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Abstract

Let Qd denote the hypercube of dimension d. Given d ≥ m, a spanning subgraph
G of Qd is said to be (Qd, Qm)-saturated if it does not contain Qm as a subgraph but
adding any edge of E(Qd) \E(G) creates a copy of Qm in G. Answering a question of
Johnson and Pinto [27], we show that for every fixed m ≥ 2 the minimum number of
edges in a (Qd, Qm)-saturated graph is Θ(2d).

We also study weak saturation, which is a form of bootstrap percolation. Given
graphs F and H, a spanning subgraph G of F is said to be weakly (F,H)-saturated if
the edges of E(F )\E(G) can be added to G one at a time so that each additional edge
creates a new copy of H. Answering another question of Johnson and Pinto [27], we
determine the minimum number of edges in a weakly (Qd, Qm)-saturated graph for all
d ≥ m ≥ 1. More generally, we determine the minimum number of edges in a subgraph
of the d-dimensional grid P d

k which is weakly saturated with respect to ‘axis aligned’
copies of a smaller grid Pm

r . We also study weak saturation of cycles in the grid.

1 Introduction

Given graphs F and H, a spanning subgraph G of F is said to be (F,H)-saturated if it
does not contain H as a subgraph, but for every edge e ∈ E(F ) \ E(G), G + e contains a
copy of H. In this language, the classical Turán problem asks for the maximum size of an
(F,H)-saturated graph; this number is known as the extremal number, denoted ex(F,H).
Another well-studied problem, introduced independently by Zykov [37] and Erdős, Hajnal
and Moon [20], is to determine the minimum number of edges in an (F,H)-saturated graph.
This is known as the saturation number, denoted sat(F,H). A spanning subgraph G of F is
said to be weakly (F,H)-saturated if the edges of E(F ) \E(G) can be added to G, one edge
at a time, in such a way that every added edge creates a new copy of H. This notion was
introduced by Bollobás [9]. The minimum number of edges in a weakly (F,H)-saturated
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graph is known as the weak saturation number and denoted wsat(F,H). Note that every
(F,H)-saturated graph is also weakly (F,H)-saturated and so

wsat(F,H) ≤ sat(F,H). (1.1)

For additional background on minimum saturation in graphs, see [21].
Given k ≥ 2 and d ≥ 1, the k-grid of dimension d is the graph P d

k with vertex set
{0, 1, . . . , k − 1}d where two vertices are adjacent if they differ by one in some coordinate
and are equal in the other d − 1 coordinates. In particular, P d

2 is known the hypercube
of dimension d and denoted Qd. In this paper, we are interested in saturation and weak
saturation problems in hypercubes and grids.

With regards to sat (Qd, Qm), the special case m = 2 was studied by Choi and Guan [14]
who constructed a (Qd, Q2)-saturated graph with at most

(
1
4

+ o(1)
)
|E(Qd)| edges. San-

tolupo (see [21]) conjectured that this construction is best possible. In their recent paper [27],
Johnson and Pinto disproved this conjecture (in a strong sense) by showing that, for every
fixed m, there exists a (Qd, Qm)-saturated graph with o(|E(Qd)|) edges. More precisely, they
proved the following.

Theorem 1.2 (Johnson and Pinto [27]). For every fixed m ≥ 2, there exists 0 < εm < 1
such that sat(Qd, Qm) ≤ O

(
d(1−εm)2d

)
.

In the case m = 2, Johnson and Pinto [27] obtained a stronger bound; namely,

sat(Qd, Q2) < 10 · 2d. (1.3)

That is, for every d, there exists a (Qd, Q2)-saturated graph with bounded average degree.
Motivated by this result, they asked the following: for which fixed values of m is

sat(Qd, Qm) = O
(
2d
)
?

We show that this is the case for every m ≥ 2.

Theorem 1.4. For every fixed m ≥ 2, sat (Qd, Qm) ≤ (1 + o(1))72m22d.

In the case of weak saturation, Johnson and Pinto [27] proved

wsat(Qd, Q2) = 2d − 1 (1.5)

for all d ≥ 2 by exhibiting a spanning tree of Qd which is weakly (Qd, Q2)-saturated. They
asked about the value of wsat(Qd, Qm) for general d ≥ m ≥ 1. We answer this question.

Theorem 1.6. For d ≥ m ≥ 1,

wsat (Qd, Qm) = (m− 1)2d −
m−2∑
j=0

(m− 1− j)
(
d

j

)
.
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We remark that, previously, the best known lower bound on sat(Qd, Qm) was (m + 1 −
o(1))2d−1, due to Johnson and Pinto [27]. By combining Theorem 1.6 with (1.1), we can
improve this to (m − 1 − o(1))2d. In particular, for fixed m, Theorem 1.4 is tight up to a
(constant) factor of O(m).

In fact, Theorem 1.6 is a special case of a more general result. Given k ≥ r ≥ 2 and
d ≥ m ≥ 1, say that a copy of Pm

r in P d
k is axis aligned if it is induced by a set of vertices of

the form I1×· · ·× Id where exactly m of the sets Ii are intervals of length r in {0, . . . , k−1}
and the rest are singletons. Let wsat∗

(
P d
k , P

m
r

)
be the minimum number of edges in a

spanning subgraph G of P d
k such that the edges of E

(
P d
k

)
\ E(G) can be added to G, one

edge at a time, such that every added edge creates an axis aligned copy of Pm
r . We prove

the following.

Theorem 1.7. For k ≥ r ≥ 2 and d ≥ m ≥ 1,

wsat∗
(
P d
k , P

m
r

)
=

d∑
j=0

d−j∑
i=0

(m− 1 + i)

(
d

j

)(
d− j
i

)
(k − r + 1)j(r − 2)i

−
m−2∑
j=0

d−j∑
i=0

(m− 1− j)
(
d

j

)(
d− j
i

)
(k − r + 1)j(r − 2)i,

where, by convention, 00 = 1.

We remark that if r = 2 or d = m, then every copy of Pm
r in P d

k is axis aligned. Thus, in
these cases, wsat∗

(
P d
k , P

r
m

)
= wsat

(
P d
k , P

r
m

)
. In particular, Theorem 1.6 is implied by the

case k = r = 2 of Theorem 1.7.
We also consider an extension of (1.5) to general even cycles in the grid, proving the

following.

Theorem 1.8. For k ≥ 2 and d ≥ ` ≥ 2, wsat
(
P d
k , C2`

)
= kd − 1.

The rest of the paper is structured as follows. At the beginning of Section 2, we review
some fundamental properties of hypercubes which will be used in the proof of Theorem 1.4.
Then, we prove Theorem 1.4 by giving an explicit construction of a (Qd, Qm)-saturated graph
with bounded average degree. In Section 3, we turn our attention to weak saturation and
prove Theorems 1.6, 1.7 and 1.8. We conclude in Section 4 by mentioning a number of open
problems.

2 Minimum Saturation in the Hypercube

2.1 Preliminaries

Let ej denote the jth standard basis vector in Fd
2; ie., the vector in which the jth coordinate

is equal to one and every other coordinate is zero. Given a vertex v of Qd, let |v| denote the
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sum of its coordinates. A basic fact about hypercubes is that, for d ≥ m, every copy Q of

Qm in Qd is induced by a set of vertices of the form
{
v +

∑
j∈J ′ ej : J ′ ⊆ J

}
where v is a

fixed vertex and J ⊆ [d] has cardinality m. We say that the coordinates of J and [d] \ J are
variable and fixed under Q, respectively.

We will need a standard result from Coding Theory, due to Hamming [26] (for another
reference, see [30, 31]). This result was also used by Johnson and Pinto [27] (and we use
some ideas from [27] in our proof).

Theorem 2.1 (Hamming [26]). There is an independent set C ⊆ V (Q2t−1) such that every
vertex of V (Q2t−1) \ C has a unique neighbour in C.

A set C as in Theorem 2.1 is often referred to as a Hamming code. We remark that, since
every vertex of Q2t−1 has exactly 2t − 1 neighbours,

|C| = 22t−1

(2t − 1) + 1
= 22t−t−1. (2.2)

Another ingredient of our proof of Theorem 1.4 is the following result of Conder [16].

Theorem 2.3 (Conder [16]). For every s ≥ 1, there is a 3-colouring of the edges of Qs in
which there is no monochromatic cycle of length 4 or 6.

2.2 Definitions and Proof Outline

In this section, we will use Theorems 2.1 and 2.3 to construct a spanning subgraph G of Qd

which contains no copy of Qm and which can be extended to a graph G′ which is (Qd, Qm)-
saturated and satisfies the bound in Theorem 1.4.

Throughout the proof, let m ≥ 2 be fixed and let d be an integer which we may choose
to be sufficiently large. Let t and s be the unique integers such that

d = 6m(2t − 1) + s and 0 ≤ s < 6m2t. (2.4)

We view the set [d] as a union of m intervals of length 6(2t − 1) indexed by the elements
of [m] followed by one interval of length s. Given v ∈ V (Qd) and 1 ≤ i ≤ m, let v(i)
denote the vertex of V (Q6(2t−1)) obtained by restricting v to the coordinates of the interval
corresponding to i, and we let v(m + 1) be the vertex of V (Qs) obtained by restricting
v to its last s coordinates. Each of the first m intervals of [d] is further divided into 6
subintervals of length (2t − 1) indexed by the pairs (r, γ) where r ∈ {0, 1} and γ ∈ {0, 1, 2}.
For (i, r, γ) ∈ [m] × {0, 1} × {0, 1, 2}, let v(i, r, γ) be the vertex of V (Q2t−1) obtained by
restricting v(i) to the subinterval corresponding to (r, γ).

Let C be a subset of V (Q2t−1) as in Theorem 2.1. We will treat the vertices v ∈
V (Qd) differently depending on which of the triples (i, r, γ) ∈ [m]× {0, 1} × {0, 1, 2} satisfy
v(i, r, γ) ∈ C. For starters, let X denote the set of all vertices v for which there exists some
i and (r, γ) 6= (r′, γ′) such that v(i, r, γ), v(i, r′, γ′) ∈ C. The vertices of X will be isolated in
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G and will not play a large role in the construction. Now, divide the vertices of V (Qd) \X
into sets A0, . . . , Am where Aj is defined to be the set of all vertices of V (Qd) \X for which
there are exactly j triples (i, r, γ) such that v(i, r, γ) ∈ C. We remark that, by (2.2) and
(2.4),

|V (Qd) \ A0| = O
(
2d/d

)
(2.5)

Our goal is to construct a graph G which does not contain Qm as a subgraph and does
not contain any edge uv of Qd where u, v ∈ A0 such that, for any such edge, the graph
G+uv contains a copy of Qm. Given such a graph G, let G′ be a graph obtained by adding a
maximal set of edges to G without creating a copy of Qm. Then G′ is (Qd, Qm)-saturated and
every edge of G′ has at least one endpoint in V (Qd)\A0. By (2.5), the total number of edges
incident to V (Qd) \A0 is at most O

(
2d
)

and so we obtain sat(Qd, Qm) ≤ |E (G′)| = O
(
2d
)
,

as desired.
The difficulty of the proof is to ensure that G+ e contains a copy of Qm for every edge e

of Qd joining two vertices of A0 while simultaneously maintaining the property that G does
not contain a copy of Qm. For the latter, we will apply Theorem 2.3 and a parity argument.
In what follows, let φ1 : E

(
Q6(2t−1)

)
→ {0, 1, 2} and φ2 : E (Qs)→ {0, 1, 2} be colourings as

in Theorem 2.3, and let φ : E
(
Q6(2t−1)

)
∪E (Qs)→ {0, 1, 2} be the mapping which is equal

to φ1 on E
(
Q6(2t−1)

)
and equal to φ2 on E (Qs).

2.3 The Construction

We describe our construction.

Step 1. Add to G every edge of Qd which joins a vertex of Aj to a vertex of Aj+1 for
0 ≤ j ≤ m− 2.

Step 2. Suppose that uv is an edge of Qd such that u, v ∈ Aj for some 1 ≤ j ≤ m− 1. Let
k be the unique element of [m+ 1] such that u(k) 6= v(k). We add the edge uv to G if

(i) either k = m+1 or there does not exist (r′, γ′) ∈ {0, 1}×{0, 1, 2} such that u(k, r′, γ′) =
v(k, r′, γ′) ∈ C,

and for every (i, r, γ) ∈ [m]× {0, 1} × {0, 1, 2} such that i 6= k and v(i, r, γ) ∈ C we have

(ii) γ = φ(u(k)v(k)), and

(iii) |v|+ |v(k)|+ |v(i)|+ j − 1 ≡ r mod 2.

Note that (iii) is well defined since u and v differ only on a coordinate of the interval
corresponding to k and so for every i 6= k we have

|v|+ |v(k)|+ |v(i)| ≡ |u|+ |u(k)|+ |u(i)| mod 2.

Before moving on we make a few observations, each of which can be verified by looking
carefully at Steps 1 and 2.

Observation 2.6. Am ∪X is a set of isolated vertices in G.

5



Observation 2.7. A0 is an independent set of G.

Observation 2.8. If uv is an edge of G such that u(i, r, γ) = v(i, r, γ) ∈ C, then u(i, r′, γ′) =
v(i, r′, γ′) for every pair (r′, γ′) ∈ {0, 1} × {0, 1, 2}.

Observation 2.9. If uv is an edge of G such that u(m+ 1) 6= v(m+ 1), then u, v ∈ Aj for
some 1 ≤ j ≤ m− 1.

The next observation follows from the fact that C is an independent set in Q2t−1.

Observation 2.10. If uv is an edge of G such that u(i, r, γ) 6= v(i, r, γ), then at most one
of u(i, r, γ) or v(i, r, γ) is in C.

To complete the proof of Theorem 1.4, it suffices to establish the following two claims.
We state these claims now and show that they imply Theorem 1.4 before proving the claims
themselves.

Claim 2.11. For every edge uv of Qd such that u, v ∈ A0, the graph G+uv contains a copy
of Qm.

Claim 2.12. G does not contain Qm as a subgraph.

Proof of Theorem 1.4. If G is not (Qd, Qm)-saturated, then by Claim 2.12 we can extend G
to a (Qd, Qm)-saturated graph G′ by adding a maximal set of edges which do not create a
copy of Qm. By Claim 2.11 none of these additional edges are between vertices in A0 and
so, by Observation 2.7, A0 is an independent set in G′. Thus, every edge of G′ has at least
one endpoint in (

⋃m
k=1Ak) ∪X. The total number of edges incident to vertices of this set is

at most

d

∣∣∣∣∣
(

m⋃
k=1

Ak

)
∪X

∣∣∣∣∣ = d|A1|+ d

∣∣∣∣∣
(

m⋃
k=2

Ak

)
∪X

∣∣∣∣∣
Note that |(

⋃m
k=2Ak) ∪X| = O

(
|C|22d−2(2t−1)), which isO

(
2d/d2

)
by (2.2) and (2.4). There-

fore the second term of the above expression is o
(
2d
)

and it suffices to bound d|A1|. We
have

d|A1| = d
(

6m|C|2d−(2t−1)
)

= d
(

6m22t−t−12d−(2t−1)
)

= 6md2d−t

= 6m
(
6m(2t − 1) + s

)
2d−t < 72m22d

by (2.4). The result follows.

Remark 2.13. Note that if d is of the form 6m(2t − 1) for some t, then we obtain a better
bound: sat(Qd, Qm) ≤ (1 + o(1))36m22d.

Thus, it suffices to prove Claims 2.11 and 2.12.
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Proof of Claim 2.11. Let uv be an edge of Qd where u, v ∈ A0 and let k be the unique
element of [m+ 1] for which u(k) 6= v(k). Define γ := φ(u(k)v(k)) and let I ⊆ [m] \ {k} be
a set of size m− 1. For i ∈ I, pick ri ∈ {0, 1} so that

|v|+ |v(k)|+ |v(i)| ≡ ri mod 2.

For each i ∈ I, let ci be the unique neighbour of v(i, ri, γ) in Q2t−1 contained in C. Given
I ′ ⊆ I, we let vI′ and uI′ be the vertices of Qd such that uI′(i, ri, γ) = vI′(i, ri, γ) = ci for
all i ∈ I ′ and, on all other coordinates, uI′ and vI′ agree with u and v, respectively. In
particular, v∅ = v and u∅ = u. If I ′ 6= I, then for any i′ ∈ I \ I ′ we see that vI′ is adjacent
to vI′∪{i′} and uI′ is adjacent to uI′∪{i′} in G via edges added in Step 1. Also, for I ′ ⊆ I, we
have vI′ , uI′ ∈ A|I′| and, if I ′ 6= ∅, then for each i ∈ I ′,

|vI′|+ |vI′(k)|+ |vI′(i)| ≡ ri + |I ′| − 1 mod 2.

Thus, for I ′ 6= ∅, vI′ is adjacent to uI′ via an edge of G added in Step 2. This implies that
{vI′ : I ′ ⊆ I}∪{uI′ : I ′ ⊆ I} induces a copy of Qm in G+uv, which completes the proof.

u{2,3} A2
v{2,3}

v{3}u{3}

u A0v

v{2}u{2} A1

Figure 1: An illustration of the proof of Claim 2.11 in the case that m = 3 and u(1) 6= v(1).

Proof of Claim 2.12. Suppose, to the contrary, that G contains a copy Q of Qm. Let J ⊆ [d]
be the set of coordinates which are variable under Q. For each i ∈ [m + 1], let J(i) be the
set of coordinates of J which are in the interval of [d] corresponding to i. Moreover, given
(i, r, γ) ∈ [m]×{0, 1}× {0, 1, 2}, let J(i, r, γ) be the set of coordinates of J which are in the
interval of [d] corresponding to (i, r, γ).

Subclaim 2.14. For each i ∈ [m] there is a pair (ri, γi) ∈ {0, 1} × {0, 1, 2} such that
J(i) = J (i, ri, γi).
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Proof. Suppose to the contrary that there exists (r, γ) 6= (r′, γ′) such that both J(i, r, γ) and
J(i, r′, γ′) are non-empty.

First, suppose that there exists a vertex v ∈ V (Q) with v(i, r, γ) ∈ C. Let u be a
neighbour of v in Q obtained by changing a coordinate in J(i, r′, γ′). By Observation 2.8,
the edge uv is not contained in G, which is a contradiction. Thus, v(i, r, γ), v(i, r′, γ′) /∈ C
for all v ∈ V (Q).

Now, let Q′ be a copy of Q2 in Q obtained by starting with an arbitrary vertex of Q and
varying one coordinate of J(i, r, γ) and one coordinate of J(i, r′, γ′). By the result of the
previous paragraph, we see that V (Q′) ⊆ Aj for some j and so every edge of Q′ was added in
Step 2. By taking the edges of Q′ and restricting them to the interval of [d] corresponding to
i, we see that all of the resulting edges must receive the same colour under φ. This contradicts
the fact that there is no copy of Q2 which is monochromatic under φ and completes the proof
of the subclaim.

Subclaim 2.15. Suppose that |J(i)| ≥ 2 for some i ∈ [m] and let Q′ be a copy of Q2 in
Q obtained by starting with an arbitrary vertex and varying two coordinates of J(i). Then
there is a unique vertex v ∈ V (Q′) with v(i, ri, γi) ∈ C.

Proof. By Subclaim 2.14 we have J(i) = J(i, ri, γi). By Observation 2.10, if uv is an edge
of Q′, then we cannot have u(i, ri, γi), v(i, ri, γi) ∈ C. Thus, if there are two vertices u, v of
Q′ for which u(i, ri, γi), v(i, ri, γi) ∈ C, then they must be non-adjacent. So, in this case, the
vertices of Q′ alternate between Aj and Aj+1 for some j and every edge of Q′ was added
in Step 1. However, this implies that for w ∈ V (Q′) such that w(i, ri, γi) /∈ C, the vertex
w(i, ri, γi) of Q2t−1 must have two distinct neighbours in C, which is a contradiction.

Now we assume that every vertex v of Q′ satisfies v(i, ri, γi) /∈ C. However, in this case,
we see that every edge of Q′ was added in Step 2. As before, we obtain a copy of Q2 in
Q6(2t−1) which is monochromatic under φ, a contradiction.

Subclaim 2.16. |J(i)| ≤ 2 for every i ∈ [m].

Proof. Suppose not. Let Q′ be a copy of Q3 in Q obtained by starting with an arbitrary
vertex and varying three coordinates of J(i). If we vary any pair of these coordinates, leaving
the third one fixed, we obtain a copy of Q2 in Q′ which must obey Subclaim 2.15. This implies
that there are precisely two vertices x, y ∈ V (Q′) such that x(i, ri, γi), y(i, ri, γi) ∈ C and
they are at distance 3 in Q′. However, now we get that the vertices of V (Q′) \ {x, y} induce
a copy F of C6 in Q, where every edge of F was added in Step 2. Taking the edges of F
and restricting them to the interval of [d] corresponding to i, we see that all such edges must
receive the same colour under φ. This contradicts the fact that there is no copy of C6 which
is monochromatic under φ and completes the proof of the subclaim.

Subclaim 2.17. |J(m+ 1)| ≤ 1.

Proof. If not, then let Q′ be a copy of Q2 in Q obtained by starting at an arbitrary vertex
and varying two coordinates of J(m + 1). Then, restricting the edges of Q′ to the last s
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coordinates, we obtain a copy of Q2 in Qs which is monochromatic under φ, a contradiction.

Subclaim 2.18. Suppose that uv and vw are distinct edges of Q where u, v, w ∈ Aj for some
j. Then there is some k ∈ [m] such that u(k) 6= v(k) and v(k) 6= w(k).

Proof. We show that there cannot exist distinct integers k, k′ ∈ [m+1] such that u(k) 6= v(k)
and v(k′) 6= w(k′). This is sufficient to prove the subclaim since, by Subclaim 2.17, we cannot
have u(m+ 1) 6= v(m+ 1) and v(m+ 1) 6= w(m+ 1).

Suppose that such integers k, k′ exist, and let x be the unique vertex of Qd distinct from
v which is joined to both u and w in Qd. Note that both of the edges xu and wx are present
in Q. Also, x ∈ Aj and so all of the edges uv, vw,wx, xu were added to G in Step 2. This
implies that j ≥ 1 and that there is a triple (i, r, γ) with i /∈ {k, k′} such that

u(i, r, γ) = v(i, r, γ) = w(i, r, γ) = x(i, r, γ) ∈ C.

However, one can easily check that the parity of |v| + |v(k)| + |v(i)| is different from the
parity of |x|+ |x(k)|+ |x(i)| modulo 2 and so only one can be equivalent to r. By definition
of Step 2, only one of the edges uv and xw can exist in G. This contradiction completes the
proof.

Subclaim 2.19. If |J(m+ 1)| = 1, then |J(i)| ≤ 1 for all i ∈ [m].

Proof. If not, let Q′ be a copy of Q3 in Q obtained by starting at an arbitrary vertex and
varying one coordinate of J(m + 1) and two of J(i). Then, by Subclaim 2.15, there is an
edge uv ∈ E(Q′) such that u(i) 6= v(i) and u, v ∈ Aj for some j (in fact, there are many
such edges). Now, let w be the neighbour of v in Q′ obtained by changing the coordinate
of J(m + 1). By Observation 2.9, we have that w ∈ Aj as well. However, this contradicts
Subclaim 2.18.

Subclaim 2.20. There is at most one i ∈ [m] for which |J(i)| = 2.

Proof. If not, let i, i′ ∈ [m] such that |J(i)| = |J(i′)| = 2 and let Q′ be a copy of Q4 obtained
by starting at an arbitrary vertex and varying two coordinates of J(i) and two coordinates
of J(i′). By Subclaim 2.15, we see that there must exist edges uv, vw ∈ E(Q′) such that
u(i) 6= v(i), v(i′) 6= w(i′) and u, v, w ∈ Aj for some j. This contradicts Subclaim 2.18 and
completes the proof.

Now, let us complete the proof of the claim. Throughout, for each i ∈ [m], we let (ri, γi)
be a pair such that J(i) = J(i, ri, γi), which exists by Subclaim 2.14. In what follows, we let
j∗ be the minimum integer j such that V (Q) ∩ Aj 6= ∅ and let v∗ ∈ V (Q) ∩ Aj∗ . Note that
for every i ∈ [m] such that J(i) 6= ∅ we must have v∗(i, ri, γi) /∈ C. If not, then starting with
v∗ and changing a coordinate of J(i) yields a vertex of V (Q) ∩ Aj∗−1 by Observations 2.8
and 2.10, contradicting our choice of j∗. By Subclaims 2.19 and 2.20, there is at most one
i ∈ [m] such that J(i) = ∅. This implies that

j∗ ∈ {0, 1}, (2.21)
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where j∗ must equal zero if no such i exists. We divide the proof into cases.

Case 1: |J(i)| = 1 for every i ∈ [m].

In this case, we must have j∗ = 0 and so v∗ ∈ A0. However, if we start with v and change
the coordinate of J(i) for any i, then we obtain a vertex u with u(i, ri, γi) ∈ C by Observa-
tion 2.7. Thus, changing all m of these coordinates yields a vertex w such that w(i, ri, γi) ∈ C
for all i ∈ [m]; that is, w ∈ Am. This is a contradiction since, by Observation 2.6, w is an
isolated vertex and therefore cannot belong to Q.

Case 2: |J(m+ 1)| = 1.

Let u be the neighbour of v∗ in Q obtained by changing the coordinate in J(m + 1).
We must have u, v∗ ∈ A1 by (2.21) and Observation 2.9. This implies that there is some
i ∈ [m] such that J(i) = ∅ and v∗(i, ri, γi) ∈ C. Also, by Subclaim 2.19 and the Pigeonhole
Principle, we must have |J(i′)| = 1 for every i′ ∈ [m] \ {i}.

Now, for each i′ ∈ [m] \ {i}, let wi′ be the neighbour of v∗ in Q obtained by changing the
coordinate in J(i′). By Subclaim 2.18 and the fact that u, v∗ ∈ A1, we cannot have wi′ ∈ A1.
So, by our choice of j∗, we must have wi′(i

′, ri′ , γi′) ∈ C. As in the proof of Case 1, if we
start with v∗ and change the coordinate of J(i′) for every i′ ∈ [m] \ {i}, we obtain a vertex
of Am contained in Q, contradicting Observation 2.6. This completes the proof in this case.

Case 3: |J(i)| = 2 for some i ∈ [m].

By Subclaim 2.15, there is a neighbour u of v∗ in Q obtained by changing a coordinate in
J(i) such that u ∈ Aj∗ . This immediately implies that j∗ = 1 by (2.21) and Observation 2.7.

Now, for each i′ ∈ [m] for which |J(i′)| = 1, let wi′ be the neighbour of v∗ in Q obtained
by changing the coordinate in J(i′). By Subclaim 2.18 and the fact that u, v∗ ∈ A1, we must
have wi′(i

′, ri′ , γi′) ∈ C. Thus, if we let x be the vertex obtained from v∗ by changing the
coordinate of J(i′) for every such i′, then x ∈ Am−1.

Let Q′ be the copy of Q2 in Q obtained by starting at x and varying the two coordinates of
J(i). Then, by Subclaim 2.15, there must be some vertex y of V (Q′) such that y(i, ri, γi) ∈ C.
However, this implies that y ∈ Am, contradicting Observation 2.6. This completes the proof
of Claim 2.12 and of Theorem 1.4.

3 Weak Saturation

3.1 Hypercubes and Grids

In this section, we discuss weak saturation in cubes and more generally in grids. We will
prove Theorem 1.7, which immediately implies Theorem 1.6.

Weak saturation is part of a more general theory, known as bootstrap percolation. In the
graph bootstrap process, we start with an initial set S0 of ‘infected’ vertices in a graph F

and, at the ith step of the process, a vertex v ∈ V (F ) \
(⋃i−1

j=0 Sj

)
becomes infected and is
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added to Si if there is a copy of H in F
[(⋃i−1

j=0 Sj

)
∪ {v}

]
containing v. A natural extremal

problem is to determine the size of the smallest initial set S0 for which, after some step of
the process, every vertex of F is infected; such a set is said to be (F,H)-percolating. It is
easily seen that weak saturation corresponds to a bootstrap process on the edges of a graph,
rather than its vertices (i.e. a bootstrap process on the line graph). For an introduction to
the literature on bootstrap percolation, see for instance [3, 4, 5] and the references therein.

Here we are interested in the ‘edge version’ of the problem for cubes and grids. The
‘vertex version’ of the problem was solved by Balogh, Bollobás, Morris and Riordan [6], who
determined the minimum size of a subset of V

(
P d
k

)
which is percolating with respect to

(the vertex sets of) axis aligned copies of Pm
r , and also the minimum size of a (Kd

k , K
m
r )-

percolating set, for all k ≥ r ≥ 2 and d ≥ m ≥ 1 (here Kd
k is the graph with vertex

set {0, . . . , k − 1}d and two vertices are adjacent if they differ in exactly one coordinate).
Somewhat surprisingly, the two quantities are the same.

We will use the following simple linear algebraic lemma from [6]. Given a graph F and
a set H of subgraphs of F , let wsat (F,H) be the minimum number of edges in a graph G
such that the edges of E(F ) \ E(G) can be added to G, one edge at a time, in such a way
that each added edge increases the number of graphs of H contained in G; such a graph is
said to be weakly (F,H)-saturated. In this language, wsat∗

(
P d
k , P

m
r

)
= wsat

(
P d
k ,H

)
where

H contains all axis aligned copies of Pm
r in P d

k .

Lemma 3.1 (Balogh, Bollobás, Morris and Riordan [6]). Let F be a graph, let H be a
collection of subgraphs of F , and let W be a vector space. Suppose that there exists a set
{fe : e ∈ E(F )} ⊆ W such that for every H ∈ H there are non-zero scalars {ce : e ∈ E(H)}
such that

∑
e∈E(H) cefe = 0. Then

wsat(F,H) ≥ dim (span{fe : e ∈ E(F )}) .

Proof. Let G be a weakly (F,H)-saturated graph. Define G0 := G and label the edges
of E(F ) \ E(G) by e1, . . . , ek such that for 1 ≤ i ≤ k there is a subgraph Hi ∈ H of
Gi := Gi−1 + ei such that Hi contains ei. Thus, by hypothesis, fei can be written as a linear
combination of the vectors in {fe : e ∈ E(Hi) \ {ei}}. This implies that

span {fe : e ∈ E(G0)} = span {fe : e ∈ E(G1)} = · · · = span {fe : e ∈ E(Gk)} .

Since G = G0 and F = Gk, it must be the case that |E(G)| ≥ dim (span {fe : e ∈ E(F )}).
Since G was an arbitrary weakly (F,H)-saturated graph, this completes the proof.

To handle the vertex version of the question, Balogh, Bollobás, Morris and Riordan gave a
clever construction of a suitable vector space and then proved that it has the same dimension
as a suitable percolating set. The result then follows by Lemma 3.1. Our proof of Theorem
1.7 uses the same approach, but requires a different construction. For other examples of this
type of strategy, see Kalai [29] and Pikhurko [34, 35].

Given a vertex v of P d
k , say that a coordinate of v is large if it has size at least r− 1 and

small otherwise. We let L(v) denote the number of large coordinates of v and let |v| denote
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the sum of the coordinates of v. Given i ∈ [d], a line L in direction i is a path of length
k − 1 in P d

k in which any two vertices of L differ on the ith coordinate.

Proof of Theorem 1.7. Let G be a spanning subgraph of P d
k in which, for each vertex v,

• we add every edge uv of P d
k such that |u| = |v| − 1 and u and v differ on a small

coordinate of v, and

• we add min{L(v),m− 1} edges uv of P d
k such that |u| = |v| − 1 and u and v differ on

a large coordinate of v.

Some elementary counting gives us

E(G) =
d∑

j=0

d−j∑
i=0

(m− 1 + i)

(
d

j

)(
d− j
i

)
(k − r + 1)j(r − 2)i

−
m−2∑
j=0

d−j∑
i=0

(m− 1− j)
(
d

j

)(
d− j
i

)
(k − r + 1)j(r − 2)i.

So, to prove the upper bound, we need only show that G is weakly
(
P d
k , P

m
r

)
-saturated. In

order of increasing |v|, we add all missing edges of E(P d
k ) \ E(G) from v to vertices u with

|u| = |v|− 1 one edge at a time. By construction, for every added edge uv with |u| = |v|− 1,
the coordinate on which u and v differ is large in v. For any vertex x, if L(x) ≤ m− 1, then
all edges xy with |x| = |y|− 1 are already present in G. Also, if v is a vertex with L(v) ≥ m,
then G contains m− 1 edges wv with |w| = |v| − 1 such that the coordinate on which w and
v differ is large in v. Putting this together, an easy inductive argument shows that, if we
add edges in this order, then each edge added from v to a vertex u with |u| = |v| − 1 creates
a new copy of Qm in which v is the ‘top’ vertex.

For the lower bound, we apply Lemma 3.1 whereH consists of all axis aligned copies of Pm
r

in P d
k . So, it suffices to show that there exists a vector space W and a set

{
fe : e ∈ E

(
P d
k

)}
⊆

W which satisfy the hypotheses of Lemma 3.1 such that

dim
(
span

{
fe : e ∈ E

(
P d
k

)})
≥ |E(G)|. (3.2)

The space W that we choose is the direct sum of kd copies of Rm−1, one for each vertex of P d
k ,

and dkd−1 copies of Rr−2, one for each line in P d
k . Given a vector w of W , a vertex x of P d

k

and a line L of P d
k , let πx(w) denote the projection of w onto the copy of Rm−1 corresponding

to x and let πL(w) denote the projection of w onto the copy of Rr−2 corresponding to L.
Note that w is determined by its projections.

Let Z := {z1, . . . , zd} be a collection of d vectors of Rm−1 in general position. Also,
let Y := {y1, . . . , yk−2} be a set of k − 2 vectors of Rr−2 such that y1, . . . , yr−2 are linearly
independent and, for r − 1 ≤ t ≤ k − 1,

yt := −
t−1∑

j=t−r+2

yj.

12



Thus any consecutive r−2 vectors yi, . . . , yi+r−2 are linearly independent and any consecutive
r − 1 vectors yj, . . . , yj+r−1 sum to zero. Suppose that e = uv is an edge of P d

k such that u
and v differ on coordinate i ∈ [d] and let t be the maximum of the ith coordinates of u and
v. Further, let L be the unique line of P d

k containing e. We define fe to be the vector of W
such that

• πu(fe) = πv(fe) = zi and πx(fe) = 0 for every x ∈ V (Qd) \ {u, v}, and

• πL = yt and πL′ = 0 for every line L′ 6= L.

In order to apply Lemma 3.1, we need to show that for every axis aligned copy P of Pm
r

in P d
k there are non-zero scalars {ce : e ∈ E(P )} such that

∑
e∈E(P ) cefe = 0. Let P be an

axis aligned copy of Pm
r in P d

k and let I ⊆ [d] be the set of m coordinates which vary under
P . Let {ci : i ∈ I} be a set of scalars such that

∑
i∈I cizi = 0. Note that ci 6= 0 for all i ∈ I

since the vectors of Z are in general position.
For each vertex v of P , let M(v) ⊆ [d] be the set of indices j such that both v − ej and

v+ej are contained in P . Define the lines of P to be the paths of length r−1 in P obtained
by taking the intersection of a line of P d

k with V (P ). Note that |M(v)| is precisely the
number of lines of P in which v has degree two. For each line L of P , define m(L) := |M(v)|
where v is an endpoint of L (clearly the endpoints give the same value). For each i ∈ I, let
Ei be the set of all edges of P for which i is the variable coordinate. For each edge e ∈ Ei

contained in a line L of P , define de := 2m(L)ci. We claim that
∑

e∈E(P ) defe = 0.
First, let L be a line of P in direction i. Then, for some t ≥ r − 1, we have

πL

 ∑
e∈E(P )

defe

 =
∑

e∈E(P )

deπL(fe) =
∑

e∈E(L)

2m(L)ciπL(fe) = 2m(L)ci

t∑
j=t−r+2

yj.

However, this sum is equal to zero by definition of yt.
Now, fix a vertex v of P and for each i ∈ I let Li be the line of P in direction i containing

v. We have

πv

 ∑
e∈E(P )

defe

 =
∑

e∈E(P )

deπv(fe) =
∑

i∈M(v)

∑
e∈Ei

2m(Li)ciπv(fe) +
∑

i∈I\M(v)

∑
e∈Ei

2m(Li)ciπv(fe)

which is equal to ∑
i∈M(v)

2m(Li)+1ciπv(fe) +
∑

i∈I\M(v)

2m(Li)ciπv(fe)

by definition of M(v). We observe that, for any i ∈ M(v), we have m(Li) = |M(v)| − 1
and for any i ∈ I \M(v) we have m(Li) = |M(v)|. Therefore, the above sum is equal to
2|M(v)|∑

i∈I cizi which is zero by our choice of {ci : i ∈ I}. Combining this with the result of
the previous paragraph, we get

∑
e∈E(P ) defe = 0, as desired.

To complete the proof, it suffices to prove (3.2). To do so, we let G be a graph as
in the proof of the upper bound and show that the vectors of {fe : e ∈ E(G)} are linearly
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independent. Let {ce : e ∈ E(G)} be any set of scalars, not all of which are zero, and let F
be the spanning subgraph of G containing all edges e ∈ E(G) such that ce 6= 0. Let v be a
vertex of non-zero degree in F such that |v| is maximum.

First, consider the case that v has degree at most m − 1 in F . Let J denote the set of
dF (v) coordinates such that, for each j ∈ J , the edge from v to v− ej is present in F . Then∑

e∈E(G) ceπv(fe) is a linear combination of the vectors in {zj : j ∈ J} in which not all of

the coefficients are zero. Since |J | ≤ m− 1 and the vectors of Z are in general position, this
sum is non-zero and therefore

∑
e∈E(G) cefe 6= 0.

Now, suppose that v has degree at least m in F . By construction of G, this implies that
there is a coordinate j which is small for v such that the edge e from v to v − ej is present
in F . Let L be the unique line of P d

k containing e. Then, by maximality of |v|, every edge
of L contained in F joins two vertices for which j is a small coordinate. This implies that∑

e∈E(F ) ceπL(fe) is a linear combination of the vectors in {yi : 1 ≤ i ≤ r − 1} in which not
all of the coefficients are zero. Thus, since the vectors y1, . . . , yr−1 are linearly independent,
this sum is non-zero and we obtain

∑
e∈E(G) cefe 6= 0, which completes the proof.

Remark 3.3. The proof of Theorem 1.7 implies that, for most values of k ≥ r ≥ 2 and
d ≥ m ≥ 1, there are many tight examples. For an example in two dimensions, see Figure 2.

Figure 2: Two non-isomorphic weakly (P 2
6 , P

2
3 )-saturated graphs with wsat (P 2

6 , P
2
3 ) edges.

3.2 Cycles in the Grid

We prove Theorem 1.8 using an elementary argument.

Proof of Theorem 1.8. First, notice that wsat
(
P d
k , C2`

)
≥ kd − 1 holds since any weakly(

P d
k , C2`

)
-saturated graph must be connected. To prove the upper bound, we proceed by

induction on d+ k.
Consider the base case k = 2 and d = `. For 0 ≤ t ≤ `, let Lt be the set of all vertices v

of Q` with |v| = t and define xt to be the vertex of Lt which consists of t ones followed by
`− t zeros. We let G be the graph such that, for 1 ≤ t ≤ `, each vertex v ∈ Lt is joined to a
unique vertex of Lt−1 which is chosen in the following way:
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• if t = 1 or v = xt, then v is joined to xt−1.

• if t ≥ 2 and v 6= xt, then v is joined to an arbitrary vertex y ∈ Lt−1 \ {xt−1} such that
vy ∈ E(Q`).

It is clear that G is a tree and so |E(G)| = 2`−1. For each vertex v, let Pv be the unique path
in G from v to x0. Note that, by construction, if v /∈ {x1, . . . , x`} then V (Pv)∩{x1, . . . , x`} =
∅.

We show that G is weakly (Q`, C2`)-saturated. First, add each edge x`v where v ∈
L`−1 \{x`−1}. Each of these edges creates a copy of C2` by taking the paths Px`

and Pv along
with the edge x`v.

Next, for each t = ` − 1, . . . , 2, in turn, we add every edge uv where u ∈ Lt \ {xt} and
v ∈ Lt−1 \ {xt−1}. When doing so we can assume, inductively, that for each s such that
t < s ≤ ` every edge from Ls \ {xs} to Ls−1 \ {xs−1} is present. In particular, this implies
that there is a path Ru of length ` − t from u to x` which does not contain any vertex of
{x0, . . . , x`−1}. Therefore, when adding the edge uv, we obtain a copy of C2` by taking the
paths Pv, Px`

, Ru and the edge uv.
After this, for each t = `−1, . . . , 2, in turn, we add every edge uxt−1 where u ∈ Lt \{xt}.

In this case, let w be a vertex of Lt \ {xt, u} such that there are paths Ru and Rw from u to
x` and w to x`, respectively, such that V (Ru) ∩ V (Rw) = {x`}. We obtain a copy of C2` by
taking the paths Ru, Rw, Pw and Pxt−1 along with the edge uxt−1.

Finally, for each t = `− 1, . . . , 2, in turn, we add every edge xtv where v ∈ Lt−1 \ {xt−1}.
Let j be an index on which v is zero and let P be a path from x` to x0 which contains ej
but is disjoint from {x1, . . . , x`−1}. Notice that P does not contain any vertex of Pv. We
obtain a copy of C2` by taking the paths xtxt+1 . . . x`, P , and Pv along with the edge xtv.
This completes the proof of the base case.

Now, we assume that d + k > ` + 2 and that the proposition holds for smaller values of
d+ k. We divide the proof into two cases.

Case 1: d > `.

Let Gd−1 be a weakly
(
P d−1
k , C2`

)
-saturated graph with kd−1 − 1 edges. We construct a

weakly
(
P d
k , C2`

)
-saturated graph G. For each vertex v of P d

k , let vd−1 be the restriction of
v to its first d− 1 coordinates and let vd be the last coordinate of v. In constructing G, we
add every edge uv of P d

k such that

• ud−1vd−1 ∈ E(Gd−1) and ud = vd = 0, or

• ud−1 = vd−1.

It is clear that |E(G)| = kd − 1. For 0 ≤ t ≤ k − 1, let St be the set of all vertices v such
that vd = t. Note that St induces a copy of P d−1

k in P d
k .

Let us show that G is weakly
(
P d
k , C2`

)
-saturated. First, add all edges uv of P d

k where
u, v ∈ S0 in some order such that each added edge creates a new copy of C2`. This is possible
by definition of Gd−1. Now, for each t = 1, . . . , k − 1, in turn, we add all edges between
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vertices of St. By induction on t we can assume that all edges between vertices in St−1 are
already present. Given an edge uv where u, v ∈ St, let u′, v′ ∈ St−1 where u′d−1 = ud−1 and
v′d−1 = vd−1. We obtain a copy of C2` by taking the edges u′u, uv, vv′ and a path of length
2`− 3 from v′ to u′ in St−1. This completes the proof in this case.

Case 2: k > 2.

Let Gk−1 be a weakly
(
P d
k−1, C2`

)
-saturated graph with (k − 1)d − 1 edges. For each set

S ⊆ [d], let m(S) be the minimum element of S and let YS be the set of all vertices v of P d
k

such that S is precisely the set of coordinates on which v is equal to k − 1. We add to G
every edge uv of P d

k such that

• u, v ∈ Y∅ and uv ∈ E(Gk−1), or

• u ∈ YS and v ∈ YS\{m(S)} for some non-empty S ⊆ [d].

It is clear that |E(G)| = kd − 1.
Let us show that G is weakly

(
P d
k , C2`

)
-saturated. First, add all edges uv where u, v ∈ Y∅

such that each added edge creates a new copy of C2`. This is possible by definition of Gk−1.
Next, for each non-empty set S ⊆ [d], in order of increasing cardinality, add all edges uv

where u, v ∈ YS. Inductively, we can assume that all edges between vertices of YS\{m(S)} are

already present. Note that YS\{m(S)} induces a copy of P
d−|S\{m(S)}|
k−1 where |S \ {m(S)}| ≤

d−2. Let u′ and v′ be the unique neighbours of u and v in YS\{m(S)}, respectively. We obtain
a copy of C2` by taking the edges u′u, uv, vv′ and a path of length 2` − 3 from v′ to u′ in
YS\{m(S)}.

Finally, for each set S, in order of increasing cardinality, and element j of S\{m(S)}, add
every edge uv where u ∈ YS and v differs from u on coordinate j. Let u′ be the neighbour
of u in YS\{m(S)} and let v′ be the neighbour of v in YS\{j,m(S)}. If ` = 2, then we obtain
a copy of C4 by taking the edges u′u, uv, vv′ and u′v′. Otherwise, let w be the vertex of
YS\{m(S)} obtained from u′ by decreasing coordinate m(S) by one. Further, let w′ be vertex
of YS\{j,m(S)} obtained from w by decreasing coordinate j by one. We obtain a copy of C2`

by taking the edges w′w, wu′, u′u, uv, vv′ and a path of length 2` − 5 from v′ to w′ in
YS\{j,m(S)}. Note that this is possible since w′ is adjacent to v′ and the subgraph induced by

YS\{j,m(S)} is isomorphic to P
d−|S\{j,m(S)}|
k−1 . This completes the proof.

4 Open Problems

Many interesting open problems remain, and we mention some of them here.

4.1 Minimum Saturation

Recall that we were able to prove a better upper bound on sat(Qd, Qm) when d is of the form
6m(2t − 1) than for general values of d (see Remark 2.13). It is not clear whether this is
simply an artifact of our proof, or part of a more general phenomenon. We ask the following.
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Question 4.1. For fixed m ≥ 2, does limd→∞
sat(Qd,Qm)

2d
exist?

As it stands, the best known lower bound on sat(Qd, Qm) is (m − 1 − o(1))2d, which
follows from Theorem 1.6 and (1.1). We doubt that this bound is tight. In particular, we
ask the following.

Question 4.2. For fixed m ≥ 2, let cm := lim infd→∞ sat(Qd, Qm)/2d. Does cm
m
→∞?

It would also be interesting to study saturation numbers in the grid.

Question 4.3. Fix m ≥ 2, r ≥ 2 and k ≥ max{r, 3}, and let d→∞. Is it true that

sat∗
(
P d
k , P

m
r

)
= o

(∣∣E (P d
k

)∣∣)?
How about

sat∗
(
P d
k , P

m
r

)
= O

(
kd
)
?

Here, the notation sat∗ indicates that we are considering axis aligned copies of Pm
r in P d

k .
Moving beyond the finite case, it would also be interesting to consider grids inside the

infinite square lattice Zd, where vertices are adjacent if they have `1-distance 1.

Question 4.4. For d ≥ m ≥ 2, what is the infimal density of a Qm-saturated subgraph of
the d-dimensional square lattice? More generally, what about the d-dimensional lattice that
is saturated with respect to axis aligned copies of Pm

r ?

Here the density is naturally defined as the lim sup of densities inside large boxes. For
both of the last two questions, it would also be interesting to know what happens if we do
not require our (sub)grids to be axis aligned.

Recall that Kd
k is the graph with vertex set {0, . . . , k − 1}d in which two vertices are

adjacent if they differ (by any amount) in exactly one coordinate. In one of the original
papers on minimum saturated graphs, Erdős, Hajnal and Moon [20] determined sat(Kk, Kr)
for all values of k and r. The multidimensional version of this problem also seems interesting.

Problem 4.5. For k ≥ r ≥ 2 and d ≥ m ≥ 1, determine sat
(
Kd

k , K
m
r

)
.

The problem of determining sat (Kk, C`) was raised by Bollobás [10] and has been ex-
tensively studied. The case ` = 3 is trivial, and the cases ` = 4 and ` = 5 were solved by
Ollmann [33] and Chen [12, 13], respectively. The first non-trivial bounds for general ` were
given by Barefoot, Clark, Entringer, Porter, Székely, and Tuza [8], who proved that there
are positive constants c1 and c2 such that, for ` 6= 8, 10,

(1 + c1/`)n ≤ sat (Kk, C`) ≤ (1 + c2/`)n.

The value of c2 was improved by Gould,  Luczak and Schmitt [25]. Currently, the best general
upper and lower bounds are due to Füredi and Kim [22]. It is natural to ask about cycles in
the hypercube.

Problem 4.6. For ` ≥ 2 and d ≥ log2(2`), determine sat(Qd, C2`).

More generally, similar questions can be asked for cycles in P d
k or Kd

k . We remark that
the related problem of determining ex (Qd, C2`) was proposed by Erdős [19] and is very well
studied; see, e.g., [2, 7, 11, 15, 16, 17, 23, 24].

17



4.2 Weak Saturation

Recall that Theorem 1.7 provides the explicit value of the weak saturation number of axis
aligned copies of Pm

r in P d
k . However, for most values of m, d, r, k, the graph that we construct

contains several ‘bent’ copies of Pm
r . We ask about the weak saturation number of general

copies of Pm
r in P d

k .

Problem 4.7. For general 1 ≤ m ≤ d and 2 ≤ r ≤ k, determine wsat
(
P d
k , P

m
r

)
.

In [10], Bollobás conjectured that wsat(Kk, Kr) = sat(Kk, Kr) for all k and r. This was
proved for r < 7 in [9] and for general r by Alon [1] and Kalai [28, 29] using methods from
exterior algebra and matroid theory. A multidimensional version of this problem also seems
interesting.

Problem 4.8. For general 1 ≤ m ≤ d and 2 ≤ r ≤ k, determine wsat
(
Kd

k , K
m
r

)
.

As was mentioned in Section 3, the ‘vertex version’ of Problem 4.8 was solved in [6].
Theorem 1.8 leaves open the problem of determining wsat

(
P d
k , C2`

)
when d < `. We ask

the following.

Question 4.9. Given k ≥ 2 and ` > d ≥ 2 such that P d
k contains a cycle of length 2`, what

is the value of wsat
(
P d
k , C2`

)
?

4.3 Semi-saturation

Johnson and Pinto [27] also study another type of saturation problem, which is often referred
to as semi-saturation [18, 22] (other terms have also been used: see [10, 28, 32, 34, 36]). Given
graphs F and H, say that a spanning subgraph G of F is (F,H)-semi-saturated if for every
edge e ∈ E(F )\E(G), the graph G+ e contains more copies of H than G does. Note that G
may contain H as a subgraph. Let ssat(F,H) denote the semi-saturation number, which is
the minimum number of edges in a (F,H)-semi-saturated graph. Then it is easy to see that

wsat(F,H) ≤ ssat(F,H) ≤ sat(F,H).

Johnson and Pinto [27] proved that ssat(Qd, Qm) ≤ (m2 +m/2) 2d. Based on this result and
(1.3), they asked whether ssat(Qd, Q2) is equal to sat(Qd, Q2) for sufficiently large d and,

if not, whether lim supd→∞
sat(Qd,Q2)

2d
> lim supd→∞

ssat(Qd,Q2)
2d

. Given Theorem 1.4, it now
seems natural to pose these questions more generally.

Question 4.10. For fixed m ≥ 2, is ssat(Qd, Qm) is equal to sat(Qd, Qm) for sufficiently

large d? If not, is lim supd→∞
sat(Qd,Qm)

2d
> lim supd→∞

ssat(Qd,Qm)
2d

?

Of course, the open problems on saturation mentioned above also make sense for semi-
saturation.
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structures. Froĺık’s memorial volume.

[37] A. A. Zykov, On some properties of linear complexes, Mat. Sbornik N.S. 24(66) (1949),
163–188.

21


	Introduction
	Minimum Saturation in the Hypercube
	Preliminaries
	Definitions and Proof Outline
	The Construction

	Weak Saturation
	Hypercubes and Grids
	Cycles in the Grid

	Open Problems
	Minimum Saturation
	Weak Saturation
	Semi-saturation


