 ≤ i ≤ t, every vertex in C has a neighbour in Yi, and has no neighbours in Zi,j for
i+ 1 ≤ j ≤ t, and is nonadjacent to xi;

• for i < j ≤ t, xi has no neighbours in Nj ;

• for i < j < k ≤ t, there are no edges between Zi,j and Nk;

• for all i < j ≤ t, either

– Zi,j = ∅ and xj has no neighbours in Yi, or

– every vertex in Nj has a neighbour in Zi,j and has no neighbours in Yi.

We call C the base of the t-cable, and say χ(C) is the chromatic number of the t-cable. Given a t-
cable in this notation, let I ⊆ {1, . . . , t}; then (after appropriate renumbering) the vertices xi (i ∈ I),
the sets Ni (i ∈ I), the sets Zi,j (i, j ∈ I), the sets Yi (i ∈ I) and C define an |I|-cable; we call this a
subcable.

Thus there are two types of pair (i, j) with i < j ≤ t, and we aim next to apply Ramsey’s theorem
on these pairs to get a large subcable where all the pairs have the same type. Two special kinds of
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t-cables are therefore of interest: type 1 t-cables, where for all i < j ≤ t, Zi,j = ∅ and xj has no
neighbours in Yi, and type 2 t-cables, where for all i < j ≤ t, every vertex in Nj has a neighbour in
Zi,j and has no neighbours in Yi. A type 1 t-cable with base C is just a multicover of C in disguise,
so from 3.4 we have:

3.5 For all κ ≥ 0 and ` ≥ 8, there exist τ,m ≥ 0 with the following property. Let G be a triangle-free
graph such that every induced subgraph of G with chromatic number more than κ has a 5-hole. If G
admits a type 1 m-cable with chromatic number more than τ , then G has an `-hole.

We need a similar theorem for type 2 cables.

3.6 Let G be a triangle-free graph. For all ` ≥ 5, if G admits a type 2 (` − 3)-cable with nonnull
base, then G has an `-hole.

Proof. Let t = `− 3 (and so t ≥ 2) and assume G contains a type 2 t-cable with nonnull base. In
the usual notation, let v ∈ C. Since every vertex in C has a neighbour in Yt, there exists yt ∈ Yt
adjacent to v. Since every vertex in Nt has a neighbour in Zt−1,t, there exists zt−1 ∈ Zt−1,t adjacent
to yt. Similarly for i = t−2, t−3, . . . , 1 there exists zi ∈ Zi,i+1 such that zi+1 is adjacent to zi. Thus
z1-z2- · · · -zt−1-yt is a path. It is induced; for if i, j ≤ t and j ≥ i+ 2 then zi has no neighbour in Nj ,
since zi ∈ Zi,i+1. Since x1 is adjacent to z1 and to none of z2, . . . , zt−1, yt (because t ≥ 2 and x1 has
no neighbours in Nj for j > 1), and v is adjacent to yt and nonadjacent to x1, z1, . . . , zt−1, it follows
that

x1-z1-z2- · · · -zt−1-yt-v

is an induced path. Now v has a neighbour y1 ∈ Y1; and we claim that y1 is nonadjacent to
z1, . . . , zt−1, yt. Certainly y1, z1 are nonadjacent, since they are both adjacent to x1 and G is triangle-
free. For 2 ≤ j ≤ t− 1, y1 is nonadjacent to zj since every vertex in Nj has no neighbours in Y1. For
the same reason, y1 is nonadjacent to yt, since t > 1. Consequently

x1-z1-z2- · · · -zt−1-yt-v-y1-x1

is a hole of length t+ 3 = `. This proves 3.6.

We deduce:

3.7 For all κ ≥ 0 and ` ≥ 8, there exist t, τ ≥ 0 with the following property. Let G be a triangle-free
graph such that every induced subgraph of G with chromatic number more than κ has a 5-hole. If G
admits a t-cable with chromatic number more than τ then G has an `-hole.

Proof. Let m, τ be as in 3.5. Let n = ` − 3. Let t equal the Ramsey number R(m,n); that is,
the smallest integer t such for for every partition of the edges of Kt into two sets, there is either a
Km subgraph with all edges in the first set, or a Kn with all edges in the second. We claim that t, τ
satisfy the theorem.

For let G admit a t-cable with base C and chromatic number more than τ . By Ramsey’s theorem
either

• there exists I ⊆ {1, . . . , t} with |I| = m such that for all i, j ∈ I with i < j, every vertex in Nj

has a neighbour in Zi,j and has no neighbours in Yi, or
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• there exists I ⊆ {1, . . . , t} with |I| = n such that for all i, j ∈ I with i < j, Zi,j = ∅ and xj has
no neighbours in Yi.

Thus either there is an m-subcable of type 1, or an n-subcable of type 2, with base C in each case.
In the first case the result follows from 3.5, and in the second from 3.6. This proves 3.7.

3.8 Let φ : N → N be non-decreasing, and let t, τ ≥ 0. Then there exists τ ′ with the following
property. Let G be a triangle-free graph such that G is (2, φ)-controlled and χ(G) > τ ′. Then G
admits a t-cable with chromatic number more than τ .

Proof. Let τt = τ , and for s = t − 1, . . . , 0 let τs = φ(2sτs+1 + 1); and let τ ′ = τ0. We claim
that τ ′ satisfies the theorem. For let G be a triangle-free graph such that G is (2, φ)-controlled and
χ(G) > τ ′. Consequently G admits a 0-cable with chromatic number more than τ0. We claim that for
s = 1, . . . , t, G admits an s-cable with chromatic number more than τs. For suppose the result holds
for some s < t; we prove it also holds for s+1. In the usual notation, since χ(C) > τs = φ(2sτs+1+1),
there exists xs+1 ∈ C such that χ(N2

G[C][xs+1]) > 2sτs+1 + 1, and hence χ(N2
G[C](xs+1)) > 2sτs+1.

Let D = N2
G[C](xs+1). For each v ∈ D, and 1 ≤ i ≤ s, if some neighbour of v in Yi is nonadjacent

to xs+1 define ci(v) = 1, and otherwise define ci(v) = 2. There are only 2s possibilities for the
s-tuple (c1(v), . . . , cs(v)), and so there exists C ′ ⊆ D with χ(C ′) ≥ χ(D)/2s > τs+1 and an s-tuple
(c1, . . . , cs) such that ci(v) = ci for all v ∈ C ′ and 1 ≤ i ≤ s.

Let Ns+1 = Y ′s+1 be the set of neighbours of xs+1 in C. For 1 ≤ i ≤ s define Zi,s+1, Y
′
i ⊆ Yi as

follows:

• if ci = 1, let Y ′i be the set of vertices in Yi nonadjacent to xs+1, and let Zi,s+1 = ∅

• if ci = 2, let Y ′i be the set of vertices in Yi adjacent to xs+1, and let Zi,s+1 be the set of vertices
in Yi nonadjacent to xs+1.

Note that in the second case, no vertex in Zi,s+1 has a neighbour in C ′, and no vertex in Y ′i has a
neighbour in Y ′s+1. It follows that x1, . . . , xs+1, the sets N1, . . . , Ns+1, the sets Zi,j for 1 ≤ i < j ≤
s+ 1, the sets Y ′i for 1 ≤ i ≤ s+ 1, and C ′, define an (s+ 1)-cable with chromatic number more than
τs+1.

This proves that G admits a t-cable with chromatic number more than τt = τ , and so proves
3.8.

Let us put these pieces together to prove 2.1, which we restate:

3.9 Let φ : N → N be a non-decreasing function; then for all ` ≥ 5 there exists n such that every
(2, φ)-controlled triangle-free graph with chromatic number more than n has an `-hole.

Proof. If l ≤ 7 the result follows from 3.1, so we may assume that l ≥ 8. Let t, τ be as in 3.7, taking
κ = φ(2); and let τ ′ be as in 3.8. Let n = τ ′. We claim that n satisfies the theorem. For let G be
a (2, φ)-controlled triangle-free graph with chromatic number more than n. By 3.1, every induced
subgraph of G with chromatic number more than κ has a 5-hole. By 3.8, G admits a t-cable with
chromatic number more than τ ; and by 3.7, G has an `-hole. This proves 3.9.
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The second conjecture of 1.1 is proved in [4], but if we just wanted to prove it for triangle-free
graphs, rather than the full strength of 1.3, the remainder of the paper is not needed; let us explain
why. The following is proved in [3] (the proof just takes a few lines):

3.10 Let ` ≥ 3 and κ ≥ 1 be integers, and let G be a graph with no hole of length more than `, such
that χ(N(v)), χ(N2(v)) ≤ κ for every vertex v. Then χ(G) ≤ (2`− 2)κ.

For each κ ≥ 0, let φ(κ) = (2` − 2)κ. It follows from 3.10 that if G has no hole of length more
than `, and H is an induced subgraph of G with χ(H) > φ(κ), then χ(N2

H [v]) > κ for some vertex
v of H; that is, G is (2, φ)-controlled. Then from 3.9 it follows that χ(G) is bounded, which proves
the second assertion of 1.1 for triangle-free graphs. Indeed, we don’t even need all of 3.9; instead
of an `-hole, we are content with a hole of length at least `, and with this modification 3.9 is easier
to prove. For instance, we could get by with trellises instead of extended trellises, since holes of
length 11 are of no significance, and indeed we could just use 1-subdivisions of a large Kn,n instead
of trellises, since we are not picky about the exact length of the hole.

Trellises give us a long odd hole, but this does not prove the third conjecture of 1.1, since we
needed to use 3.10. If our goal is the long odd holes conjecture, there will be parts of the proof we
can skip, but not yet.

4 Bounded radius

In this section we prove 2.2, which we restate, somewhat reformulated:

4.1 Let φ : N → N be non-decreasing, and let ρ > 2 and ` ≥ 4ρ(ρ + 2) be integers. There is a
non-decreasing function φ′ : N→ N, with the following property. Let G be a triangle-free graph with
no `-hole such that G is (ρ, φ)-controlled. Then G is (2, φ′)-controlled.

4.1 follows immediately from the following.

4.2 Let φ : N → N be non-decreasing, and let ρ > 2 and ` ≥ 4ρ(ρ + 2) be integers. There is a
non-decreasing function φ′ : N→ N, with the following property. Let G be a triangle-free graph with
no `-hole such that G is (ρ, φ)-controlled. Then G is (ρ− 1, φ′)-controlled.

Proof. Let ` = 2αρ+ β, where α ≥ 0 is an integer and 0 ≤ β < 2ρ. Since ` ≥ 4ρ(ρ+ 2), it follows
that α ≥ 2ρ+ 4. For κ ∈ N, define µα+2(κ) = φ(0) + 1, and for h = α+ 2, . . . , 2 define

µh−1(κ) = (ρ+ 1)κ+ φ(φ(µh(κ) + κ) + (2ρ+ 2)κ),

and µ0(κ) = φ(µ1(κ) + κ). Define φ′(κ) = µ0(κ). We see that φ′ is non-decreasing.
Let G be a triangle-free graph with no `-hole such that G is (ρ, φ)-controlled. We will show that

G is (ρ− 1, φ′)-controlled. Let κ ∈ N, such that χρ−1(G) ≤ κ; we must show that χ(G) ≤ µ0(κ). (If
so, then the same argument applied to every induced subgraph H of G and every κ shows that G is
(ρ− 1, φ′)-controlled.) Suppose not.

Let v ∈ V (G). Let T be a path v = t0-t1- · · · -tρ, such that dG(v, tρ) = ρ. For the moment fix
such a path T . Let us say a path P is a (v, T )-extension if it has the following properties, where P
has vertices p0-p1- · · · -pn in order:
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• P is induced, and p0 = tρ, and n ≥ ρ;

• dG(v, pi) = ρ for 0 ≤ i ≤ n;

• dG(ti, pj) ≥ ρ for 0 ≤ i ≤ ρ and ρ ≤ j ≤ n; and

• dG(pi, pn) ≥ ρ for 0 ≤ i ≤ n− ρ.

(1) If P as above is a (v, T )-extension, then P ∪ T is an induced path of length ρ+ n.

Because T is induced since dG(v, tρ) = ρ, and P is induced by hypothesis. Moreover V (P )∩V (T ) =
{tρ} since dG(v, ti) < ρ for 0 ≤ i < ρ, and dG(v, pi) = ρ for 0 ≤ i ≤ n. Suppose that some ti is
adjacent to some pj , where i < ρ and j > 0. Since dG(v, pj) = ρ and dG(v, ti) = i < ρ, it follows
that i = ρ − 1. Now j 6= 1 since G is triangle-free, so j ≥ 2. Since dG(tρ−1, pk) ≥ ρ for ρ ≤ k ≤ n,
it follows that j < ρ. Then the path tρ−1-pj-pj+1- · · · -pρ has length ρ − j + 1 < ρ, a contradiction
since dG(tρ−1, pρ) ≥ ρ. This proves (1).

Let P, P ′ both be (v, T )-extensions. We say they are parallel if the last three vertices of P are
the same as the last three of P ′, and in particular the last vertices of P, P ′ are equal.

(2) Let P1, . . . , Pk be (v, T )-extensions, pairwise parallel. Then there exists s ∈ {2ρ, 2ρ − 2, 2ρ − 4}
such that G has holes of lengths |E(P1)|+ s, . . . , |E(Pk)|+ s.

Let z be the common last vertex of P1, . . . , Pk, and choose a path Z between v, z of length ρ.
Since T ∪ Z is connected, there is an induced path Q between tρ, z with V (Q) ⊆ V (T ∪ Z). Let us
first examine the length of Q. Let Z have vertices z0-z1- · · · -zρ, where z0 = v and zρ = z. If no vertex
in {z1, . . . , zρ} has a neighbour in {t1, . . . , tρ}, then the two sets are disjoint, and Q = T∪Z and hence
has length 2ρ. We assume then that some zj ∈ {z1, . . . , zρ} is adjacent to some ti ∈ {t1, . . . , tρ}.
Since dG(ti, z) ≥ ρ from the definition of a (v, T )-extension, the path ti-zj-zj+1- · · · -zρ has length at
least ρ, and so j = 1. Since zj is adjacent to t0 = v, and G is triangle-free, it follows that i ≥ 2.
Since dG(v, tρ) = ρ, it follows that i = 2. So there is only one such edge, and in particular the two
sets {z1, . . . , zρ}, {t1, . . . , tρ−1, tρ} are disjoint, and Q has length 2ρ − 2. We have proved then that
Q has length 2ρ or 2ρ− 2.

Now let P be one of P1, . . . , Pk, and let P have vertices p0-p1- · · · -pn in order. Thus p0 = tρ
and pn = zρ = z. Both P,Q are induced, and their interiors are disjoint, since every vertex x of
the interior of Q belongs to one of V (Z) \ {z}, V (T ) \ {tρ} and hence satisfies dG(v, x) < ρ, while
dG(v, x) = ρ for every vertex x of the interior of P . Suppose then that some vertex x in the interior of
Q has a neighbour pj ∈ {p1, . . . , pn−1}. From (1) it follows that x /∈ V (T ), and so x ∈ {z1, . . . , zρ−1}.
Since dG(v, pj) = ρ, it follows that dG(v, x) = ρ− 1, and so x = zρ−1. Consequently dG(pj , pn) ≤ 2,
and so j > n−ρ from the final condition in the definition of a (v, T )-extension. Since dG(pn−ρ, pn) ≥ ρ
from the same condition, it follows that the path pn−ρ-pn−ρ+1- · · · -pj-zρ−1-pn has length at least ρ,
and so j ≥ n− 2. Now j 6= n− 1 since G is triangle-free, and j 6= n by its definition, so j = n− 2.

Consequently there is at most one edge joining the interiors of P,Q, and any such edge is between
zρ−1 and pn−2. Let s = |E(Q)| if there is no such edge, and |E(Q)| − 2 if there is such an edge. In
either case G has a hole of length |E(P )| + s. Moreover, since the final three vertices of P1, . . . , Pk
are the same, it follows that G has a hole of length |E(Pi)|+ s for 1 ≤ i ≤ k. This proves (2).
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Since χ(G) > µ0(κ), there exists z0 such that χ(Nρ
G[z0]) > µ1(κ) + κ, and hence χ(Nρ

G(z0)) >
µ1(κ). Let H0 = G and let T0 be the one-vertex subgraph with vertex z0. For 1 ≤ h ≤ α + 2, we
define yh, y

′
h, Sh, zh, Th,Mh, Hh as follows. Assume we have defined Hh−1, Th−1 and zh−1 such that

χ(Nρ
Hh−1

(zh−1)) > µh−1(κ) and Th−1 is an induced path of G with at most ρ + 1 vertices and with
one end zh−1. Let Mh be the subgraph induced on the set of all vertices v of Hh−1 that satisfy

• dHh−1
(zh−1, v) = ρ; and

• dG(x, v) ≥ ρ for every vertex x of Th−1.

Since χ(Nρ−1[x]) ≤ κ for each vertex x of Th−1, and χ(Nρ
Hh−1

(zh−1)) > µh−1(κ), it follows that

χ(Mh) > µh−1(κ)− (ρ+ 1)κ = φ(φ(µh(κ) + κ) + (2ρ+ 2)κ).

Since G is (ρ, φ)-controlled, there is a vertex yh ∈Mh such that

χ(Nρ
Mh

[yh]) > φ(µh(κ) + κ) + (2ρ+ 2)κ,

and hence with
χ(Nρ

Mh
(yh)) > φ(µh(κ) + κ) + (2ρ+ 1)κ.

Let Sh be a path of Hh−1 of length ρ between zh−1 and yh. Let y′h be adjacent to yh in Mh. Let S′h
be a path of Hh−1 of length ρ between zh−1 and y′h. Let Hh be the subgraph induced on the set of
all vertices v of Mh with the following properties:

• dMh
(yh, v) = ρ; and

• dG(x, v) ≥ ρ for every x ∈ V (Sh) ∪ V (S′h).

Since χ(Nρ
Mh

(yh))) > φ(µh(κ) +κ) + (2ρ+ 1)κ, and χ(Nρ−1[x]) ≤ κ for each vertex x of V (Sh ∪S′h),
and there are at most 2ρ + 1 such vertices x, it follows that χ(Hh) > φ(µh(κ) + κ). Consequently
there exists zh ∈ Hh such that χ(Nρ

Hh
[zh]) > µh(κ) + κ, and hence with χ(Nρ

Hh
(zh)) > µh(κ).

Let Th be a path of Mh of length ρ between yh, zh. This completes the inductive definition of
yh, y

′
h, Sh, zh, Th,Mh, Hh for 1 ≤ h ≤ α+ 2.

(3) For 1 ≤ h ≤ α + 2, Sh ∪ Th is an induced path Lh between zh−1, zh of length 2ρ. Also there
is an induced path L′h between zh−1, zh with V (L′h) ⊆ V (S′h ∪ Th) of length 2ρ− 1 or 2ρ+ 1.

The first claim follows from (1). For the second, the graph formed by the union of S′h, Th and
the edge yhy

′
h is a path, but it might not be induced. If it is induced, it has length 2ρ+1 as required;

and since S′h and Th are both induced paths, we may assume that some vertex a of S′h is adjacent
to some vertex b of Th, where (a, b) 6= (y′h, yh). Since every vertex of S′h has distance at most ρ − 2
from zh−1 except the last two, and every vertex of Th has distance at least ρ from zh−1, it follows
that a is either y′h or its neighbour in S′h. Now dG(y′h, zh) = ρ, so y′h has no neighbour in Th except
for yh (because y′h is not adjacent to the second vertex of Th since G is triangle-free). Thus a is the
penultimate vertex of S′h. Consequently b 6= yh since G is triangle-free, and since dG(a, zh) ≥ ρ, a
has no neighbour in Th different from the second vertex of Th. We deduce that b is indeed the second
vertex of Th; and so there is an induced path between zh−1, zh of length 2ρ − 1 with vertex set a
subset of V (S′h ∪ Th). This proves (3).
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Let there be q values of h ∈ {4, . . . , α + 2} such that L′h has length 2ρ − 1. For 4 ≤ h ≤ α + 2,
choose L′′h ∈ {Lh, L′h}; then L′′4 ∪ L′′5 ∪ · · · ∪ L′′α+2 is an induced path between z3 and zα+2, and it
is a (y3, T3)-extension, for every choice of L′′4, L

′′
5, . . . , L

′′
α+2. Moreover, all these (y3, T3)-extensions

are parallel (since the last ρ vertices of Lα+2, L
′
α+2 are the same). These paths have lengths every

integer between 2ρ(α−1)−q and (2ρ+1)(α−1)−q, that is, every integer between `−β−q−2ρ and
`+α−β− q− 2ρ− 1. From (2), G has holes of every length between `−β− q and `+α−β− q− 5.
Since G has no l-hole, it follows that `+α−β−q−5 < `, that is, α ≤ β+q+4. But by concatenating
each of the paths L′′4 ∪ L′′5 ∪ · · · ∪ L′′α+2 with L3, we obtain a (y2, T2)-extension of length exactly 2ρ
more; and so there are (y2, T2)-extensions of all lengths between `−β−q and `+α−β−q−1. Hence
by (2) there are holes in G of all lengths between `− β − q + 2ρ and ` + α − β − q + 2ρ− 5. Since
β+ q ≥ α− 4 ≥ 2ρ, it follows that `− β− q+ 2ρ ≤ `. Consequently `+α− β− q+ 2ρ− 5 < `, since
there is no `-hole, that is, α+2ρ ≤ β+q+4. Similarly, by concatenating all these (y2, T2)-extensions
with L2, we obtain (y1, T1)-extensions of all lengths between `−β− q+ 2ρ and `+α−β− q+ 2ρ−1.
By (2), there are holes of all lengths between ` − β − q + 4ρ and ` + α − β − q + 4ρ − 5. But
`− β − q + 4ρ ≤ `, since β + q ≥ α+ 2ρ− 4 ≥ 4ρ, and yet

`+ α− β − q + 4ρ− 5 = `+ 2ρ− 3 + (α− 1− q) + (2ρ− 1− β) ≥ `

since q ≤ α − 1 and β ≤ 2ρ − 1. Consequently there is an `-hole, a contradiction. This proves 4.2
and hence 4.1.

5 Showers

Now we come to the third and most complicated part of the proof: proving 2.3. This will occupy
the remainder of the paper.

What can we prove about hole lengths if χρ(G) is bounded for some large fixed ρ? In 4.1 we were
able to guarantee the presence of a hole of any desired length (almost), but in these new circumstances
that becomes impossible; for any fixed ρ ≥ 0 and ` ≥ 2, there are graphs with arbitrarily large χ,
and girth more than max(`, ρ/2); which implies that χρ(G) is at most 2, and yet they have no `-hole.
We will show the following, a reformulation of 2.3.

5.1 Let ν ≥ 2 and κ ≥ 0 be integers, and let G be a triangle-free graph such that χρ(G) ≤ κ, where
ρ = 3ν+2 + 4. If G admits no hole ν-interval then χ(G) is bounded.

The proof will need a number of steps and preliminary lemmas. We begin with some definitions.
A levelling in G is a sequence of pairwise disjoint subsets (L0, L1, . . . , Lk) of V (G) such that

• |L0| = 1;

• for 1 ≤ i ≤ k every vertex in Li has a neighbour in Li−1;

• for 0 ≤ i < j ≤ k, if j > i+ 1 then no vertex in Lj has a neighbour in Li.

We call Lk the base of the levelling. The chromatic number of a levelling is the chromatic number of
its base. We observe first:
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5.2 For any integer τ ≥ 0, if χ(G) > 2τ then G admits a levelling with chromatic number more
than τ .

Proof. Choose a component C of G with chromatic number equal to that of G, and let z be a vertex
in that component. For each i ≥ 0, let Li be the set of vertices v of C such that dC(z, v) = i, and
choose j such that L0∪· · ·∪Lj = V (C). If χ(Lk) ≤ τ for all k with 0 ≤ k ≤ j, then χ(C) ≤ 2τ (take
two disjoint sets of colours both of size τ , and use them for the even and odd levels alternately),
which is impossible; so there exists k such that χ(Lk) > τ . Then (L0, . . . , Lk) is the desired levelling.
This proves 5.2.

If (L0, . . . , Lk) is a levelling in G, we call the unique vertex in L0 the head of the levelling, and
we call L0 ∪ · · · ∪ Lk the vertex set of the levelling. A path P of G[V ] (where V is the vertex set of
the levelling) with ends u, v is monotone (with respect to the given levelling) if there exist h, j with
0 ≤ h, j ≤ k, such that u ∈ Lh, v ∈ Lj , and P has length |j − h|; and therefore P has exactly one
vertex in Li for each i between h, j, and has no other vertices.

There is a notational problem with levellings: that while it seems most natural to number levels
starting with the head as level zero, most of the action will be at or close to the base Lk, and we
constantly have to refer to the parameter k. To obviate this, let us say a vertex v of the vertex set
has height k − i if v ∈ Li where 0 ≤ i ≤ k. Thus vertices in Lk have height zero.

We have shown that, if we start with a triangle-free graph of large χ, we can choose a levelling in
it with base of large χ; and by replacing the base by one of its components with maximum chromatic
number, we could choose the levelling such that the base is connected. This, however, is awkward to
maintain, and not really necessary. All we really need is that the base has large χ, and is included in
a connected set which has no further neighbours in higher parts of the levelling. So we will modify the
definition of a levelling to allow this. In addition, our main strategy to find a hole ν-sequence is to fix
some vertex in the base, which is joined to the head by a “recirculator” (a private path whose internal
vertices have no neighbours elsewhere in the levelling), and find holes of many different lengths all
containing this recirculator; that is, we want to find many paths of different lengths between the head
of the shower and some fixed vertex of the base. Those two considerations motivate the following
definition.

A shower in G is a sequence (L0, L1, . . . , Lk, s) where L0, L1, . . . , Lk are pairwise disjoint subsets
of V (G) and s ∈ Lk, such that

• |L0| = 1;

• for 1 ≤ i < k every vertex in Li has a neighbour in Li−1;

• for 0 ≤ i < j ≤ k, if j > i+ 1 then no vertex in Lj has a neighbour in Li; and

• G[Lk] is connected.

(We suggest that the reader picture a shower with L0 on top and Lk at the bottom, in order to
make sense of the terminology to come.) The differences between a shower and a levelling are that,
first, not every vertex in Lk needs to have a neighbour in Lk−1 (and indeed, there may be no edges
between Lk−1 and Lk, although such showers will not be of interest); second, that G[Lk] is connected;
and third, the distinguished vertex s. We call L0, . . . , Lk the levels of the shower, and s the drain
of the shower. We define “head”, “base”, “vertex set”, “monotone”, “height” for showers just as for
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levellings. The set of vertices in Lk with a neighbour in Lk−1 is called the floor of the shower. (It is
the floor, and subsets of the floor, whose chromatic number will concern us.) If S = (L0, L1, . . . , Lk, s)
is a shower, and uv is an edge with u ∈ Li and v ∈ Li+1 for some i with 0 ≤ i < k, we say that u is
an S-parent or just parent of v, and v an S-child or just child of u.

If S = (L0, . . . , Lk, s) is a shower, with head z0 and vertex set V , a recirculator for S is an induced
path R with ends s, z0 such that no internal vertex of R belongs to V and no internal vertex of R
has any neighbours in V \ {s, z0}. The distance dG(P1, P2) between two nonnull subgraphs P1, P2 of
G is the minimum of dG(v1, v2) over all v1 ∈ V (P1) and v2 ∈ V (P2).

5.3 Let τ, κ ≥ 0 be integers. Let G be a graph such that χ8(G) ≤ κ. Let (L0, . . . , Lk) be a levelling
in G, where χ(Lk) > 22τ + 2κ. Then there is a shower (V0, . . . , Vn, s) in G, with floor of chromatic
number more than τ , and with a recirculator, such that

• Vn ⊆ Lk, and Vn−1 ⊆ Lk−1; and

• V0, . . . , Vn−2 ⊆ L0 ∪ · · · ∪ Lk−2.

Proof. By replacing Lk by the vertex set of a component of G[Lk] with maximum chromatic
number, we may assume that G[Lk] is connected. A stake is a monotone path with an end in Lk.
Since χ(Lk) > κ, there exist two vertices of Lk with distance more than 8. It follows that there are
two stakes both of length three with distance at least three. Consequently we can choose two stakes
P,Q with the following properties:

• P , Q have the same length k − h ≥ 3;

• dG(P,Q) ≥ 3;

• subject to these two conditions, h is minimum.

Let P have vertices pk-pk−1- · · · -ph andQ have vertices qk-qk−1- · · · -qh, where pi, qi ∈ Li for h ≤ i ≤ k.
Let ph−1, qh−1 be parents of ph, qh respectively. From the minimality of h, either

• ph−1, qh−1 are adjacent, or

• some vertex is adjacent to ph−1 and to at least one of qh−1, qh, qh+1, or

• some vertex is adjacent to qh−1 and to at least one of ph−1, ph, ph+1.

In each case there is a connected induced subgraph M with V (M) ⊆ L0 ∪ · · · ∪ Lh ∪ {ph+1, qh+1},
with at most seven vertices, and with ph+1, ph, ph−1, qh+1, qh, qh−1 ∈ V (M); and if there is a vertex
in V (M) \ V (P ∪Q), then it belongs to Lh−2 ∪ Lh−1 ∪ Lh, and has a neighbour in {ph+1, ph, ph−1}
and one in {qh+1, qh, qh−1}. Consequently, ph+2, . . . , pk have no neighbours in V (M) \ {ph+1}, and
qh+2, . . . , qk have no neighbours in V (M) \ {qh+1}.

Let X be the set of vertices x ∈ Lk−1 such that there is a path R from x to ph+1 satisfying:

• R has length at most k − h+ 8;

• every internal vertex of R belongs to L0 ∪ · · · ∪ Lk−2; and

• no vertex of R \ ph+1 equals or is adjacent to any vertex in {ph+2, . . . , pk}.
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Define Y ⊆ Lk−1 similarly with P,Q exchanged.

(1) Every vertex v ∈ Lk with dG(v, pk), dG(v, qk) ≥ 7 has a neighbour in X ∪ Y .

Let v ∈ Lk with dG(v, pk), dG(v, qk) ≥ 7, and let r0-r1- · · · -rk = v be a path between r0 ∈ L0

and v = rk. We claim that rk−1 ∈ X ∪Y . From the minimality of h, one of rh−1, . . . , rk has distance
at most two from one of ph−1, . . . , pk. Choose j maximum such that rj has distance at most two from
some vertex u say of P∪Q∪M . Thus j ≥ h−1. If j = k, then u /∈ V (M)\V (P∪Q) because k−h ≥ 3,
and so u is one of pk, pk−1, pk−2, qk, qk−1, qk−2; which is impossible since dG(v, pk), dG(v, qk) ≥ 7.
Thus j < k. From the maximality of j, it follows that dG(rj , u) = 2, and none of rj , . . . , rk
equals or is adjacent to any vertex in P ∪ Q ∪ M . From the symmetry we may assume that
u ∈ V (Q) ∪ (V (M) \ V (P ∪ Q)). Let w be a vertex adjacent to both u, rj . If u ∈ Lk ∪ Lk−1
then k − j ≤ 3, and so dG(v, qk) ≤ 6, a contradiction; and if u /∈ Lk ∪ Lk−1 and w ∈ Lk ∪ Lk−1
then u = qk−2 and k − j ≤ 2, and again dG(v, qk) ≤ 6, a contradiction. So u,w /∈ Lk ∪ Lk−1. If w
has a neighbour in {ph+2, . . . , pk}, then w ∈ Lh+1 ∪ · · · ∪ Lk, and so u ∈ V (Q), contradicting that
dG(P,Q) ≥ 3. Thus w has no neighbour in {ph+2, . . . , pk}.

Now there is a path of M ∪Q between u and ph+1. If u /∈ V (Q) then this path has length at most
three, and its union with the path rk−1-rk−2- · · · -rj-w-u is of length at most k−1− j+5 ≤ k−h+5,
since j ≥ h− 1, and so rk−1 ∈ X as required. If u ∈ V (Q), then u is one of qj−2, qj−1, qj , qj+1, qj+2,
and so some path of M ∪ Q between u and ph+1 has length at most (j + 2) − (h + 1) + 6, and its
union with the path rk−1-rk−2- · · · -rj-w-u has length at most

(j + 2)− (h+ 1) + 6 + (k − 1− j) + 2 = k − h+ 8,

and again rk−1 ∈ X. This proves (1).

Now, since χ8(G) ≤ κ, the set of vertices v ∈ Lk such that dG(v, pk) ≤ 6 or dG(v, qk) ≤ 6 has
chromatic number at most 2κ; and since χ(Lk) > 22τ + 2κ, there exists a subset Z0 ⊆ Lk with
χ(Z0) > 22τ such that dG(v, pk), dG(v, qk) ≥ 7 for each v ∈ Z0. Every vertex in Z0 has a neighbour
in X ∪ Y , by (1); so we may assume that there exists Z1 ⊆ Z0 with χ(Z1) > 11τ , such that every
vertex in Z1 is adjacent to a vertex in X. For each vertex x ∈ X, there is a path R as in the
definition of X; let Rx be a shortest such path. Then Rx has length at most k − h+ 8, and at least
(k − 1)− (h+ 1); so there are eleven possibilities for its length, the numbers between k − h− 2 and
k−h+ 8. For each c with k−h− 2 ≤ c ≤ k−h+ 8, let Xc be the set of vertices x ∈ X such that Rx
has length c. Then there exist c and Z2 ⊆ Z1 with χ(Z2) ≥ χ(Z1)/11 > τ , such that every vertex in
Z2 has a neighbour in Xc. Moreover we may choose Z2 such that G[Z2] is connected. Let V be the
union of the vertex sets of all the paths Rx (x ∈ Xc). Note that V ⊆ L0 ∪ · · · ∪ Lk−1. For 0 ≤ i ≤ c,
let Vi be the set of vertices u ∈ V such that the shortest path of G[V ] between u, ph+1 has length
i. Then (V0, . . . , Vc) is a levelling. Moreover, Vc = Xc, and so no vertex in Lk has a neighbour in
V0, . . . , Vc−1. Define Vc+1 = Z2; then also (V0, . . . , Vc+1) is a levelling.

Now no neighbour of pk−1 belongs to Z0, and hence there are no edges between {ph+2, . . . , pk−1}
and V1 ∪ · · · ∪ Vc+1. Since G[Lk] is connected and pk−1 has a neighbour in Lk, there is a path G[Lk]
between a vertex adjacent to pk−1 and a vertex with a neighbour in Z2 = Vc+1. Choose a minimal
such path, D, and let s be its end adjacent to pk−1. Then (V0, . . . , Vc, Vc+1 ∪ V (D), s) is a shower,
since G[Z2] is connected and hence so is G[Vc+1 ∪ V (D)]; and its floor includes Z2 and hence has
chromatic number more than τ ; and ph+1-ph+2- · · · -pk−1-s is a recirculator for it. This proves 5.3.
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Let S be a shower with head z0, drain s and vertex set V . An induced path of G[V ] between
z0, s is called a jet of S. The set of all lengths of jets of S is called the jetset of S. If A is a subset
of the jetset of S, then for each a ∈ A there is a jet Ja with length a, and we say the set of jets
{Ja : a ∈ A} realizes A. For ν ≥ 2, we say a shower S is ν-complete if there are ν consecutive
integers in its jetset, and ν-incomplete otherwise. (Later we shall give a meaning to “1-complete”,
but at this stage it is not needed.) We deduce:

5.4 Let τ, κ ≥ 0 and ν ≥ 2 be integers. Let G be a graph such that

• χ8(G) ≤ κ;

• χ(G) > 44τ + 4κ; and

• G admits no hole ν-interval.

Then there is a ν-incomplete shower in G with floor of chromatic number more than τ .

Proof. By 5.2 there is a levelling (L0, . . . , Lk) with chromatic number more than 22τ + 2κ. By 5.3,
there is a shower S, with a recirculator, and with floor of chromatic number more than τ . Since the
union of the recirculator with any jet is a hole, and G admits no hole ν-interval, it follows that S is
not ν-complete. This proves 5.4.

Thus, in order to prove 5.1, it suffices to show that if ν, κ, G are as in the hypothesis of 5.1 then
the floor of every ν-incomplete shower in G has bounded chromatic number, and this is what we
shall do.

6 Stabilizing a shower

A levelling (L0, . . . , Lk) or shower (L0, . . . , Lk, s) is stable if L0, . . . , Lk−1 are stable; and for λ ≥ 0
an integer, it is λ-stable if k ≥ λ and Li is stable for k − λ ≤ i ≤ k − 1. We would like to prove that
there exists a stable shower (still with floor of large χ, but not as large as before), by converting
the shower given by 5.4. This will take several steps. First we show how to convert a ν-incomplete
shower into a ν-incomplete λ-stable shower (for any fixed λ).

If S is a levelling (L0, . . . , Lk) or a shower (L0, . . . , Lk, s), and there is a monotone path P with
ends u, v, and u ∈ Li and v ∈ Lj where j ≥ i, we say that v is a S-descendant (or just descendant) of
u and u is an S-ancestor (or just ancestor) of v. If X ⊆ L0 ∪ · · · ∪ Lk, we denote by θ(X) or θS(X)
the chromatic number of the set of vertices in Lk with an ancestor in X.

6.1 Let τ, λ ≥ 0 and ν ≥ 2 be integers, and let µ = (λ + 1)(ν − 1) + 1. Let G be a triangle-free
graph, and let S be a ν-incomplete shower in G, with floor of chromatic number more than ντ1+µ,
and with levels L0, . . . , Lk, where k ≥ µ. Then there is a λ-stable ν-incomplete shower with floor of
chromatic number more than τ , and with levels L′0, . . . , L

′
h, such that 0 ≤ k − h ≤ µ − λ − 1 and

L′i ⊆ Li for 0 ≤ i < h.

Proof. We may assume that for 0 ≤ i < k, every vertex in Li has a neighbour in Li+1; for a vertex in
Li without this property could be deleted. Let z0 ∈ L0. For 1 ≤ j ≤ ν, let hj = k−1− (λ+1)(ν−j);
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and for 1 ≤ j < ν, let Ij = {i : hj < i < hj+1}. (Thus the sets Ij have cardinality λ, and there is an
integer hj between Ij−1 and Ij that belongs to neither, that we use as insulation.) For 1 ≤ j ≤ ν,
let Tj be the set of vertices v ∈ Lhj such that there are j induced paths between v and z0, each with
interior in L1 ∪ · · · ∪ Lhj−1, of lengths hj , hj + 1, . . . , hj + j − 1.

(1) Tν = ∅.

Because suppose that v ∈ Tν . Then there are ν induced paths between v and z0, each with in-
terior in L1 ∪ · · · ∪ Lk−2, of lengths k − 1, k, . . . , k + ν − 2, say R1, . . . , Rν . Let s be the drain of S;
and choose a minimal path Q between s, v with interior in Lk. Then for 1 ≤ i ≤ ν, the union of Q
and Ri is a jet, contradicting that the shower is ν-incomplete. This proves (1).

Since T1 = Lh1 it follows that

θ(T1) > ντ1+µ ≥ τk+1−h2 + τk+1−h3 + · · ·+ τk+1−hν ,

and so there exists j ∈ {1, . . . , ν} maximum such that

θ(Tj) > τk+1−hj+1 + τk+1−hj+2 + · · ·+ τk+1−hν ;

and j < ν by (1). From the maximality of j it follows that θ(Tj) − θ(Tj+1) > τk+1−hj+1 . Let Sj+1

be the set of vertices in Lhj+1
\ Tj+1 that have ancestors in Tj . For hj < i < hj+1 let Mi be the set

of vertices in Li with an ancestor in Tj and a descendant in Sj+1.

(2) Mi is stable for hj < i < hj+1.

For suppose that x, y ∈Mi are adjacent. Since G is triangle-free, x, y have no common parents and
no common children. Let x′, y′ ∈ Tj be ancestors of x, y respectively (possibly equal). Let z ∈ Sj+1

be a descendant of x. Now there are induced paths from y′ to z0 with interior in L1 ∪ · · · ∪ Lhj−1,
of lengths hj , hj + 1, . . . , hj + j − 1. For each of these paths, its union with a path of length i − hj
between y and y′, a path of length hj+1 − i between z and x, and the edge xy, makes an induced
path between z, z0, of lengths hj+1 + 1, . . . , hj+1 + j. But also there is an induced path between z, z0
of length hj+1, since z ∈ Lhj+1

; and so z ∈ Tj+1, a contradiction. This proves (2).

Now every vertex in Lk with an ancestor in Tj has an ancestor in Sj+1 ∪ Tj+1. Since θ(Tj) −
θ(Tj+1) > τk+1−hj+1 , it follows that θ(Sj+1) > τk+1−hj+1 . By setting h = hj+1 and Mh = Sj+1, we
have shown that:

(3) There exist h with 0 ≤ k − h ≤ µ − λ − 1, and subsets Mi ⊆ Li for h − λ ≤ i ≤ h, with
the following properties:

• θ(Mh) > τk+1−h;

• Mi is stable for h− λ ≤ i < h; and

• every vertex in Mi+1 has a neighbour in Mi for h− λ ≤ i < h.
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Choose such a value of h, maximal. Suppose first that χ(Mh) ≤ τ . Since

θ(Mh) > τk−h+1 ≥ τ ≥ χ(Mh)

it follows that h 6= k. Take a partition of Mh into τ stable sets; then for one of these sets, say M ′h,
θ(M ′h) ≥ θ(Mh)/τ > τk−h. Let Mh+1 be the set of vertices in Lh+1 with a neighbour in Mh; then
θ(Mh+1) = θ(M ′h) > τk−h, contrary to the maximality of h. This proves that χ(Mh) > τ .

Let Z = Lh ∪ · · · ∪ Lk; then G[Z] is connected since G[Lk] is connected and for 0 ≤ i < k, every
vertex in Li has a neighbour in Li+1. Consequently

(L0, . . . , Lh−λ−1,Mh−λ, . . . ,Mh−1, Z, s)

is a shower S ′ say. Its floor includes Mh and so has chromatic number more than τ . Moreover, every
jet for S ′ is also a jet for S; and so S ′ is ν-incomplete. This proves 6.1.

7 U-bends

For ν ≥ 2, a shower (L0, . . . , Lk, s) is a ν-sprinkler if

• G[Lk] is a path with one end s and with at least ν vertices; let its vertices be v1- · · · -vn in
order, where v1 = s and n ≥ ν;

• for i = 1, . . . , n− ν, no vertex in Lk−1 is adjacent to vi; and

• for i = n− ν + 1, . . . , n, some vertex in Lk−1 is adjacent to vi and to no other vertex in Lk.

Every ν-sprinkler is therefore ν-complete. We call {vi : n− ν + 1 ≤ i ≤ n} its floor.
We need another object, a “u-bend”, which is not exactly a shower; and also something which

is partway to a u-bend, which we call a “w-bend”. We start with the latter. Let (L0, . . . , Lk) be a
levelling in G with vertex set V , and let U be an induced path of G. Suppose that

• G[Lk] is an induced path;

• V ∩ V (U) = ∅;

• U has ends w, s, and there is at least one vertex in Lk−1 adjacent to w and to a vertex in Lk;
and

• there are no edges between V (U) and V \ Lk−1, and no vertex in Lk−1 has a neighbour in Lk
and a neighbour in V (U) \ {w}.

In this case, we call (L0, . . . , Lk, U) a w-bend, and call s its drain; and any induced path of G[V ∪V (U)]
between the vertex in L0 and the drain is called a jet of the w-bend. We call Lk its floor. (Since
(L0, . . . , Lk) is a levelling, every vertex in Lk has a neighbour in Lk−1.) Let G[Lk] have ends v1, v2;
then dG(v1, v2) is called the size of the w-bend. If in addition:

• w has a unique neighbour in Lk−1, say v;
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• v has a unique neighbour in Lk, and this neighbour is an end of the path G[Lk]; and

• every vertex in Lk−1 has a neighbour in Lk;

then we call (L0, . . . , Lk, U) a u-bend. We need a containment relation for these objects:

• Let S = (L0, . . . , Lk, s) and S ′ = (L′0, . . . , L
′
k, s
′) be showers. We say that S ′ is contained in S

if they have the same drain, and L′i ⊆ Li for 0 ≤ i ≤ k.

• Let S = (L0, . . . , Lk, s) be a shower, and let S ′ = (L′0, . . . , L
′
k, U) be a w-bend. We say that S ′

is contained in S if they have the same drain, and L′i ⊆ Li for 0 ≤ i ≤ k, and V (U) ⊆ Lk.

• Let S = (L0, . . . , Lk,W ) be a w-bend, and let S ′ = (L′0, . . . , L
′
k, U) be a u-bend. We say that

S ′ is contained in S if they have the same drain, and L′i ⊆ Li for 0 ≤ i ≤ k, and U = W .

In all three cases, every jet of S ′ is a jet of S.
We need to show that certain showers contain u-bends, and it is easier to show that they contain

w-bends. Let us see first that that is enough, because a w-bend contains a u-bend (and containment
is clearly transitive).

7.1 Let (L0, . . . , Lk,W ) be a w-bend in a triangle-free graph G, with size at least 2p + 4. Then it
contains a u-bend with size at least p.

Proof. Let W have ends w, s where s is the drain. Let G[Lk] have vertices v0- · · · -vn say, in order.
Since dG(v0, vn) ≥ 2p+ 4, we may assume by exchanging v0, vn if necessary that dG(w, v0) ≥ p+ 2.
Let Y be the set of vertices in Lk−1 adjacent to w and to a vertex in Lk. By hypothesis, Y 6= ∅.
Choose i ≤ n minimum such that vi has a neighbour in Y , say v. Since dG(w, v0) ≥ p + 2, and
dG(w, vi) = 2, it follows that dG(vi, v0) ≥ p. Let L′k−1 consist of all vertices in Lk−1 with a neighbour
in {v0, . . . , vi−1}, together with v. Then v is the unique neighbour of w in L′k−1; and so

(L0, . . . , Lk−2, L
′
k−1, {v0, . . . , vi},W )

is a u-bend contained in (L0, . . . , Lk,W ), and its size is at least p. This proves 7.1.

7.2 Let ν ≥ 2 be an integer, and let µ ≥ 1. Let S be a shower in a triangle-free graph G. Let P be
an induced path of G with V (P ) a subset of the floor of S, with ends w1, w2 such that dG(w1, w2) ≥
2(µ+ ν). Then S contains either:

• a ν-sprinkler with floor a subset of V (P ), or

• a u-bend with size at least µ and with floor a subset of V (P ).

Proof. Let S = (L0, . . . , Lk, s), and let L1
k−1 be the set of vertices in Lk−1 with a neighbour in

V (P ). If s ∈ V (P ), let u = s and let D be the one-vertex path with vertex s. If s /∈ V (P ), then since
G[Lk] is connected, there is an induced path D of G[Lk] between s and a vertex with a neighbour
in V (P ); choose a minimal such path D, with ends s, u say. From the minimality of D, no vertex in
D \ {u} has a neighbour in V (P ).
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Suppose that some vertex of D \ {u} has a neighbour in L1
k−1; and choose such a vertex, w say,

such that the subpath D′ of D between w, s is minimal. Then

(L0, . . . , Lk−2, L
1
k−1, V (P ), D′)

is a w-bend contained in S, of size at least 2(µ + 2) (since ν ≥ 2), and the result follows from 7.1.
We may therefore assume that there are no edges between D \ {u} and L1

k−1.
Let Y be the set of vertices in L1

k−1 that are adjacent to u. Now no vertex of D except possibly
u has a neighbour in L1

k−1; and u has at least one neighbour in V (P ) ∪ Y . Let P have vertices
v0- · · · -vn in order. By hypothesis, dG(v0, vn) ≥ 2(µ + ν), so by exchanging v0, vn if necessary, we
may assume that dG(u, v0) ≥ µ+ ν. Choose i minimum such that vi has a neighbour in Y ∪ {u}.

Suppose first that vi has a neighbour in Y . Choose such a neighbour v say, and let L2
k−1 be the

set of vertices in Lk−1 with a neighbour in {v0, . . . , vi−1}, together with v. Now vi is not adjacent to
u (since G is triangle-free); and dG(v0, vi) ≥ dG(v0, u)− 2 ≥ µ; so

(L0, . . . , Lk−2, L
2
k−1, {v0, . . . , vi}, D)

is a u-bend contained in S with size at least µ, as required.
We may assume then that vi has no neighbour in Y , and therefore vi is adjacent to u. In

summary, no vertex in Lk−1 has a neighbour in V (D) and a neighbour in {v0, . . . , vi}; and there are
no edges between V (D) and {v0, . . . , vi} except the edge uvi. Since dG(v0, u) ≥ µ+ ν, it follows that
i ≥ µ+ ν − 1, and so i− ν + 1 ≥ µ.

Suppose next that there exists a vertex in Lk−1 adjacent to at least two of vi−ν+1, . . . , vi. Choose
j with i − ν + 3 ≤ j ≤ i maximum such that some vertex in Lk−1 is adjacent to vj and to one
of v0, . . . , vj−2; choose h with 0 ≤ h ≤ j − 2 minimum such that some vertex in Lk−1 is adjacent
to vh, vj ; and choose v ∈ Lk−1 adjacent to vh, vj . Let L3

k−1 be the set of vertices in Lk−1 with a
neighbour in {v0, . . . , vh−1}, together with v. Then since there is a path between u, vh (via v) of
length i− j + 3 ≤ ν, it follows that dG(u, vh) ≤ ν, and so

dG(vh, v0) ≥ dG(u, v0)− ν ≥ µ.

Let D2 be the path formed by the union of D and the path u-vi- · · · -vj . Then

(L0, . . . , Lk−2, L
3
k−1, {v0, . . . , vh}, D2)

is a u-bend contained in S, of size at least µ, as required.
We may therefore assume that no vertex in Lk−1 is adjacent to more than one of vi−ν+1, . . . , vi.

Let L4
k−1 be the set of vertices in Lk−1 with a neighbour in {vi−ν+1, . . . , vi}. Every vertex in

{vi−ν+1, . . . , vi} has a neighbour in L4
k−1, and u has no neighbour in L4

k−1, so

(L0, . . . , Lk−2, L
4
k−1, V (D) ∪ {vi−ν+1, . . . , vi}, s)

is a ν-sprinkler contained in S. This proves 7.2.
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8 Jets of a shower

Let L0, . . . , Lk be the levels of a shower or w-bend, and let J be a jet. Then at least one vertex of J
belongs to Lk−1; and we define the tail of J to be the minimal subpath of J between Lk−1 and the
drain. For λ ≥ 0, we say that J is λ-monotone if λ ≤ k, and J contains exactly one vertex of Li for
0 ≤ i < k − λ. In every jet J , at least k − 1 edges do not belong to its tail and have an end not in
Lk. We say the waste of J is µ if there are k − 1 + µ edges of J that do not belong to its tail and
have an end not in Lk; and J is µ-wasteful if its waste is at most µ. Thus the waste is nonnegative.

A set of integersA is dense if for all a1, a2 ∈ A with a1 < a2, there does not exist b with a1 < b < a2
such that b, b+ 1 /∈ A; that is, there are no two consecutive numbers both missing from A between
the first and last members of A. If A,B are sets of integers, we define A+B = {a+b : a ∈ A, b ∈ B}.
Thus if A is dense, then for any integer t, A+ {t, t+ 1} is a set of consecutive integers of cardinality
at least |A|+ 1.

Any subset of the floor of a shower is called a mat; and for a w-bend, we define its floor to be its
only mat. The size of a mat M is the maximum of dG(w1, w2) over all pairs w1, w2 of vertices in the
same component of G[M ]. If M is a mat for a shower or w-bend S, a jet J is an M -jet if there is no
edge of J with an end in Lk \M and an end in Lk−1. We define the M -jetset as the set of all lengths
of M -jets. A w-bend (L0, . . . , Lk, U) is λ-stable if k ≥ λ and Li is stable for k−λ ≤ i ≤ k−1. In this
section we prove the following. (Note that the next result immediately implies the long odd holes
conjecture, via 7.2, so if we only wanted the long odd holes conjecture we could stop here.)

8.1 Let ν ≥ 2 be an integer, and let G be a triangle-free graph. If S is a ν-stable shower or w-bend
in G, and M is a mat for S of size at least 3ν+2, then there is a set A of integers, realized by a set
of (ν + 1)-monotone, 3ν2-wasteful M -jets, such that |A| ≤ ν + 1, and A includes a dense subset of
cardinality ν, and there are two members of A that differ by 1 or 3.

Proof. We proceed by induction on ν. Thus we assume that either ν = 2 or the result holds for
ν − 1. We claim we may assume:

(1) There is a u-bend S1 = (L0, . . . , Lk, U) contained in S, and with Lk ⊆ M , of size at least
3ν+2/2− ν.

Assume first that S is a ν-stable shower in G, and M is a mat of size at least 3ν+2. Let P be
an induced path of G[M ] with ends w1, w2, where dG(w1, w2) ≥ 3ν+2. If S contains a ν-sprinkler
with floor a subset of V (P ), then the theorem holds, so we assume not. By 7.2 with µ = 3ν+2/2− ν,
it follows that S contains a u-bend as in the claim. Next we assume that S is a w-bend, of size at
least 3ν+2; then the claim follows from 7.1. This proves (1).

Let S1 = (L0, . . . , Lk, U) as in (1). Let U have ends u, s where s is the drain. Let q0 be the
unique neighbour of u in Lk−1; and let D be the path formed by adding the edge uq0 to U . There is
an induced path q0-q1- · · · -qn such that {q1, . . . , qn} = Lk; and every vertex in Lk−1 has a neighbour
in Lk. Also, dG(q1, qn) ≥ 3ν+2/2 − ν, and so dG(q0, qn) ≥ 3ν+2/2 − ν − 1. We may assume that
for 0 ≤ i ≤ k − 1 every vertex in Li has a neighbour in Li+1 (because any other vertex could be
removed). Let V = L0 ∪ · · · ∪ Lk.

We recall that for v ∈ V , its height h(v) = k− i where v ∈ Li; and we define the reach of v to be
the maximum i ≥ 1 such that qi is a descendant of v. (Since every vertex in V has a descendant in

24



Lk, this is well-defined.) Next we show that we may assume that:

(2) For 1 ≤ m ≤ n there do not exist induced paths R1, R2 of G[V ] between q0 and qm with the
following properties:

• |E(R1)|+ 1 = |E(R2)| ≤ 2ν + 2; and

• for all j with m < j ≤ n, qj has no neighbour in V (R1 ∪R2) \ {qm}.

For suppose that such m,R1, R2 exist. Since R1, R2 both have length at most 2ν + 2 and have
ends in Lk and Lk−1, it follows that every vertex of R1 ∪ R2 has height at most ν + 1. Indeed, if
y ∈ V (R1∪R2) then there is a subpath of one of R1, R2 between y and qm, which must have length at
least h(y), and since R1, R2 both have length at most 2ν+2, it follows that dG(y, q0) ≤ 2ν+2−h(y).
Consequently, if x ∈ V has a neighbour (say y) in R1 ∪R2 then

dG(x, q0) ≤ dG(y, q0) + 1 ≤ 2ν − h(y) + 3 ≤ 2ν − h(x) + 4.

It follows that for every descendant in Lk of such a vertex x, its distance from q0 is at most dG(x, q0)+
h(x) ≤ 2ν + 4. Since

dG(q0, qn) ≥ 3ν+2/2− ν − 1 > 2ν + 4,

there exists m′ < n such that dG(q0, qm′) = 2ν+ 4, and dG(q0, qj) > 2ν+ 4 for all j with m′ < j ≤ n.
Since qm+1 has a neighbour in R1, it follows that dG(qm+1, q0) ≤ 2ν + 4, and so m′ ≥ m + 1. For
0 ≤ i < k let L′i be the set of all vertices in Li with a descendant in {qj : m′ < j ≤ n}. It follows
that

(L′0, . . . , L
′
k−1, {qj : m ≤ j ≤ n}, qm)

is a shower S ′ say. It is ν-stable, since L′i ⊆ Li for 0 ≤ i < k. (It is not contained in S since the
drain is different.) Let its vertex set be V ′. If v ∈ V ′ \ {qm}, and v ∈ Lk, then v has no neighbour
in V (R1 ∪ R2) \ {qm} from the properties of R1, R2; and if v /∈ Lk, then v has a descendant in
{qj : m′ < j ≤ n}, which therefore has distance in G more than 2ν + 4 from q0, and again v has no
neighbour in R1 ∪R2. Thus there are no edges between V ′ \ {qm} and V (R1 ∪R2) except the edge
qmqm+1.

Now
dG(qn, qm′+1) ≥ dG(qn, q0)− (2ν + 5) ≥ 3ν+2/2− ν − 1− (2ν + 5) ≥ 3ν+1.

If ν > 2, then from the inductive hypothesis on ν, applied to S ′ and the mat M ′ = {qm′+1, . . . , qn},
we deduce that there is a dense subset A of the M ′-jetset of S ′ of cardinality ν−1, realized by a set of
M ′-jets of S ′ that are ν-monotone and 3(ν−1)2-wasteful. If ν = 2, let A be a singleton set containing
the length of a 0-monotone, 0-wasteful M ′-jet of S ′. In either case, let J be an M ′-jet in this set. Its
tail has exactly one edge not in the path qm-qm+1- · · · -qn, and so at most 3(ν−1)2 +1+(k−1) edges
of J have an end not in Lk. Moreover, both J∪R1∪D and J∪R2∪D are jets of S1, and they are both
(ν + 1)-monotone (since every vertex of R1 ∪R2 has height at most ν + 1). Since R1, R2 have length
at most 2ν + 2, it follows that these two jets both have waste at most 3(ν − 1)2 + 1 + 2ν + 2 ≤ 3ν2.
Let |E(R1)| + |E(D)| = t; then |E(R2)| + |E(D)| = t + 1, so for each a ∈ A, both a + t, a + t + 1
belong to the jetset of S1, and so A + {t, t + 1} is a subset of the jetset of S1, and hence of the
M -jetset of S, and this is a set of at least ν consecutive integers. And this set is realized by M -jets
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of S that are (ν + 1)-monotone and have waste at most 3ν2. Thus in this case the theorem holds.
Consequently we may assume that no such m,R1, R2 exist. This proves (2).

For each vertex v ∈ V with reach r < n, let f(v) ∈ V be defined as follows. There is a monotone
path between v and qr; let X be the set of all vertices x such that x is adjacent to a vertex in a
monotone path between v and qr. Consequently qr+1 ∈ X, and so there exists x ∈ X with reach
greater than r. Choose such a vertex x with maximum reach, and define f(v) = x. If v has reach n
let f(v) = v.

Let v1 = q0, and for 1 ≤ i ≤ ν − 1 let vi+1 = f(vi). We need to establish several properties of
this sequence. Let t ≤ ν be maximum such that vt 6= vt−1. Thus either t = ν or vt has reach n.
For 1 ≤ i ≤ t, ri be the reach of vi; then r1 = 1, and ri < ri+1 for 1 ≤ i < t. For 1 ≤ i ≤ t let
Pi be a monotone path between vi and qri such that if i < t then vi+1 has a neighbour in Pi. The
paths P1, . . . , Pt are pairwise vertex-disjoint, because the reach of every vertex in Pi is precisely ri,
and r1, . . . , rt are all different. For 1 ≤ i < t let Bi be an induced path of G[V (Pi)∪ {vi+1}] between
vi and vi+1. Thus for 1 ≤ i ≤ t, B1 ∪ B2 ∪ · · · ∪ Bi−1 ∪ Pi is a path, say Ci, between v1 and qri .
In particular, Bi has length at least one, so there is a unique vertex yi of Bi adjacent to vi+1. For
1 ≤ i ≤ t, let εi = 1 if vi+1, yi ∈ Lk, and 2 otherwise.

(3) t = ν; for 1 ≤ i < ν, Bi has length h(vi) − h(vi+1) + εi; and for 1 ≤ i ≤ ν, Ci is an in-
duced path of length 1 +

∑
1≤j<i εj.

Let 1 ≤ i < t. Since h(yi) ≤ h(vi), and h(vi+1) ≤ h(yi) + 1, it follows that h(vi+1) ≤ h(vi) + 1; and
since h(v1) = 1, it follows inductively that h(vi) ≤ i for 1 ≤ i ≤ t. Consequently for 1 ≤ i < t, yi has
height at most ν − 1; and since the levelling is ν-stable, it follows that yi, vi+1 do not have the same
height unless they both have height zero. Moreover, vi+1 is not a child of yi, since the reach of vi+1

is greater than the reach of yi; so we have proved that either vi+1 is a parent of yi, or vi+1, yi both
have height zero. It follows that the length of Bi equals h(vi)− h(vi+1) + εi, for all i < t.

For 1 ≤ i ≤ t, the path B1 ∪B2 ∪ · · · ∪Bi−1 therefore has length

1− h(vi) +
∑

1≤j<i
εj ,

and since Pi has length h(vi), it follows that Ci has length 1 +
∑

1≤j<i εj . Since this quantity is less

than 2ν, and dG(u, qn) ≥ 3ν+2 > 2ν, it follows that ri < n. In particular, rt < n, and so t = ν.
We claim that for 1 ≤ i ≤ ν, the path Ci is induced; and prove this by induction on i. Certainly

C1 is induced, so we may assume inductively that i < ν and Ci is induced, and we prove that Ci+1

is induced. Now Ci+1 is obtained from a subpath of Ci by adding the edge yivi+1 and the path Pi+1;
so it suffices to check that there are no edges between B1 ∪ B2 ∪ · · · ∪ Bi and Pi+1 except the edge
yivi+1. Suppose then that y ∈ V (Bj) for some j ≤ i, and x ∈ V (Pi+1), and xy is an edge. Since the
reach of x equals ri+1, it follows that x has no neighbour in any of P1, . . . , Pi−1, and so y ∈ V (Pi).
Since also y ∈ V (Bj) for some j ≤ i, it follows that y ∈ V (Bi ∩ Pi). Since Bi is induced and we
may assume that (x, y) 6= (vi+1, yi), it follows that x 6= vi+1, and so h(vi+1) > 0 and h(x) < h(vi+1).
Since h(vi+1) > 0, also vi+1 is a parent of yi, and so h(x) ≤ h(yi). But h(y) ≥ h(yi), and since the
levelling is ν-stable and xy is an edge, it follows that y is a parent of x. But this is impossible since
the reach of x is greater than the reach of y. This proves that each Ci is induced, and so completes
the proof of (3).
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For 1 ≤ j ≤ n, let Aj be a monotone path between qj and the shower head z0. Thus Aj has length
k. For 1 ≤ i ≤ ν, the reach of every vertex in Ari+1 is at least ri+1, and so is greater than the reach of
every vertex in Ci; and so there is a path Ji formed by the union of D, Ci, the edge qriqri+1, and Ari+1.

(4) For 1 ≤ i ≤ ν the path Ji is induced.

Suppose that some Jt is not induced, where 1 ≤ t ≤ ν. Consequently some vertex x of Art+1 is
adjacent to some vertex y of Ct, and (x, y) 6= (qrt+1, qrt). Choose such a pair x, y with x of minimum
height. Since y has height at most ν, it follows that h(x) 6= h(y); and x is not a child of y since the
reach of x is greater than the reach of y. Thus x is a parent of y. Let y ∈ V (Pj) where j ≤ t. Since x
has a neighbour in Pj , it follows that the reach of x is at most rj+1; and so rt < rj+1. Consequently
t < j + 1, and since j ≤ t it follows that j = t, and so y ∈ V (Pt). Let a be the vertex of Art+1 of
height 1. Now there are two cases. First suppose that a is nonadjacent to qj for rt + 2 ≤ j ≤ n.
Let R1 be the path formed by the union of Ct and the edge qrtqrt+1, and let R2 be the path formed
by the union of the subpath of Ct between q0, y, the edge xy, and the subpath of Art+1 between
x, qrt+1. Note that R1 is induced by (3), and R2 is induced since we chose xy with x of minimum
height. Also R1 has length at most 2ν, and R2 has length one more. This is therefore impossible by
(2). Consequently there exists j > rt + 1 adjacent to a; choose such a value of j, maximum. Let R2

be the path formed by the union of Ct and the path qrt-qrt+1-a-qj , and let R1 be the path formed by
the union of the subpath of Ct between q0, y, the edge xy, the subpath of Art+1 between x, a, and
the edge aqj . In this case R2 has length at most 2ν + 2, and R1 has length one less. Since j ≥ rt + 3
(because G is triangle-free) it follows that both paths are induced, and again this contradicts (2).
Thus there is no such t. This proves (4).

Since each Ji is induced, it is therefore a jet for the u-bend S1 (and hence an M -jet for S), of
length k+ 1 +

∑
1≤j<i εj + |V (D)|, and with tail the path D; and since Ji \V (D) has length at most

k+ 2ν, and all vertices of Bi have height at most ν, it follows that Ji is ν-monotone and 2ν-wasteful
(and hence 3ν2-wasteful). The shortest of these jets is J1, and it has length k + 1 + |V (D)|. Let
A0 be a monotone path between q0 and z0; then A0 ∪D is also an M -jet, of length k − 2 + |V (D)|
(so, three less than the length of J1). Consequently these M -jets realize a subset of the M -jetset
satisfying the theorem. This proves 8.1.

(We no longer need u-bends or sprinklers after this point.) The previous result will have several
applications later in the paper. First, let us use it to convert a λ-stable shower into a stable shower.

8.2 Let κ, τ ≥ 0 and ν ≥ 2 be integers, and let ρ = 3ν+2. Let G be a triangle-free graph such that
G has no hole ν-interval, and χρ(G) ≤ κ. If G admits a ν-incomplete (ν + 2)-stable shower with
floor of chromatic number more than κ + τ , then G admits a ν-incomplete stable shower with floor
of chromatic number more than τ .

Proof. Let S be a ν-incomplete (ν + 2)-stable shower (L0, . . . , Lk, s) in G. Thus k ≥ ν + 2. Let
j = k − ν − 2; then Li is stable for j ≤ i < k. Let L0 = {z0}. Let X be the set of all vertices v ∈ Lj
such that there is an induced path Pv of G between v, z0 with length j + 1, such that every vertex
in Pv different from v belongs to one of L0, . . . , Lj−1. Let Y = Lj \X. Let X ′ be the set of vertices
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in Lk with an ancestor in X, and Y ′ the set of vertices in Lk with an ancestor in Y . Thus X ′ ∪ Y ′
is the floor of S.

Suppose that χ(G[X ′]) > κ. For j ≤ i ≤ k−1, let L′i be the set of vertices in Li with an ancestor
in X. Then

(L0, . . . , Lj−1, L
′
j , . . . , L

′
k−1, Lk, s)

is a ν-stable shower S1 say, and its floor includes X ′. This is contained in S, so S1 is ν-incomplete.
Since χ(G[X ′]) > κ, there exist w1, w2 ∈ X ′, in the same component of G[X ′], with dG(w1, w2) >
ρ ≥ 3ν+2. By 8.1 there is a dense subset A of the jetset of S1 of cardinality ν, and a set {Ja : a ∈ A}
of (ν + 1)-monotone jets for S1 realizing A. Thus for each a ∈ A, Ja contains exactly one vertex of
Li for 0 ≤ i < j, and exactly one vertex in L′j = X, say x. The subpath of Ja between x, z0 has
length j, and so the subpath Ra say of Ja between x, s has length |E(Ja)| − j. By definition of X,
the path Px exists and has length j + 1; and since both Ra, Px have exactly one vertex in Lj , their
union Ra ∪ Px is an induced path between s, z0 of length exactly one more than the length of Ja.
Now both Ja and Ra ∪ Px are jets of S1 and hence of S. Thus A+ {0, 1} is a subset of the jetset of
S. But this set consists of at least ν + 1 consecutive integers, since A is dense of cardinality ν; and
this is impossible since S is not ν-complete. This proves that χ(G[X ′]) ≤ κ.

Consequently χ(G[Y ′]) > τ . For 0 ≤ i ≤ j, let L′i be the set of vertices in Li with a descendant
in Y , and for j + 1 ≤ i ≤ k, let L′i be the set of vertices in Li with an ancestor in Y . Then
(L′0, . . . , L

′
k−1, Lk, s) is a shower S ′ say, with floor of chromatic number more than τ since its floor

includes Y ′. This is contained in S, so S ′ is ν-incomplete. We claim that S ′ is stable. For certainly
L′j , . . . , L

′
k−1 are stable, since S is (ν + 2)-stable. Suppose that 0 ≤ i ≤ j − 1 and y, y′ ∈ L′i are

adjacent. Since y has a descendant in Y , there is a path between y and Y of length j − i; and
since y′ ∈ L′i, there is a path between y′, z0 of length i. Since G is triangle-free, yy′ is the only edge
between these two paths; and so their union, together with this edge, is an induced path between
y, z0 of length j + 1, contradicting that y /∈ X. This proves that S ′ is stable; and so the theorem
holds. This proves 8.2.

We deduce:

8.3 Let τ ≥ 0 and ν ≥ 2 be integers, and let ρ = 3ν+2. Let G be a triangle-free graph, such
that G has no hole ν-interval, and χρ(G) ≤ κ. If χ(G) > 44ν(κ + τ)(ν+1)2 + 4κ, then G admits a
ν-incomplete stable shower with floor of chromatic number more than τ .

Proof. By 5.4, there is a ν-incomplete shower (L0, . . . , Lk, s) in G, with floor of chromatic number
more than ν(κ + τ)(ν+1)2 . Then k > ρ, since ν(κ + τ)(ν+1)2 ≥ κ. Since ρ ≥ (ν + 3)(ν − 1) + 1,
6.1 (with λ = ν + 2) implies that there is a (ν + 2)-stable ν-incomplete shower in G with floor of
chromatic number more than κ+ τ , so the result follows from 8.2. This proves 8.3.

The reason for controlling the waste of the jets that are output by 8.1 is that a jet with bounded
waste can be covered by a bounded number of monotone paths. More precisely:

8.4 Let S = (L0, . . . , Lk, s) be a shower in a graph G, and let J be a µ-wasteful jet of S. Then there
is a set of at most µ+ 1 monotone paths of S such that every vertex of J in L0 ∪ · · · ∪ Lk−1 belongs
to one of these paths.

28



Proof. Choose d ∈ V (J) such the tail T of J has ends d, s. Then no vertex of T belongs to
L0 ∪ · · · ∪Lk−1 except d. Let P be the subpath of J between z0, d, where z0 ∈ L0. At most k− 1 +µ
edges of P have an end not in Lk, since the waste of J is at most µ. Let us say the height of an
edge uv of P is the maximum of the heights of u, v. Thus at most k− 1 +µ edges of P have nonzero
height. As P is traversed starting from d, the number of edges in it that have height at least 2 and
different from the heights of all previous edges is at least k− 1, since the difference of the heights of
z0, d is k − 1; and so there are at most µ edges of P that have height 1 or the same nonzero height
as some earlier edge. By removing all such edges, we decompose P into at most µ+ 1 paths each of
which is either monotone or a path of G[Lk]; and every vertex of P in L0 ∪ · · · ∪Lk−1 belongs to one
of these monotone paths. This proves 8.4.

9 Stable showers

From now on, there is no need to consider general showers; we might as well just concern ourselves
with stable showers, in view of 8.3. To complete the proof of 5.1, we only need to show that if ν, κ,G
satisfy the hypotheses of 5.1 then every ν-incomplete stable shower in G has floor with bounded χ,
and that is the goal of the remainder of the paper.

We are concerned with a triangle-free graph which admits no hole ν-interval; and we will not
need to use induction on ν any more; so from now on we shall fix ν ≥ 2, to avoid having to carry it
along. We might as well also set ρ = 3ν+2 + 4, for the remainder of the paper, and fix κ ≥ 0. Let
us say a graph G is a candidate if G is triangle-free, and admits no hole ν-interval, and χρ(G) ≤ κ.
Our eventual goal is to prove that every stable shower in every candidate has floor of bounded χ.

Let S be a stable shower, with vertex set V , and let M be a mat. For X ⊆ V , we denote the set
of vertices in M with an ancestor in X by M(X) (and we write M(v) for M({v})).

We already defined “containment” for showers, but now we need a different inclusion relation.
Let S = (L0, . . . , Lk, s) be a stable shower, and let S ′ = (L′0, . . . , L

′
k′) be a levelling, both in a graph

G. We say that S ′ is a sublevelling of S if k′ ≤ k, and L′i ⊆ Li+k−k′ for 0 ≤ i ≤ k′.
If S = (L0, . . . , Lk, s) is a shower, we define U(S) to be L0∪· · ·∪Lk−1. (Note that this is different

from V (S), as we do not include Lk.)

9.1 Let G be a candidate. Let S = (L0, . . . , Lk, s) be a stable shower in G, and let z1, z2 ∈ U(S),
either equal or nonadjacent. For i = 1, 2, let Si be a sublevelling of S with vertex set Vi and head zi
respectively, disjoint except possibly z1 = z2 (more precisely, V1 ∩ V2 = {z1} ∩ {z2}), and let Mi be
the base of Si. Let χ(M1) > κ. Then either

• there are ν induced paths Q0, . . . , Qν−1 of G[V1 ∪ V2 ∪ Lk] between z1, z2, such that |E(Qi)| =
|E(Q0)|+ i for 0 ≤ i < ν (and in particular z1, z2 are distinct and nonadjacent); or

• χ(M2 \M2(X)) ≤ 2κ, where X denotes the set of vertices in V2 \ {z1} that have a neighbour
in V1 \ {z2}; and if χ(M2) > 2κ then there is a monotone path R of G[V1] between z1 and M1

such that (ν + 1)(3ν2 + 1)χ(M2(X(R))) ≥ χ(M2)− 2κ, where X(R) denotes the set of vertices
in V2 \ {z1} that have a neighbour in V (R) \ {z2}.

Proof. Choose a component of G[M1] with maximum chromatic number; and since this chromatic
number is larger than κ, it follows that there are two vertices of this component with distance more

29



than ρ (in G). Consequently there is a path P1 with V (P1) ⊆M1 joining two vertices with distance
at least 3ν+2 (in G). Choose a minimal such path P1, and let w1 be one of its ends. From the
minimality of P1 it follows that dG(w1, v) ≤ 3ν+2 for every vertex v of P1. (That concludes the role
of M1 in this proof.)

We may assume that χ(M2) > 2κ, since otherwise the second bullet of the theorem holds. Let
C2 be a connected induced subgraph of G[M2 \Nρ[w1]] with χ(C2) > κ. In addition, choose C2 with
V (C2)∩M2(X) = ∅ if possible, where X denotes the set of vertices in V2 \{z1} that have a neighbour
in V1 \ {z2}. Every path of G between C2 and P1 has length at least 3, since ρ ≥ 3ν+2 + 3. (Now we
are finished with M2.)

Let z1 ∈ Lh1 , and for h1 ≤ i ≤ k let L1
i be the set of all S1-descendants of z1 in Li with an

S1-descendant in P1. Thus L1
k = V (P1). Let V ′1 = L1

h1
∪ · · · ∪ L1

k. Since G[Lk] is connected, there
is a path of G[Lk] between V (P1) and C2; let D be a minimal path of G[Lk] such that one end (say
d1) has a neighbour in V (P1) ∪ L1

k−1 and the other (say d2) has a neighbour in C2.

(1) There is a set A1 of integers, of cardinality at most ν + 1, including a dense subset of cardi-
nality ν, and containing two integers x, y with y−x ∈ {1, 3}, such that the following holds. For each
a ∈ A1 there is an induced path Ja of G between d1, z1 of length a, such that

• V (Ja) ⊆ V ′1 ∪ {d1}; and

• there is a set of 3ν2 + 1 monotone paths of G[V ′1 ] between V (P1) and z1, such that every vertex
of V (Ja) \ (V (P1) ∪ {d1}) belongs to one of these paths.

Let D1 be the one-vertex path with vertex d1. If d1 has no neighbour in V (P1), then

(L1
h1 , . . . , L

1
k, D1)

is a w-bend S ′1 of size at least 3ν+2; and otherwise (L1
h1
, . . . , L1

k∪{d1}, d1) is a shower S ′1. In either case
we can apply 8.1 to S ′1, and deduce that there is a subset A1 of the jetset of S ′1, of cardinality at most
ν + 1, including a dense subset of cardinality ν, and containing two integers x, y with y− x ∈ {1, 3};
and realized by a set of jets of S ′1 that are 3ν2-wasteful. By 8.4, this proves (1).

Since |A1| ≤ ν + 1, there is a set of at most (ν + 1)(3ν2 + 1) monotone paths of G[V ′1 ] between
V (P1) and z1 such that, if Y denotes the set of vertices in these paths, then V (Ja) ⊆ Y ∪V (P1)∪{d1}
for each a ∈ A1. Let X ′ denote the set of vertices in V2 \ {z1} that have a neighbour in Y \ {z2}. Let
h2 be such that z2 ∈ Lh2 , and for h2 ≤ i ≤ k let L2

i be the set of vertices v ∈ Li such that there is
a monotone path of G[V2 \X ′] between z2, V (C2) containing v. It follows that no vertex in Y \ {z2}
has a neighbour in (L2

h2
∪ · · · ∪ L2

k) \ {z1}, and V (C2) \M2(X
′) ⊆ L2

k.

(2) If χ(L2
k) > κ then the first bullet of the theorem holds.

For then there exists an induced path P2 of G[L2
k] with ends at distance at least ρ. Since d2 has a

neighbour in C2, it follows that G[V (C2) ∪ V (D)] is connected. Thus

({z2}, L2
h2+1, . . . , L

2
k−1, V (C2) ∪ V (D), d1)

is a shower S ′2, and L2
k is a mat; and by 8.1, there is a dense subset A2 of the L2

k-jetset of S ′2
of cardinality ν. We claim that A1 + A2 contains a set B of ν consecutive integers. To see this,
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suppose first that there are two consecutive integers a, a + 1 ∈ A2. Let A′ be a dense subset of A1

of cardinality ν; then A′ + {a, a+ 1} consists of at least ν + 1 consecutive integers, all contained in
A1 +A2 as required. We may assume that that no two members of A2 are consecutive. Since A2 is
dense of cardinality ν, there exists s such that s, s+ 2, s+ 4, . . . , s+ 2(ν − 1) ∈ A2. But there exist
x, y ∈ A1 with y − x ∈ {1, 3}; and then

{s, s+ 2, s+ 4, . . . , s+ 2(ν − 1)}+ {x, y}

contains ν consecutive integers (indeed, almost 2ν). This proves that B exists.
If z1 = z2 then for every Ja (a ∈ A1) and every L2

k-jet of S ′2, their union is a hole; and so G has
holes of every length in B, and so has a hole ν-interval, which is impossible since G is a candidate.
Thus z1 6= z2, and so they are nonadjacent; but then for every Ja (a ∈ A1) and every L2

k-jet of S ′2,
their union is an induced path between z1, z2, and so the first bullet of the theorem holds. This
proves (2).

We may therefore assume that χ(L2
k) ≤ κ, and we will show that the second bullet of the

theorem holds. Consequently V (C2) 6⊆ L2
k, and therefore V (C2) ∩M2(X

′) 6= ∅. From the choice
of C2, it follows that χ(M2 \M2(X)) ≤ 2κ (for otherwise we could have chosen C2 with V (C2) ⊆
M2 \ (M2(X) ∪Nρ[w1])). This proves the first statement of the second bullet.

We can choose C2 such that χ(C2) ≥ χ(M2)−κ, and since V (C2) \M2(X
′) ⊆ L2

k and χ(L2
k) ≤ κ,

it follows that χ(V (C2)∩M2(X
′)) ≥ χ(M2)−2κ, and consequently χ(V (C2)∩M2(X)) ≥ χ(M2)−2κ.

Thus, one of the (ν+ 1)(3ν2 + 1) monotone paths satisfies the second statement of the second bullet.
This proves 9.1.

(We will not need w-bends after this point.) There is a special case of 9.1 that we will use several
times, and we extract it to make application easier.

9.2 Let G be a candidate. Let S = (L0, . . . , Lk, s) be a stable shower in G, and let z1 ∈ U(S). Let
A,B be disjoint sets of children of z1. Let M be a mat for S, and suppose that χ(M(B)\M(A)) > κ.
Then χ(M(A) \ M(B)) ≤ 2κ, and if χ(M(A)) > 2κ, then there is a monotone path R between
B,M(B) \M(A) such that (ν + 1)(3ν2 + 1)χ(M(X)) ≥ χ(M(A))− 2κ, where X denotes the set of
vertices with a parent in V (R) and an S-ancestor in A and an S-descendant in M(A).

Proof. Let S1 be the maximal sublevelling of S with head z1 such that for every vertex v 6= z1 of
its vertex set, v has an S-ancestor in B and has an S-descendant in M(B)\M(A) (and hence has no
S-ancestor in A); and let S2 be the maximal sublevelling of S with head z1 such that every vertex
of its vertex set except z1 has an S-ancestor in A and an S-descendant in M(A). Let their vertex
sets be V1, V2 respectively. Then V1 ∩ V2 = {z1}, and no vertex in V1 has a parent in V2 \ {z1}. Also
M(B) \M(A) is the base of S1, and M(A) is the base of S2. By 9.1, the result follows. This proves
9.2.

9.3 Let G be a candidate. Let (L0, . . . , Lk, s) be a stable shower in G, let z1 ∈ L0∪ · · ·∪Lk−1, let Y
be a subset of the set of children of z1, and let M ⊆ Lk such that every vertex in M has an ancestor
in Y . If

χ(M) > ((ν + 1)(3ν2 + 1) + 7)κ,

then there exists z2 ∈ Y such that χ(M(z2)) ≥ χ(M)− ((ν + 1)(3ν2 + 1) + 7)κ.
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Proof. Let τ = χ(M)− ((ν + 1)(3ν2 + 1) + 7)κ, and choose A ⊆ Y minimal such that χ(M(A)) ≥
2κ + τ . Suppose that χ(M(A)) ≥ 3κ + τ , and choose z2 ∈ A; then from the minimality of A,
χ(M(A \ {z2})) < 2κ+ τ , and so

χ(M(z2) \M(A \ {z2})) > κ.

By 9.2 applied to A \ {z2} and {z2}, it follows that χ(M(A) \M(z2)) ≤ 2κ; and since χ(M(A)) ≥
2κ+ τ , it follows that χ(M(z2)) ≥ τ , as required.

We may assume therefore that χ(M(A)) < 3κ+ τ . Let µ = (ν + 1)(3ν2 + 1)κ; then

χ(M) = τ + µ+ 7κ ≥ χ(M(A)) + µ+ 4κ,

so we may choose B ⊆ Y with A ⊆ B, minimal such that χ(M(B)) > χ(M(A)) + µ+ 2κ. Again, by
the same argument, we may assume that

χ(M(B)) ≤ χ(M(A)) + µ+ 3κ < τ + µ+ 6κ;

and since χ(M) = τ + µ + 7κ, it follows that χ(M \M(B)) > κ. Since χ(M(B)) > 2κ, 9.2 applied
to the mat M \ M(A) and the sets B, Y \ B, implies that there is a monotone path R between
Y \B,M \M(B) such that

(ν + 1)(3ν2 + 1)χ(M(X) \M(A)) ≥ χ(M(B) \M(A))− 2κ > µ = (ν + 1)(3ν2 + 1)κ,

and so χ(M(X) \M(A)) > κ, where X denotes the set of vertices with a parent in V (R) and an
S-ancestor in B and an S-descendant in M(B) \M(A). Let z2 be the vertex of this path in Y \B;
then

χ(M(z2) \M(A)) > κ.

By 9.2 again, applied to the mat M and the sets A, {z2}, it follows that χ(M(A) \M(z2)) ≤ 2κ.
Since χ(M(A)) ≥ 2κ+ τ , it follows that χ(M(z2)) ≥ τ . This proves 9.3.

10 What is going on?

It might be helpful at this stage to make some general remarks about where the proof is going. Look
at some vertex zi ∈ Li, such that the set of descendants of zi has large chromatic number. By 9.3
there is a child zi+1 of zi whose descendants have chromatic number almost as large (reduced by an
additive constant); and 12.1 tells us that the set of vertices in the base that are descendants of zi and
not of zi+1 has bounded chromatic number. This suggests that we start with z0 ∈ L0, and generate
a sequence z1, . . . , zt as above, until it stops. This sequence induces a useful partition of V (G); for
each i we look at the descendants of zi that are not descendants of zi+1. If v is a descendant of zi
and not zi+1, say the “reach” of v is i. So the set of vertices in M with any given reach has bounded
chromatic number, and we would like to exploit the partition given by the reach numbers. (This is
the start of the proof of 12.9.)

For each vertex v ∈ M with reach i, there is an induced path from v to zi such that all its
vertices have reach i; we call such paths “vertical” (they are monotone, but not all monotone paths
are vertical). Follow this vertical path from v until it first contains a neighbour x of some zj ; then
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x might have just a parent in {z0, . . . , zt}, or just a child in this set, or both. Thus M is divided
into three parts, and we will bound their chromatic numbers separately. For vertices v such that the
corresponding x has both a parent and child, it follows that x is adjacent to zi, zi+2, and so x is in
some sense a copy of zi+1; and to handle such vertices x, we replace the sequence z0, z1, . . . , zt by a
sequence of sets of vertices, each complete to the next. This sequence of sets is called a “wand”, but
for this sketch let us confine ourselves to wands where all the sets are singletons. (We only use the
more general wands once, in the proof of 12.9.) It remains to handle the x’s with only a parent in
{z0, . . . , zt}, and those with only a child.

The ones with only a child are suggestive. Suppose that the corresponding set of vertices in M
has large chromatic number. Delete everything except z0, . . . , zt and the vertical paths that lead to
vertices x of this “only-a-child” type. Then we get a new shower, still with big χ, and all distances
from z0 to vertices not in the wand are two more than before. (This is called “raising the wand”).
We would like to say that if in this smaller shower we can guarantee some jetset A (up to shifting),
then in the original shower we can guarantee A+{0, 2}. Unfortunately this does not seem to be true;
but if in the smaller shower there is a wand that can be raised to get a third shower still with big χ,
this third shower has the property we want. Since in the third shower we can at least get two jets
whose lengths differ by 1 or 3 by 8.1, we can now get two jets that differ by one in the first shower.
If in this third shower we can again find a wand giving us the same situation, we could get three
jets of consecutive lengths in the original shower, and this cannot go on arbitrarily, or we would get
many jets of consecutive lengths in the big shower and win. More precisely, let σ ≤ ν be maximum
such that every stable shower with large enough χ has σ jets of consecutive lengths. Our goal is to
prove that σ = ν, so we assume not, and assume we have a shower with large χ in which there are
no σ + 1 jets of consecutive lengths. Then it follows that raising any wand gives a shower in which
raising another wand gives a shower with bounded χ. So we might as well assume that that we have
a shower with large χ in which raising any wand gives bounded χ. The details are in 13.4. This is
how we manage the “only-a-child” type x’s.

To handle the “only-a-parent” x’s is more complicated. The idea is that we partition the set of
possible reach values into a few intervals, such that the vertices in M with reach in each interval have
large chromatic number. The vertices in each interval can all be accessed from the corresponding zi
by a vertical path, and the vertical paths for different intervals are disjoint, and we know a great deal
about the edges between them. (In particular, since we are in the “only-a-parent” case, nothing bad
happens very close to the wand.) That allows us to apply 9.1 to obtain a contradiction. For instance,
suppose we divide into two intervals, splitting M into two large χ subsets. We apply 9.1. The second
outcome of 9.1, involving a monotone path R, is impossible, because the vertices of R would have
larger reach than the vertices in the other sublevelling (the set V2 of 9.1) and so all vertices in V2
with a neighbour in R would have a child and not a parent in R, and then we could treat R as a
wand and raise it to get a contradiction. Thus the first outcome of 9.1 must always hold, and we are
equipped with a set of paths joining the two shower heads with many different but similar lengths.
We can do this simultaneously with different pairs of sets if we partition M into several parts instead
of just two; and we can chain two of these objects together, to get many paths of consecutive lengths,
in such a way that these paths can be completed to holes of many consecutive lengths. This is the
argument of section 11.
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11 Shower completeness

To go further we use a global induction that we explain next. For n ≥ 2, a set of integers is n-solid
if some subset consists of n consecutive integers. It is 1-solid if it contains two integers that differ
by 1 or 3. A key observation is that if a set A of integers is n-solid where n > 0, then A+ {0, 2} is
(n+ 1)-solid. Let us say a shower is n-complete over a mat M if its M -jetset is n-solid. (For n ≥ 2
this agrees with our earlier definition.) Now 8.1 implies that in every candidate, all stable showers
with a mat M of large enough chromatic number are 1-complete over M ; and as we have seen, to
finish the proof of our main theorem 5.1 we only need to show that all stable showers with a mat M
of large enough chromatic number are ν-complete over M . The induction just mentioned is that we
assume that for some σ > 0, all stable showers with a mat M of large enough chromatic number are
σ-complete over M ; and we will prove the same with σ replaced by σ + 1.

For σ > 0, let us say an integer ζ ≥ 0 is a sidekick for σ if for every candidate G, and every stable
shower S in G, S is σ-complete over M for every mat M for S with chromatic number more than ζ.

Next we need another inclusion relation for showers, as follows. Let S = (L0, . . . , Lk, s) be a
stable shower, with vertex set V , and let S ′ = (L′0, . . . , L

′
k′ , s

′) be a shower, both in a graph G. Let
P be an induced path of G[V ] between L0, L

′
0. Suppose that

• s = s′;

• L′0, . . . , L′k′−1 ⊆ L0 ∪ · · · ∪ Lk−1;

• L′k′ ⊆ Lk; and

• no vertex of P belongs to L′1 ∪ · · · ∪L′k′ , and no vertex of P has a neighbour in this set except
the vertex in L′0.

In this situation we say that S ′ is included in S, and P is a pipe. Note that there may be vertices
u, v such that v is a child of u in S, and u is a child of v in S ′. Nevertheless, it follows that S ′ is a
stable shower, because the subgraph induced on L0 ∪ · · · ∪ Lk−1 is bipartite.

Let S ′ be included in S, with a pipe P . For every jet J of S ′, J∪P is a jet of S; and consequently,
if the jetsets of the two showers are A,A′ respectively then A′ + {|E(P )|} ⊆ A. Thus if S ′ is n-
complete for some n, then so is S. If M,M ′ are mats for S,S ′ respectively, and M ′ ⊆ M , then for
every M ′-jet J of S ′, J ∪ P is an M -jet of S; and so the same relation holds between the M - and
M ′-jetsets of the two showers. Note that the floor of S ′ is a subset of the floor of S, but for an
individual vertex v, there may be S ′-descendants of v that are not S-descendants. (This is not the
case for sublevellings.)

Let S ′ be included in S. We say a switch for S ′ in S is a pair (P1, P2) of pipes such that
|E(P2)| = |E(P1)|+ 2.

11.1 Let ζ be a sidekick for σ. Let S be a stable shower in a candidate G, and let S include a
shower S ′. Let M,M ′ be mats for S, S ′ respectively, with M ′ ⊆ M . If S is not (σ + 1)-complete
over M , and χ(M ′) > ζ, then there is no switch for S ′ in S.

Proof. Let S, S ′ have heads z0, z1 respectively, and suppose that (P1, P2) is a switch for S ′ in S.
Let A be the M -jetset of S, and let A′ be the M ′-jetset of S ′. As we saw above,

A′ + {|E(P1)|, |E(P1)|+ 2} ⊆ A.
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Since χ(M ′) > ζ and ζ is a sidekick for σ, it follows that S ′ is σ-complete over M ′. Consequently
A′ + {|E(P1)|, |E(P1) + 2} is (σ + 1)-complete, and hence so is A, a contradiction. This proves
11.1.

12 The shadow of a wand

Let S = (L0, . . . , Lk, s) be a stable shower. A wand W in S is a sequence (W0, . . . ,Wt) with the
following properties:

• 0 ≤ t ≤ k − 2;

• ∅ 6= Wi ⊆ Li for 0 ≤ i ≤ t; and

• every vertex in Wi is adjacent to every vertex in Wi+1 for 0 ≤ i ≤ t− 1.

We define V (W) = W0 ∪ · · · ∪Wt.
Let (W0, . . . ,Wt) be a wand W in S. If u ∈ Wi for some i, we say that a neighbour v of u is an

up-neighbour of u (relative to W) if

• v /∈ V (W);

• v ∈ Li−1 (and therefore i ≥ 2); and

• every neighbour of v in V (W) belongs to Wi (and therefore i ≥ 3).

For 0 ≤ i ≤ t− 1, let Ti be the set of all vertices v ∈ Li such that v is an up-neighbour of some
vertex in Wi+1. Let T = T0 ∪ · · · ∪ Tt−1. For v ∈ T , a post with top v (in S for W) is a monotone
path between v and Lk such that no vertex of this path has a parent in V (W) (and consequently no
vertex of this path belongs to V (W)). A post with top v therefore provides an induced path between
each neighbour (u say) of v in V (W) and Lk, of length two more than a monotone path between u
and Lk, and both paths can be extended to induced paths between L0 and Lk by adding a path with
vertex set within V (W). We shall exploit this later. For 0 ≤ i ≤ k, let Si be the set of all vertices
v ∈ Li that belong to a post with top in T . (Thus Si ⊆ Li \ V (W), and S0 = ∅.) If M is a mat for
S, we call M ∩ Sk the shadow (in S, over M) of the wand.

Showers in which no wand shadow has large χ are easier to work with than general showers. In
this section we prove that their mats have bounded chromatic number. The proof requires several
steps. We begin with:

12.1 Let S be a stable shower with mat M in a candidate G, such that every wand in S has shadow
over M with chromatic number at most τ . Let z ∈ U(S), and let A,B be disjoint sets of children of
z. If χ(M(A)) > κ then χ(M(B) \M(A)) ≤ (ν + 1)(3ν2 + 1)(τ + κ) + 2κ.

Proof. Suppose not. Let S1 be a sublevelling of S with head z and base M(A) such that every
vertex in its vertex set (V1 say) except z has an S-ancestor in A; and let S2 be a sublevelling of S
with head z and base M(B) \M(A) such that every vertex in its vertex set (V2 say) except z has an
S-ancestor in B and has no S-ancestor in A. Thus V1 ∩ V2 = {z}, and no vertex in V2 has a parent
in V1 \ {z}. By 9.1, since χ(M(A)) > κ and χ(M(B) \M(A)) > 2κ, there is a monotone path R of
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G[V1] between z and M(A) with the following property. Let X denote the set of vertices in V2 \ {z}
that have a neighbour in V (R) \ {z}; then the set Y of vertices in M(B) \M(A) with an ancestor
in X satisfies

(ν + 1)(3ν2 + 1)χ(Y ) ≥ χ(M(B) \M(A))− 2κ > (ν + 1)(3ν2 + 1)(τ + κ),

and consequently χ(Y ) > τ + κ.
Now no vertex of R different from z belongs to or has a child in V2, and so, since X ⊆ V2, every

vertex in X has a child in V (R). Let y be the vertex of R with height two, and let R′ be the subpath
of R between z, y. Let X1 be the set of vertices in X with a child in R′, and let X2 be the set of
vertices in X with a child in R with height at most one. Thus X = X1 ∪X2. Let P be the union
of R′ and a monotone path between L0 and z. The vertices of P in order form a wand, and every
vertex in X1 is an up-neighbour of a vertex of this wand. Consequently the set of S2-descendants in
M of X1 is a subset of the shadow in S over M of this wand, and so has chromatic number at most
τ . But every vertex in M with an ancestor in X2 is at distance at most three from the penultimate
vertex of R, and in particular the set of descendants in M of X2 has chromatic number at most κ.
Consequently χ(M(X)) ≤ τ + κ, a contradiction since Y ⊆M(X). This proves 12.1.

Let S be a stable shower in a candidate G, and let ξ ≥ 0 be an integer. A wandW = (W0, . . . ,Wt)
is said to be ξ-diagonal if

• every vertex of U(S) with a child in V (W) belongs to V (W); and

• for 0 ≤ i ≤ t, the set of vertices in M that have an ancestor in Wi and no ancestor in Wi+1

has chromatic number at most ξ (where Wt+1 = ∅).

Next we need some results about showers that admits ξ-diagonal wands, where ξ is bounded. Before
we do so, let us set up some notation for these things.

If S = (L0, . . . , Lk, s) with mat M , andW is a ξ-diagonal wand (W0, . . . ,Wt) in S, then for every
vertex v of U(S) ∪M , there is a maximum i ≤ t such that Wi contains an ancestor of v. We call
this number i the reach of v (with respect to W). Let U = U(S), and for 0 ≤ i ≤ t let Mi and Ui be
the sets of all vertices with reach i in M and in U , respectively. It follows that no member of Uj has
a child in Ui if i < j. Let Mi = Ui = Wi = ∅ for t+ 1 ≤ i ≤ k − 2.

12.2 Let S be a stable shower with mat M in a candidate G, such that the shadow over M of every
wand in S has chromatic number at most τ . Let W = (W0, . . . ,Wt) be a ξ-diagonal wand, and let P
be a monotone path between M and V (W), with no vertex in V (W) except one end. Let 0 ≤ a ≤ t,
and let X = ∪0≤i<a(Ui ∪Mi) and Y = ∪a<i≤t(Ui ∪Mi). Suppose that V (P ) ⊆ Y . Let X(P ) be the
set of vertices in X \ V (W) with a neighbour in V (P ). Then the set of vertices in M ∩X with an
ancestor in X(P ) has chromatic number at most τ + κ.

Proof. Let P have vertices ph- · · · -pk in order, where pi ∈ Li for h ≤ i ≤ k, and ph ∈ Wh, and
therefore a < h. Let Z1, Z2 respectively be the sets of all v ∈ X(P ), such that

• v has a neighbour in {ph, . . . , pk−2};

• v has a neighbour in {pk, pk−1}.
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If v ∈ Z1, then v has no parent in V (P ) from the definition of “reach”. Suppose that v has a
parent in W0 ∪ · · · ∪Wh−1. Then since v ∈ N(P ), it has a neighbour in one of Wh−1,Wh−2. But v is
not a parent of ph since v /∈ V (W), so v has no neighbour in Wh−2. Thus v has a parent in Wh−1,
and so has reach at least h − 1. But h − 1 ≥ a, contradicting that v ∈ Z1. This proves that every
vertex in Z1 is an up-neighbour of the wand

(W0, . . . ,Wh−1, {ph}, {ph+1}, . . . , {pk−2}).

Moreover, if R is a monotone path between some v ∈ Z1 and M ∩ X, then V (R) ⊆ X from the
definition of “reach”, and so no vertex of R has a parent in this wand. Consequently every vertex
in M ∩X with an ancestor in Z1 belongs to the shadow in S of this wand over M , and so the set of
such vertices has chromatic number at most τ .

If v ∈ Z2 then v has height at most two, and so every descendant of Z2 in M has distance at
most three from pk−1. Since ρ > 3 it follows that the set of such descendants has chromatic number
at most κ. Summing, this proves 12.2.

A monotone path is vertical if for some i, all its vertices belong to Mi ∪ Ui. Note that, if P
is a monotone path between some vertex in Mh and some vertex in Wh, then P is vertical. If
X ⊆ U ∪M , the set of vertices in M joined to a vertex in X by a vertical path is denoted by X ↓M .
The previous result 12.2 told us about the chromatic number of the descendants of vertices with
neighbours in a monotone path, when we confine ourselves to vertices with smaller reach than the
vertices of the path (actually, reach smaller by at least two). The next result does the same when we
confine ourselves to larger reach; except we can only handle descendants reachable by vertical paths,
not general descendants.

12.3 Let ζ be a sidekick for σ. Let S be a stable shower with mat M in a candidate G, such that S
is not (σ + 1)-complete over M , and the shadow over M of every wand in S has chromatic number
at most τ . Let W = (W0, . . . ,Wt) be a ξ-diagonal wand, and let P be a monotone path between M
and V (W), with no vertex in V (W) except one end. Let 0 ≤ a ≤ t, and let X = ∪0≤i<a(Ui ∪Mi)
and Y = ∪a<i≤t(Ui ∪Mi). Suppose that with notation as above, V (P ) ⊆ X. Let Y (P ) be the set of
vertices in Y \ V (W) with a neighbour in V (P ). Then χ(Y (P ) ↓M) ≤ 2ζ + 2ξ + κ.

Proof. Let P have vertices ph- · · · -pk in order, where pi ∈ Li for h ≤ i ≤ k, and ph ∈ Wh, and
therefore h < a.

Let M0 = Y (P ) ∩M . Every vertex in M0 is adjacent to one of pk−1, pk, so χ(M0) ≤ κ. We may
therefore assume that there are vertices in Y (P ) ∩ U with reach greater than a, and so there exists
i ∈ {h, . . . , k} such that some neighbour y of pi belongs to Y (P ) ∩ U and has reach greater than a.
Choose i minimum with this property. Now y is not a parent of pi from the definition of “reach”,
and since y ∈ U it follows that i < k and pi ∈ U . Consequently y is a child of pi, and so i ≤ k − 2.
Let y ∈ Uj1 ; and we may assume that y is chosen with j1 maximum. The height of y is at most
k − j1 − 1, and so the height of pi is at most k − j1, that is, i ≥ j1. In particular, since j1 > a and
h < a, it follows that i ≥ h+ 2. If possible, let j2 ∈ {h+ 2, . . . , t} be maximum such that pi+1 has a
child in Uj2 \Wj2 , and otherwise j2 is undefined.

Let Q be a vertical path between y and Wj1 , and let y′ be the neighbour of y in Q. Then pi has
no neighbour in V (Q) except y. Let S1 be the maximal sublevelling of S with head pi and with base
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a subset of M , such that no child of y or y′ belongs to U(S1). Let M1 be its base. For 0 ≤ j ≤ j1, let
cj ∈ Wj , where ch = ph and cj1 ∈ V (Q). Consequently c0- · · · -ch-ph+1- · · · -pi and c0- · · · -cj-Q-y-pi
are both induced paths, and so the pair forms a switch for S1. From 11.1, it follows that χ(M1) ≤ ζ.

If j2 is defined let y′′ be a child of pi+1 in Uj2 , and let M2 be the set of vertices v ∈M such that
there is a monotone path of S between v, pi+1 containing no child of y′′ or of an appropriate parent
of y′′; then similarly, χ(M2) ≤ ζ. If j2 is undefined let M2 = ∅.

Let M3 be the set of all v ∈ (Y (P ) ∩ U) ↓M such that v /∈M1 ∪M2. Let v ∈M3 and let R be
a vertical path between v and u ∈ Y (P ) ∩ U say. Thus u is therefore a child of pi′ for some i′ with
i ≤ i′ ≤ k− 2. By adding the edge upi′ and the path pi- · · · -pi′ , we obtain a monotone path between
pi and v. Since v /∈ M1, this path contains a child of one of y, y′. Now no vertex of P is a child
of y or y′ by the definition of “reach”, and so this child belongs to R; and since y, y′ ∈ Li ∪ Li+1,
some vertex of R belongs to Li+2, and therefore i′ ≤ i + 1. On the other hand, i′ ≥ i; so there are
two cases, i′ = i and i′ = i + 1. Choose j with v ∈ Mj ; then V (R) ⊆ Uj ∪Mj , and again, from the
definition of “reach”, it follows that j ≥ j1. Suppose first that i′ = i; then j = j1 from the choice
of j1, and so v ∈ Mj1 . Similarly, if i′ = i + 1, then since v /∈ M2, it follows that v ∈ Mj2 . We have
shown then that M3 ⊆Mj1 ∪Mj2 , and so χ(M3) ≤ 2ξ.

Now let v ∈ Y (P ) ↓ M , and let R be a vertical path between v and some u ∈ Y (P ). If
u ∈ M then u = v and v ∈ M0. If u ∈ U , then v belongs to one of M1,M2,M3. Consequently
χ(Y (P ) ↓M) ≤ κ+ 2ζ + 2ξ. This proves 12.3.

12.4 Let ζ be a sidekick for σ. Let S be a stable shower with mat M in a candidate G, such that S
is not (σ + 1)-complete over M , and the shadow over M of every wand in S has chromatic number
at most τ . Let W be a ξ-diagonal wand. In the usual notation, let h < j ≤ t, and let H ⊆

⋃
h<i<jMi

such that χ(H) > 2ξ+ 2κ+ τ . Let ch ∈Wh, and cj ∈Wj. Then there is a set A of integers, and for
each a ∈ A there is an induced path Ja of G between ch, cj, with the following properties:

• A has cardinality at most ν + 1, and includes a dense set of cardinality ν, and contains two
integers x, y with y − x ∈ {1, 3};

• |E(Ja)| = a for each a ∈ A;

• for each a ∈ A, V (Ja) ⊆ {ch, cj} ∪ Uh+1 ∪ · · · ∪ Uj−1 ∪H;

• for each a ∈ A, every vertex of Ja belongs either to V (W) ∪ V (H) or to a vertical path with
one end in H; and

• for each a ∈ A, there is a set of at most 3ν2 + 2 S-monotone paths, each with vertex set a
subset of {ch}∪Uh+1∪ · · · ∪Uj−1, such that every vertex of V (Ja) \ (H ∪V (W)) belongs to one
of these paths.

Proof. We may assume that H is connected, by replacing it by one of its components with maximum
chromatic number. No vertex in H has an ancestor in Wj ; choose i < j maximum such that
H ∩Mi 6= ∅. Thus H ⊆ Mh+1 ∪ · · · ∪Mi. Choose ci ∈ Wi with a descendant in Mi ∩H, and let Q
be a vertical path between ci and Mi ∩H. Let N(Q) denote the set of vertices in M ∪ (U \ V (W))
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with a neighbour in V (Q). By 12.2, N(Q) ↓ (H \ (Mi−1 ∪Mi)) has chromatic number at most τ +κ,
and since χ(Mi−1 ∪Mi) ≤ 2ξ, it follows that there exists H ′ ⊆ H \ (Mi−1 ∪Mi) such that

χ(H ′) ≥ χ(H)− (2ξ + κ+ τ) > κ,

and no vertical path meets both H ′ and N(Q). Thus H ′ ⊆ Mh+1 ∪ · · · ∪Mi−2, and in particular
i ≥ h + 3. Let S = (L0, . . . , Lk, s). Let X be the union of the vertex sets of all vertical paths with
one end in H ′ and the other in V (W), together with

{ch} ∪Wh+1 ∪ · · · ∪Wi−2,

and for h ≤ j′ < k let Lj′ = Lj ∩X. Let L′k be the union of H, V (Q), and Wi+1 ∪Wi+2 ∪ · · · ∪Wj .
Then G[L′k] is connected and every vertex of X \ Lk with a neighbour in L′k belongs to L′k−1. It
follows that (L′h, . . . , L

′
k−1, L

′
k, cj) is a stable shower S ′, with mat H ′; and the result follows from 8.1

and 8.4. (Note: 8.4 gives us 3ν2 + 1 S ′-monotone paths containing all the vertices of Ja not in L′k.
We can assume that none of these paths has a vertex in L′k, and so they are also S-monotone; but
we also need to cover the vertices of Ja in L′k \ (H ∪ V (W)). One more S-monotone path will do
this, namely Q.) This proves 12.4.

12.5 Let ζ be a sidekick for σ. Let S be a stable shower with mat M in a candidate G, such that S
is not (σ + 1)-complete over M , and the shadow over M of every wand in S has chromatic number
at most τ . Let W be a ξ-diagonal wand. With the usual notation, let j0 < j1 < j2 ≤ t, and suppose
that u1 ∈Mj0 and u2 ∈Mj2 are adjacent. Let M1 ⊆

⋃
j0<j<j1

Mj and M2 ⊆
⋃
j1<j<j2

Mj. If

χ(M1) > 2ζ + 5ξ + 4κ+ 2τ

and
χ(M2) > ((ν + 1)(3ν2 + 2) + 1)(2ζ + 2ξ + κ) + 3ξ + 3κ+ 2τ

then there is an edge between M1,M2.

Proof. Let P1 be a vertical path between u1,Wj0 , and let P2 be a vertical path between u2,Wj2 .
Let cj0 be the end of P1 in Wj0 , and let cj2 be the end of P2 in Wj2 . Since u1, u2 are adjacent, there
is an induced path P between cj0 , cj2 with V (P ) ⊆ V (P1 ∪ P2). For i = 1, 2, let N(Pi) be the set of
vertices in M ∪ (U \V (W)) with a neighbour in V (Pi). By 12.2, χ(N(P2) ↓M1) ≤ κ+ τ . Moreover,
by 12.3,

χ(N(P1) ↓ (M1 \Mj1+1)) ≤ 2ζ + 2ξ + κ,

and since χ(Mj1+1) ≤ ξ, it follows that χ(N(P1) ↓ M1) ≤ 2ζ + 3ξ + κ. Consequently there exists
H1 ⊆M1 with

χ(H1) > χ(M1)− (2ζ + 3ξ + 2κ+ τ) ≥ 2ξ + 2κ+ τ,

such that no vertex in H1 belongs to a vertical path that intersects N(P1)∪N(P2). Choose cj1 ∈Wj1 .
By 12.4,

(1) There is a set A of integers, and for each a ∈ A there is an induced path Ja of G between
cj0 , cj1, with the following properties:
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• A has cardinality at most ν + 1, and includes a dense set of cardinality ν, and contains two
integers x, y with y − x ∈ {1, 3};

• |E(Ja)| = a for each a ∈ A;

• for each a ∈ A, V (Ja) ⊆ {cj0 , cj1} ∪ Uj0+1 ∪ · · · ∪ Uj1−1 ∪H1;

• for each a ∈ A, every vertex of Ja belongs either to V (W) ∪ V (H1) or to a vertical path with
one end in H1; and

• for each a ∈ A, there is a set of at most 3ν2 + 2 S-monotone paths, each with vertex set a
subset of {cj0} ∪Uj0+1 ∪ · · · ∪Uj1−1, such that every vertex of V (Ja) \ (H1 ∪ V (W)) belongs to
one of these paths.

In particular, for each a ∈ A, P ∪Ja is an induced path between cj1 and cj2 , because of the fourth
bullet above and from the choice of H1. Now suppose that there are no edges between M1,M2. By
(ν + 1)(3ν2 + 2) + 1 applications of 12.3, and one application of 12.2, there exists H2 ⊆M2 with the
following properties:

• no vertex in H2 belongs to a vertical path that intersects N(P1) ∪N(P2);

• for each a ∈ A, no vertex in H2 belongs to a vertical path that contains a vertex in V (Ja) or
a neighbour of such a vertex (here we use that there is no edge between H1 and M2); and

• χ(H2) ≥ χ(M2)− ((ν + 1)(3ν2 + 2) + 1)(2ζ + 2ξ + κ)− (κ+ τ + ξ) > 2ξ + 2κ+ τ.

We apply 12.4 to H2, and thereby obtain a set of paths joining cj1 and cj2 . More precisely:

(2) There is a set B of integers, and for each b ∈ B there is an induced path Kb of G between
cj1 , cj2, with the following properties:

• B has cardinality at most ν + 1, and includes a dense set of cardinality ν, and contains two
integers x, y with y − x ∈ {1, 3};

• |E(Kb)| = b for each b ∈ B;

• for each b ∈ B, V (Kb) ⊆ {cj1 , cj2} ∪ Uj1+1 ∪ · · · ∪ Uj2−1 ∪H2; and

• for each b ∈ B, every vertex of Kb belongs either to V (W) ∪ V (H2) or to a vertical path with
one end in H2.

For each b ∈ B and each a ∈ A, it follows from the fourth bullet of (2) and the choice of H2 that
Ja ∪ Kb ∪ P is a hole. It follows as usual that G contains a hole ν-interval, a contradiction. This
proves 12.5.

12.6 Let ζ be a sidekick for σ. Let S be a stable shower with mat M in a candidate G, such that S
is not (σ + 1)-complete over M , and the shadow over M of every wand in S has chromatic number
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at most τ . Let W be a ξ-diagonal wand. In the usual notation, let j1 < j2 ≤ t, and suppose that
u1 ∈Mj1 and u2 ∈Mj2 are adjacent. Let M1 ⊆

⋃
j1<j<j2

Mj and M2 ⊆
⋃
j2<j≤tMj. If

χ(M1) > (2ζ + 4ξ + τ + 4κ) + (ν + 1)(3ν2 + 1)(τ + κ)

and
χ(M2) > 4ζ + 5ξ + 3κ,

then there exist H1 ⊆ M1 and H2 ⊆ M2 such that χ(H1) ≥ χ(M1) − (2ζ + 4ξ + τ + 2κ) and
χ(H2) ≥ χ(M2)− (4ζ + 5ξ + 2κ) and there is no edge between H1, H2.

Proof. For i = 1, 2, let Pi be a vertical path between ui and some cji ∈ Wji . Let P be an induced
path between cj1 , cj2 with V (P ) ⊆ V (P1 ∪ P2). For i = 1, 2, let N(Pi) be the set of vertices in
M ∪ (U \ V (W)) with a neighbour in V (Pi).

Let B be the set of all vertices that belong to a vertical path R between M1 ∪M2 and V (W)
such that no vertex of R belongs to N(P1)∪N(P2). Consequently there are no edges between V (P )
and B. Moreover, there are no edges between the interior of P and V (W) \ (Wj1 ∪Wj2).

By 12.3, χ(N(P1) ↓ (M1 \Mj1+1)) ≤ 2ζ + 2ξ + κ, and so

χ(N(P1) ↓M1) ≤ 2ζ + 3ξ + κ.

Also, from 12.2, χ(N(P2) ↓ (M1 \Mj2−1) ≤ τ + κ, and so

χ(N(P2) ↓M1) ≤ τ + ξ + κ.

Consequently
χ(B ∩M1) > χ(M1)− (2ζ + 4ξ + τ + 2κ).

Choose H1 ⊆ B ∩M1, such that G[H1] is connected and χ(H1) = χ(B ∩M1). Similarly, we may
choose H2 ⊆ B∩M2 such that G[H2] is connected and χ(H2) > χ(M2)− (4ζ+5ξ+2κ). For i = 1, 2,
let Bi be the set of vertices in B that belong to a vertical path with one end in Hi.

Suppose that there is an edge between H1, H2, and so G[H1 ∪ H2] is connected. Let S =
(L0, . . . , Lk, s). Then S ′ = (L0, . . . , Lk−1, H1 ∪ H2, s

′) is also a shower (where s′ ∈ H1 ∪ H2 is
arbitrary). We need to define two sublevellings of S ′.

• Let L1
j1

= {cj1}, for j1 < i < j2 let L1
i = Wi ∪ (Li ∩ B1), and for j2 ≤ i ≤ k let L1

i = Li ∩ B1;

then (L1
j1
, . . . , L1

k) is a sublevelling S1 of S ′ with head cj1 and base H1.

• Let L2
j2

= {cj2}, for j2 < i ≤ t let L2
i = Wi ∪ (Li ∩ B2), and for t < i ≤ k let L2

i = Li ∩ B2;

then (L2
j2
, . . . , L2

k) is a sublevelling S2 of S ′ with head cj2 and base H2.

In particular, there are no edges between the interior of P and V (Si) for i = 1, 2.
Let us apply 9.1 to the pair S2,S1 of sublevellings of S ′ (in this order). Since χ(H2) > κ and

χ(H1) > 2κ, and the base of S ′ is the union of the bases of S1 and S2, we deduce that either

• there are ν induced pathsQ0, . . . , Qν−1 ofG[V (S1)∪V (S2)] between cj1 , cj2 , such that |E(Qi)| =
|E(Q0)|+ i for 0 ≤ i < ν; or
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• there is an S2-monotone path R between cj2 and H2 such that

(ν + 1)(3ν2 + 1)χ(H1(X(R))) ≥ χ(H1)− 2κ,

where X(R) denotes the set of vertices in V (S1) that have a neighbour in V (R), and H1(X(R))
denotes the set of S0-descendants in H1 of the members of X(R).

Suppose that Q0, . . . , Qν−1 are as in the first statement. Let 0 ≤ j ≤ ν− 1; we claim that P ∪Qj
is a hole. Since P,Qj are induced paths with the same ends, it is enough to show that no vertex of
the interior of P belongs to or has a neighbour in the interior of Qj . Let q belong to the interior
of Qj . Then q ∈ V (Si) for some i ∈ {1, 2}, and no vertex of the interior of P belongs to or has a
neighbour in V (Si), as we saw above. Thus P ∪Qj is a hole for each j, and these holes form a hole
ν-sequence, which is impossible.

Now suppose that R satisfies the second statement. By 12.2, χ(H1(X(R))) ≤ τ + κ, and so
(ν + 1)(3ν2 + 1)(τ + κ) ≥ χ(H1)− 2κ, a contradiction.

It follows that there is no edge between H1, H2. This proves 12.6.

We need the following lemma.

12.7 Let G be a graph with chromatic number more than 4N , and let M1, . . . ,Mk be a partition of
V (G) such that χ(Mi) ≤ N for 1 ≤ i ≤ k. Then there exist a < b < c < d < e ≤ k such that there is
an edge of G between Ma and Mc, and an edge between Ma and Me.

Proof. Let J be the graph with vertex set {1, . . . , k} in which i, j are adjacent if there is an edge
of G between Mi and Mj . If J is 4-colourable, then χ(G) ≤ 4N , a contradiction. So J is not
4-colourable, and consequently there exists a ∈ {1, . . . , k} such that a is adjacent in J to at least
four of a + 1, . . . , k. Let b, c, d, e be four such neighbours, in order; then the theorem holds. This
proves 12.7.

12.8 Let ζ be a sidekick for σ. Let S be a stable shower with mat M in a candidate G, such that S
is not (σ + 1)-complete over M , and the shadow over M of every wand in S has chromatic number
at most τ . Let

η = ((ν + 1)(3ν2 + 2) + 6)(2ζ + 2ξ + τ + κ) + 2τ.

Let W be a ξ-diagonal wand. Then χ(M) ≤ 4(η + ξ) + η.

Proof. Suppose that χ(M) > 4(η + ξ) + η. Let W = (W0, . . . ,Wt). Let j0 = −1, and define
j1, j2, . . . jr and M1, . . . ,M r−1 inductively as follows. Having defined j0, . . . , ji and M1, . . . ,M i−1, if
χ(∪ji<j≤tMj) < η the sequence terminates; define r = i. Otherwise choose ji+1 ≤ t minimum such
that χ(∪ji<j≤ji+1Mj) ≥ η. Let M i =

⋃
ji<j≤ji+1

Mj .

This completes the inductive definition. We see that the sets M1, . . . ,M r−1 are disjoint, and
their union has chromatic number at least χ(M)− η > 4(η+ ξ); and each Mi has chromatic number
at least η, and at most η + ξ (from the minimality of ji+1). It follows from 12.7 that there exist
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a < b < c < d < e ≤ r such that there is an edge of G between Ma and M c, and an edge between
Ma and M e. Now

χ(M b) ≥ η > (2ζ + 4ξ + τ + 4κ) + (ν + 1)(3ν2 + 1)(τ + κ)

and
χ(Md) ≥ η > 4ζ + 5ξ + 3κ,

so by 12.6 applied to M b,Md and the edge between Ma,M c, there exist H1 ⊆ M b and H2 ⊆ Md

such that χ(H1) ≥ η − (2ζ + 4ξ + τ + 2κ) and χ(H2) ≥ η − (4ζ + 5ξ + 2κ), and there is no edge
between A1, A2. But since

χ(H1) > 2ζ + 5ξ + 4κ+ 2τ

and
χ(H2) > ((ν + 1)(3ν2 + 2) + 1)(2ζ + 2ξ + κ) + 3ξ + 3κ+ 2τ

this contradicts 12.5 applied to H1, H2 and the edge between Ma,M e. This completes the proof of
12.8.

Now we can prove the objective of this section, the following.

12.9 Let ζ be a sidekick for σ. Let N = (ν + 1)(3ν2 + 2) + 9. Let τ ≥ 0, and let S be a stable
shower with mat M in a candidate G, such that S is not (σ + 1)-complete over M , and the shadow
over M of every wand in S has chromatic number at most τ . Then χ(M) ≤ 40N2κ+ 40Nζ+ 20Nτ .

Proof. Let
ξ = ((ν + 1)(3ν2 + 1) + 8)κ,

and
η = ((ν + 1)(3ν2 + 2) + 6)(2ζ + 2ξ + τ + κ) + 2τ.

Let S = (L0, . . . , Lk, s), and for each v ∈ U , let M(v) denote the set of descendants of v in M . Let
z0 ∈ L0, and recursively, having defined zi, let zi+1 be a child of zi chosen such that χ(M(zi+1)) > κ
if there is such a child; otherwise the definition terminates, when i = t say. Thus M = M(z0). Note
that since χ(M(zt)) > κ, it follows that zt has height more than ρ, and in particular t ≤ k − 2, so
({z0}, . . . , {zt}) is a wand.

(1) For 0 ≤ i < t, χ(M(zi) \M(zi+1) ≤ ξ, and χ(M(zt)) ≤ ξ.

For 0 ≤ i < t, since χ(M(zi+1)) > κ, 12.1 implies that

χ(M(zi) \M(zi+1)) ≤ (ν + 1)(3ν2 + 1)(τ + κ) + 2κ ≤ ξ.

We claim that χ(M(zt)) ≤ ξ; for suppose not. Then by 9.3, there is a child z of zt such that
χ(M(z)) ≥ χ(M(zt))− ((ν+ 1)(3ν2 + 1) + 7)κ > κ, contrary to the maximality of t. This proves (1).

For each vertex v ∈ M , choose a monotone path Rv between v and some vertex xv, such that
xv has a neighbour in {z0, . . . , zt}, with minimum length. Thus no vertex of Rv except xv has a
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neighbour in {z0, . . . , zt}. Now xv might have a parent in {z0, . . . , zt}, or a child, or both. Let X1

be the set of vertices in U(S) \ V (W) with a child and no parent in {z0, . . . , zt}; X2 the set with a
parent and no child in {z0, . . . , zt}; and X3 the set with both a parent and a child in {z0, . . . , zt}.
For i = 1, 2, 3 let M i be the set of u ∈M such that xv ∈ Xi.

(2) χ(M1) ≤ τ and χ(M2) ≤ 4(η + ξ) + η.

Since ({z0}, . . . , {zt}) is a wand, and M1 is a subset of its shadow in S over M , it follows that
χ(M1) ≤ τ . Let V ′ be the union of the vertex sets of the paths Rv (v ∈ M2), together with
{z0, . . . , zt}. Thus no vertex in V ′ \ {z1, . . . , zt} has a child in {z0, . . . , zt}. Now

(V ′ ∩ L0, V
′ ∩ L1, . . . , V

′ ∩ Lk−1, Lk, s)

is a shower S ′ say. Since S ′ is included in S, with a one-vertex pipe, it follows that S ′ is not (σ+ 1)-
complete over M . Moreover, ({z0}, . . . , {zt}) is a ξ-diagonal wand of S ′; and M2 is a mat for it.
From 12.8, it follows that χ(M2) ≤ 4(η + ξ) + η. This proves (2).

It remains then to bound the chromatic number of M3. Let V ′ be the union of the vertex sets of
the paths Rv (v ∈M3), together with {z0, . . . , zt}; and let S ′ be the shower

(V ′ ∩ L0, V
′ ∩ L1, . . . , V

′ ∩ L′k−1, Lk, s).

For 1 ≤ i ≤ t − 1, let Di be the set of all vertices of U(S ′) (including zi) that are adjacent to both
zi+1, zi−1, and let D0 = {z0} and Dt = {zt}. (Note that zt is the only child of zt−1 in U(S ′)). For
c = 0, 1, 2, let Wc be the sequence X0, . . . , Xt, where Xi = Di if i − c is divisible by three, and
Xi = {zi} otherwise.

Thus each Wc is a wand, and for each v ∈M3, xv ∈ V (Wc) for some c ∈ {0, 1, 2}. For c = 0, 1, 2,
let Hc be the set of v ∈ M3 such that xv ∈ Di for some i ∈ {0, . . . , t} congruent to c modulo three.
Let c ∈ {0, 1, 2}, and let v ∈ Hc. Now no vertex of Rv \ {xv} has a parent in V (Wc), from the
minimality of the length of Rv, except for the child of xv in Rv; and the latter has no child in V (Wc)
since it has no neighbour in {z0, . . . , zt}. Consequently, if some vertex in Rv \ {xv} has a child in
V (Wc), then v belongs to the shadow in S of the wand Wc in S; and so the set of all such v has
chromatic number at most τ .

Finally, the set of v ∈ Hc such that no vertex in Rv \ {xv} has a child in V (Wc), has chromatic
number at most 4(η+ξ)+η, by 12.8. Thus χ(Hc) ≤ τ+4(η+ξ)+η; and so χ(M3) ≤ 3(τ+4(η+ξ)+η).
From (2), it follows that

χ(M) ≤ τ + (4(η + ξ) + η) + 3(τ + (4(η + ξ) + η)) = 20η + 16ξ + 4τ.

Now there is some arithmetic to rewrite this bound in terms of τ, κ, ν, which follows. Since

20η = 20(N − 3)(2ζ + 2ξ + τ + κ) + 40τ,
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and ξ ≤ Nκ, it follows that

χ(M) ≤ 20η + 16ξ + 4τ

= 20(N − 3)(2ζ + 2ξ + τ + κ) + 16ξ + 44τ

≤ 20N(2ζ + κ) + (40(N − 3) + 16)ξ + (20(N − 3) + 44)τ

≤ 20N(2ζ + κ) + (40N − 104)Nκ+ (20N − 16)τ

≤ 40N2κ+ 40Nζ + 20Nτ.

13 Raising a wand

Now we turn to general showers, in which a wand shadow may have large chromatic number. We will
prove that, if there is such a wand, then we can use it to construct a new shower, still with large χ,
in which no wand shadow has large chromatic number, which we have just shown to be impossible.
We begin with:

13.1 Let S = (L0, . . . , Lk, s) be a stable shower in a candidate G, with vertex set V , and let W =
(W0, . . . ,Wt) be a wand in S. Let v be a vertex of some post, and let v ∈ Li say. Then there are two
induced paths P1, P2 of G[V ] between v and L0, such that |E(P2)| = |E(P1)|+ 2, and for j ≥ i every
vertex in Lj that belongs to either of these paths belongs to Wi ∪Wi+1 ∪ {v}.

Proof. Let P be a post containing v, with top t ∈ Th say; thus h ≤ i. Let P0 be the subpath of
P between v, t. Let u ∈ Wh+1 be adjacent to t. Let P1 be the union of P0 and a monotone path
between t and L0. Let P2 be the union of P0, the edge tu, and a path between u and W0 with one
vertex in each of W0, . . . ,Wh+1. This proves 13.1.

13.2 Let ζ be a sidekick for σ. Let S = (L0, . . . , Lk, s) be a stable shower in a candidate G, with
mat M , such that S is not (σ + 1)-complete over M . Let (W0, . . . ,Wt) be a wand W in S. Let
0 ≤ i ≤ t − 1, and let Ti be the set of up-neighbours of vertices in Wi+1. Let M ′ be the set of all
v ∈M that belong to a post with top in Ti. Then

χ(M ′) ≤ ζ + 2((ν + 1)(3ν2 + 1) + 7)κ.

Proof. For X ⊆ Ti, and j ∈ {i, . . . , k}, let Lj(X) be the set of all vertices in Lj that belong to a
post with top in X. Then

(W0,W1, . . . ,Wi,Wi+1, X, Li+1(X), . . . , Lk−1(X), Lk, s)

is a stable shower S(X) included in S (with a one-vertex pipe). Also M ′ = M ∩ Lk(Ti). We may
assume that χ(M ′) > 2((ν + 1)(3ν2 + 1) + 7)κ, for otherwise the theorem holds. By 9.3 applied to
S(Ti) (taking z1 ∈Wi and Y = Wi+1) there exists u ∈Wi+1 such that

χ(M ∩ Lk(X0)) ≥ χ(M ′)− ((ν + 1)(3ν2 + 1) + 7)κ,

where X0 is the set of up-neighbours of u. By 9.3 applied to S(T (X0)) (taking z1 = u, and Y = X0)
there exists x ∈ X0 such that, setting X = {x}, we have

χ(M ∩ Lk(X)) ≥ χ(M ∩ Lk(X0))− ((ν + 1)(3ν2 + 1) + 7)κ;
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and so
χ(M ∩ Lk(X)) ≥ χ(M ′)− 2((ν + 1)(3ν2 + 1) + 7)κ.

Now
(X,Li+1(X), . . . , Lk−1(X), Lk, s)

is a shower included in S (with pipe a monotone path between x and L0), and M ∩ Lk(X) is a mat
for it. Since every vertex of S(X) belongs to a post, it follows that no vertex of S(X) has a parent in
V (W), and so by 13.1 there is a switch for S(X) in S. From 11.1 it follows that χ(M ∩Lk(X)) ≤ ζ.
We deduce that

χ(M ∩ Lk(X)) ≤ ζ + 2((ν + 1)(3ν2 + 1) + 7)κ.

This proves 13.2.

Let T0, . . . , Tt−1, T be as before. For 0 ≤ i ≤ k, let Si be the set of all vertices v ∈ Li that belong
to a post with top in T . (Thus Si ⊆ Li \ V (W), and S0 = ∅.) If M is a mat for S, it follows (since
t ≤ k − 2) that

(W0,W1,W2,W3 ∪ S1,W4 ∪ S2, . . . ,Wt ∪ St−2, St−1, . . . , Sk−2, Sk−1, Lk, s)

is a stable shower S ′ included in S; and we say that S ′ is obtained from S by raising the wand.
Moreover, the shadow M ∩ Sk is a mat for S ′.

13.3 Let S = (L0, . . . , Lk, s) be a stable shower in a candidate G, and let (W0, . . . ,Wt) be a wand
in S. Let S ′ be obtained from S by raising the wand. Then for 0 ≤ i ≤ t, if v ∈ Wi and v is an
S ′-child of u then i > 0 and u ∈Wi−1.

Proof. In the notation given before, since v ∈Wi and v is an S ′-child of u, it follows that i > 0 and
u ∈ Wi−1 ∪ Si−3, where S−1, S−2 = ∅. But Si−3 ⊆ Li−3 and v ∈ Wi ⊆ Li, so u /∈ Si−3, and hence
u ∈Wi−1. This proves 13.3.

13.4 Let ζ be a sidekick for σ. Let S = (L0, . . . , Lk, s) be a stable shower in a candidate G, with
mat M , such that S is not (σ + 1)-complete over M . Suppose that S is obtained from some stable
shower S0 in G with mat M0 by raising some wand, and M is the shadow over M0 of this wand. Let
W be a wand in S. Then the shadow M ′ of W in S over M has chromatic number at most

3ζ + 6((ν + 1)(3ν2 + 1) + 7)κ.

Proof. Let W = (W0, . . . ,Wt), and for 0 ≤ i ≤ t− 1, let Ti be the set of up-neighbours of vertices
in Wi+1 and let T = T0 ∪ · · · ∪ Tt−1. Thus M ′ is the set of all v ∈M that belong to a post with top
in T . Choose h minimum such that Th 6= ∅. Let M1,M2 be the sets of vertices in M that belong to
posts with top in Th ∪Th+1 and with top in T \ (Th ∪Th+1) respectively. In view of 13.2 it suffices to
bound χ(M2). For j = h+ 2, . . . , k let Sj be the set of vertices in Lj that belong to a post with top
in T \ (Th ∪Th+1). Thus every vertex of every such post belongs to Sj for some j. Choose u ∈Wh+1

with a neighbour v ∈ Th. Consequently

({u},Wh+2,Wh+3,Wh+4 ∪ Sh+2,Wh+5 ∪ Sh+3, . . . ,Wt ∪ St−2, St−1, . . . , Sk−1, Lk, s)
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is a shower S ′, and M2 is a mat for it. Every vertex of U(S ′) belongs to Lj for some j ≥ h + 2,
except u. We claim there is a switch for this shower; but in S0, not in S.

Let S0 be (J0, . . . , Jk−3, Lk, s). Now S is obtained from S0 by raising some wand D say, where
M is the shadow of D on some mat M0 for S0. Let D be (D0, . . . , Dr), and define Di = ∅ for i > r;
then for 0 ≤ i ≤ t, Li ⊆ Di ∪ (Ji−2 \ V (D)) (where J−1, J−2 = ∅).

Suppose that u ∈ V (D); then since u ∈ Lh+1, it follows that u ∈ Dh+1. Every vertex of Wh−1
has distance two from u, and so Wh−1 ∩ Jh−3 = ∅; so Wh−1 ⊆ Dh−1, since

Wh−1 ⊆ Lh−1 ⊆ Dh−1 ∪ Jh−3.

Since v has no neighbour in Wh−1, and every vertex of Dh is adjacent to every vertex of Dh−1, it
follows that v /∈ Dh. But this contradicts 13.3, since v is an S-parent of u.

This proves that u /∈ V (D). Since u ∈Wh+1 ⊆ Lh+1, it follows that u ∈ Jh−1. By 13.1 applied to
S0, there are two induced paths P1, P2 of G between u and L0, such that |E(P2)| = |E(P1)|+2, and for
j ≥ h−1 every vertex in Jj that belongs to either of these paths belongs to Dh−1∪Dh∪{u}. Suppose
that some vertex x ∈ V (S ′) has a neighbour y in one of P1, P2 where x, y 6= u. Let x ∈ Lj ; then
j ≥ h+2. Now Lj ⊆ Dj∪(Jj−2\V (D)). If x ∈ Dj then y ∈ Ji for some i ≥ j−1 ≥ h+1, contradicting
that y ∈ V (P1 ∪ P2). So x ∈ Jj−2 \ V (D), and so y ∈ Ji where i ≥ j − 3 ≥ h − 1. Consequently
y ∈ Dh−1 ∪Dh ∪ {u}, and y is an S0-parent of x. But this is impossible since x ∈ V (S) \ V (D) and
therefore belongs to a post in S′ for D.

Thus there is no such x, and so (P1, P2) is a switch for S ′ in S0. Hence by 11.1, χ(M2) ≤ ζ. Since
two applications of 13.2 imply that

χ(M1) ≤ 2ζ + 4((ν + 1)(3ν2 + 1) + 7)κ,

it follows that
χ(M ′) ≤ 3ζ + 4((ν + 1)(3ν2 + 1) + 7)κ.

This proves 13.4.

13.5 Let ζ be a sidekick for σ. Let S = (L0, . . . , Lk, s) be a stable shower in a candidate G,
with mat M , such that S is not (σ + 1)-complete over M . Let N = (3ν2 + 2)(ν + 1) + 9. Then
χ(M) ≤ 1000N3κ+ 1000N2ζ.

Proof. Let τ = (40N+176)Nκ+(40N+132)ζ. LetW be a wand in S, let M ′ be its shadow over M ,
and let S ′ be obtained by raising W. Every jet of S ′ is a jet of S, and so S ′ is not (σ + 1)-complete.
By 13.4, the shadow over M ′ of every wand in S ′ has chromatic number at most

3ζ + 4(N − ν + 1)κ.

By 12.9 applied to S ′, it follows that χ(M ′) ≤ 40N2κ + 40Nζ + 20N(3ζ + 4(N − ν + 1)κ) ≤ τ.
Thus every wand in S has shadow over M with chromatic number at most τ ; and so by another
application of 12.9, χ(M) ≤ 40N2κ + 40Nζ + 20Nτ , and the result follows on substituting for τ .
This proves 13.5.
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Let us put these pieces together, to prove 5.1 and hence 2.3, in the following strengthened form.

13.6 Let ν ≥ 2 and κ ≥ 0 be integers. Let N = (3ν2 + 2)(ν + 1) + 9, ζ1 = κ, and for 1 ≤ σ < ν
define

ζσ+1 = 1000N2ζσ + 1000N3κ.

Let G be a triangle-free graph such that χρ(G) ≤ κ, where ρ = 3ν+2 + 4. If G admits no hole
ν-interval then χ(G) ≤ 44ν(κ+ ζν)(ν+1)2 + 4κ.

Proof. By 8.1, ζ1 is a sidekick for 1. We claim that for 1 ≤ σ < ν, if ζσ is a sidekick for σ then
ζσ+1 is a sidekick for σ + 1. For let M be a mat for a stable shower S in a candidate G′, such that
S is not (σ + 1)-complete over M . By 13.5, χ(M) ≤ ζσ+1. This proves the claim that ζσ+1 is a
sidekick for σ+1. Consequently ζν is a sidekick for ν, and in particular, for every candidate G, every
ν-incomplete stable shower in G has floor of chromatic number at most ζν . By 8.3, every candidate
has chromatic number at most 44ν(κ+ ζν)(ν+1)2 + 4κ. This proves 13.6.
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