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Abstract

Let G be a graph with n vertices and p
(
n
2

)
edges, and define the

discrepancies disc+
p (G) = maxY⊂V (G)

{
e(Y )− p

(|Y |
2

)}
and disc−p (G) =

maxY⊂V (G)

{
p
(|Y |

2

)
− e(Y )

}
. We prove that if p(1 − p) ≥ 1/n then

disc+
p (G)disc−p (G) ≥ p(1 − p)n3/6400. We also prove a similar in-

equality for k-uniform hypergraphs, and give related results concern-
ing 2-colourings of k-uniform hypergraphs. Our results extend those
of Erdős, Goldberg, Pach and Spencer [6] and Erdős and Spencer [7].

1 Introduction

The discrepancy of a graph G is disc(G) = maxY⊂V (G) |e(Y )− 1
2

(|Y |
2

)
|, where

we write e(Y ) = e(G[Y ]) for the number of edges of G spanned by Y . If G
has edge density 1/2 then the discrepancy can be seen as a measure of how
uniformly the edges are distributed among the vertices; see Sós [11] and Beck
and Sós [1]) for more discussion and a general account of discrepancy. Erdős
and Spencer [7] showed that for some constant c > 0 every graph G of order
n satisfies disc(G) ≥ cn3/2. More generally, they showed that for every k ≥ 3
there is a constant ck > 0 such that if H is a k-uniform hypergraph of order
n then disc(H) ≥ ckn

(k+1)/2, where disc(H) = maxY⊂V (H) |e(Y )− 1
2

(|Y |
k

)
|. By

considering random graphs they showed that this bound is sharp up to the
value of the constant.
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Now suppose that G is a graph with e(G) = m = p
(|G|

2

)
, where p < 1/2,

so that we expect a random subset Y ⊂ V (G) to span a subgraph with p
(|Y |

2

)
edges. Then a more appropriate measure of edge distribution is given by the
quantity discp(G) = maxY⊂V (G) |e(Y ) − p

(
Y
2

)
|. Erdős, Goldberg, Pach and

Spencer [6] showed that in this case discp(G) ≥ c
√
mn, where c is an absolute

constant.
A subset of vertices with large discrepancy can clearly be either more

or less dense than the whole graph. Let us define the positive discrep-

ancy by disc+(G) = maxY⊂V (G)

{
e(Y )− 1

2

(|Y |
2

)}
and the negative discrep-

ancy by disc−(G) = maxY⊂V (G)

{
1
2

(|Y |
2

)
− e(Y )

}
. Then a random graph G ∈

G(n, 1/2) shows that it is possible to have max{disc+(G), disc−(G)} ≤ cn3/2.
The one-sided discrepancy can be smaller: for instance, the complete bi-
partite graph Kn/2,n/2 has positive discrepancy O(n), although its negative
discrepancy is cn2. Similarly, the graph 2Kn/2 has positive discrepancy O(n)
but negative discrepancy cn2. These examples show that we can guarantee
small discrepancy on one side provided we allow large discrepancy on the
other. In this paper we shall prove that positive discrepancy substantially
smaller than n3/2 guarantees negative discrepancy substantially larger than
n3/2; indeed, we shall quantify the trade-off between positive and negative
discrepancies. Surprisingly, the correct measure turns out to be the product
disc+(G)disc−(G).

We remark that a different type of negative discrepancy was considered by
Erdős, Faudree, Rousseau and Schelp [5] with the idea of showing that graphs
with small negative discrepancy contain complete subgraphs of fixed size. For
further recent results in this direction see Krivelevich [9] and Keevash and
Sudakov [8].

We begin with some definitions. For a k-uniform hypergraph G, a real
p ∈ [0, 1] and X ⊂ V (G) let

dp(X) = e(X)− p
(
|X|
k

)
.

For disjoint sets of vertices X and Y , let

dp(X, Y ) = e(X, Y )− p|X||Y |.

Then we define
disc+

p (G) = max
X⊂V (G)

dp(X) (1)
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and
disc−p (G) = − min

X⊂V (G)
dp(X), (2)

and set

discp(G) = max
X⊂V (G)

|dp(X)| = max{disc+
p (G), disc−p (G)}.

If p is not specified we assume p = 1/2, so for instance disc(G) = disc1/2(G).

Note that the cases p = 0 and p = 1 are trivial, and that if e(G) = p0

(|G|
2

)
we have discp(G) ≥ |dp(V (G))| = |p − p0|

(|G|
2

)
. We will therefore usually

take p with e(G) = p
(|G|

2

)
. Note that, for any p, disc+

p (G) = disc−1−p(G) and

disc−p (G) = disc+
1−p(G). We shall usually assume p ≤ 1/2, since if p > 1/2

we may replace G by G and p by 1− p.
We remark that it does not make much difference if we restrict the defi-

nitions in (1) and (2) to sets X of size n/2 (or some other size cn): as noted
by Erdős, Goldberg, Pach and Spencer [6], this would change the resulting
discrepancy by at most a constant factor.

We shall frequently refer to a random bipartition V = X ∪ Y . Unless
otherwise stated, this means a random bipartition in which each vertex is
assigned independently to X or Y with equal probability. Throughout the
paper we shall use εi and ρj for sequences of independent Bernoulli random
variables, with εi ∈ {+1,−1} and ρj ∈ {0, 1}, each taking either value with
probability 1/2.

The rest of the paper is organized as follows. In section 2 we give lower
bounds on discp(G) for graphs; in section 3 we turn our attention to hyper-
graphs. Finally, in section 4, we consider some related results concerning
subgraphs of a fixed graph or hypergraph.

2 Discrepancy of graphs

In this section we prove our results on graph discrepancy. Let G be a graph of
order n and size p

(
n
2

)
. If G is very sparse, say 0 < p ≤ 1/(n− 1), then taking

the union of p
(

n
2

)
/2 edges from G gives a subgraph with at most p

(
n
2

)
vertices,

so disc+
p (G) ≥ p

(
n
2

)
/2−p(p

(
n
2

)
)2/2 ≥ pn2/5−p3n4/8 > pn2/20 for sufficiently

large n, while since G has average degree at most 1 it contains an independent
set of size at least n/2, and so disc−(G) ≥ p

(
n/2
2

)
> pn2/9 for sufficiently

large n. On the other hand, max{disc+(G), disc−(G)} ≤ e(G) < pn2/2.
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Thus disc+
p (G) and disc−p (G) are both Θ(pn2). A similar argument applies if

G is very dense, with p ≥ 1− 1/(n− 1). (More precise bounds are given by
Erdős, Goldberg, Pach and Spencer [6].)

We therefore restrict our attention to graphs with p(1 − p) ≥ 1/n. Our
main result is the following.

Theorem 1. Let G be a graph of order n and size p
(

n
2

)
, where

p(1− p) ≥ 1/n. Then

disc+
p (G)disc−p (G) ≥ p(1− p)n3/6400. (3)

As an immediate corollary we get the following result of Erdős, Goldberg,
Pach and Spencer [6].

Corollary 2. Let G be a graph of order n and size p
(

n
2

)
, where

p(1− p) ≥ 1/n. Then

discp(G) ≥
√
p(1− p)n3/2/80.

We remark that the result of Erdős and Spencer for graphs can easily be
deduced from Theorem 1: if 1/3 ≤ p ≤ 2/3 then disc(G) ≥ 1

2
(disc+

p (G) +

disc−p (G)) ≥ n3/2/160, while otherwise disc(G) ≥ |e(G) − 1
2

(
n
2

)
| ≥

(
n
2

)
/6 ≥

n3/2/12.
We also remark that, for r ≥ 2, the Turán graph Tr(n) gives a bound on

the optimal constant in (3). Defining p by tr(n) = e(Tr(n)) = p
(

n
2

)
, we have

p ∼ 1− 1
r
. A little calculation shows that

disc+
p (Tr(n)) =

pn

8
+O(r), (4)

and, for r even,

disc−p (Tr(n)) = (1 + o(1))
(1− p)n2

8
,

which implies

disc+
p (Tr(n))disc−p (Tr(n)) ≤ (1 + o(1))

p(1− p)n3

64
.

Before turning to the proof of Theorem 1, we make some comments about
one-sided discrepancies. Since every graph with n vertices and tr(n) edges
contains a subgraph of order u and size at least tr(u) for every 1 ≤ u ≤ n,
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the Turán graphs Tr(n) have minimal positive p-discrepancy among graphs of
order n and size tr(n). Thus (4) gives an optimal bound in these cases, which
have density p ∼ 1 − 1

r
. To obtain a similar bound for arbitrary densities,

we define an extension of the Turán numbers for non-integral r. Given an
integer n ≥ 1 and a real number r ≥ 1, we can write n = qr + s, where q is
an integer and 0 ≤ s < r. We define the fractional Turán number tr(n) by

tr(n) =

(
n

2

)
− tr(n),

where

tr(n) = s

(
q + 1

2

)
+ (r − s)

(
q

2

)
.

Note that this is consistent with the definition of Turán numbers when r is
integral; it is convenient to work with the quantity tr(n) instead of tr(n).

A bound matching (4) will follow from the following result.

Lemma 3. Suppose that n ≥ 1 is an integer and 1 ≤ r ≤ n. Let G be
a graph with n vertices and at least tr(n) edges. Then, for 2 ≤ u ≤ n, G
contains a subgraph with u vertices and at least tr(u) edges.

Proof. It is enough to prove the theorem when u = n − 1. Taking com-
plements, this is equivalent to showing that if e(G) ≤ tr(n) then there is a
vertex v such that e(G \ v) ≤ tr(n− 1). We may also assume r > 1, or else
G is empty.

Adding edges if necessary, we may assume that

e(G) = btr(n)c = tr(n)− η, (5)

where 0 ≤ η < 1. Thus if n = qr + s,

e(G) = s

(
q + 1

2

)
+ (r − s)

(
q

2

)
− η

=
1

2

(
rq2 + (2s− r)q

)
− η.

A short calculation shows that

∆(G) ≥
⌈

2e(G)

n

⌉
= q − 1 +

⌈
qs+ s− 2η

qr + s

⌉
. (6)
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By (5) and (6), it is sufficient to show that

q − 1 +

⌈
qs+ s− 2η

qr + s

⌉
+ η ≥ tr(n)− tr(n− 1). (7)

If q = 0 then we have a complete graph and are done immediately. Thus we
may assume that q ≥ 1. Now if s ≥ 1, then it is easily seen that

tr(n)− tr(n− 1) = q,

while if 0 ≤ s < 1, then a simple calculation shows that

tr(n)− tr(n− 1) = q − 1 + s. (8)

Now if s > η then qs + s > 2η, and so the left side of (7) is at least q + η,
and thus (7) is satisfied. If s ≤ η, however, then 0 ≤ s < 1, so (8) holds. It
is then sufficient by (7) to show that⌈

qs+ s− 2η

qr + s

⌉
+ η ≥ s,

which holds provided
qs+ s− 2η

qr + s
> −1.

But qr + s = n and qs+ s− 2η ≥ −2η > −2, so this holds for n ≥ 2.

Calculating as in (4), we obtain the following result.

Corollary 4. For 0 ≤ p ≤ 1, every graph G with n vertices and p
(

n
2

)
edges

satisfies

disc+
p (G) ≥ pn

8
+O(

1

1− p
).

We now turn to the proof of Theorem 1. We shall need two simple
inequalities (these follow easily from the Littlewood-Khinchin inequality, see
[10], [12], [13]; however, we give short proofs at the end of the section). Recall
that εi and ρi are i.i.d. Bernoulli with εi ∈ {+1,−1} and ρi ∈ {0, 1}.

Lemma 5. For n ≥ 1,

E|
n∑

i=1

εi| ≥
√
n/2.
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Lemma 6. Let a = (ai)
n
i=1 be a sequence of real numbers, and A a real

number. Then

E|
n∑

i=1

εiai − A| ≥ ||a||1/
√

2n

and

E|
n∑

i=1

ρiai − A| ≥ ||a||1/
√

8n.

Our main tool in the proof of Theorem 1 is the following lemma, which
shows that in a random bipartition of a graph G, we do not expect the vertex
neighbourhoods to split too evenly.

Lemma 7. Let G be a graph of order n and size p
(

n
2

)
, where p(1−p) ≥ 1/n.

Let V (G) = X ∪ Y be a random bipartition. Then

E
∑
x∈X

∣∣|Γ(x) ∩ Y | − p|Y |
∣∣ ≥√p(1− p)n3/2/20.

Proof. We may assume p ≤ 1/2 since we may take complements and replace
p by 1 − p. Suppose x ∈ V (G) has degree d = d(x) = p(n − 1) + r(x). For
v 6= x, define ev = 1 if xv ∈ E(G) and ev = 0 otherwise. Then

E
∣∣|Γ(x) ∩ Y | − p|Y \ {x}|

∣∣ = E
∣∣∑

v 6=x

ρv(ev − p)
∣∣

= E
∣∣1
2

∑
v 6=x

(ev − p) +
1

2

∑
v 6=x

εv(ev − p)
∣∣

≥ max{1

2
|d− (n− 1)p|, 1

2
|E
∑
v 6=x

εv(ev − p)|},

since
∑

v 6=x(ev − p) = d− (n− 1)p and the distribution of
∑

v 6=x εv(ev − p) is
symmetric about 0. Now, by Lemma 5,

E
∣∣∑

v 6=x

εv(ev − p)
∣∣ = E

∣∣ d∑
i=1

εi(1− p) +
n−1∑

i=d+1

εi(−p)
∣∣

≥ E
∣∣ d∑

i=1

εi(1− p)
∣∣

≥ (1− p)
√
d/2
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and so

E
∣∣|Γ(x) ∩ Y | − p|Y \ {x}|

∣∣ ≥ 1

2
max{|r(x)|, (1− p)

√
d(x)/2}.

Now for x ∈ V = V (G) let I(x) = 1 if x ∈ X and I(x) = 0 otherwise.
Then, since I(x) and |Γ(x) ∩ Y | are independent random variables,

E
∑
x∈X

∣∣|Γ(x) ∩ Y | − p|Y |
∣∣ = E

∑
x∈V

I(x)
∣∣|Γ(x) ∩ Y | − p|Y \ {x}|

∣∣
=

1

2

∑
x∈V

E
∣∣|Γ(x) ∩ Y | − p|Y \ {x}|

∣∣
≥ 1

4
max{

∑
x∈V

|r(x)|,
∑
x∈V

(1− p)
√
d(x)/2}

≥ 1

8

∑
x∈V

(|r(x)|+ (1− p)
√
d(x)/2).

Note that the first equality holds as Y = Y \ {x} if I(x) = 1. Furthermore,
|r(x)|+ (1− p)

√
d(x)/2 is minimized when r(x) = 0 and so d(x) = p(n− 1).

Thus

1

8

∑
x∈V

(
|r(x)|+ (1− p)

√
d(x)/2

)
≥ 1

8
n(1− p)

√
p(n− 1)/2

≥
√
p(1− p)n3/2/20,

since p ≤ 1/2 and we may assume n ≥ 3.

After this preparation, we are ready to prove Theorem 1.

Proof of Theorem 1. Since (3) is symmetric in p and 1 − p, we may replace
G by its complement G, and so we may assume that disc+

p (G) ≤ disc−p (G). If

disc+
p (G) ≥

√
p(1− p)n3/2/80 we are done. Otherwise, suppose disc+

p (G) =√
p(1− p)n3/2/80α, where α ≥ 1. We shall show that

disc−p (G) ≥ α
√
p(1− p)n3/2/80, (9)

so disc+
p (G)disc−p (G) ≥ p(1− p)n3/6400.
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Let V (G) = X ∪ Y be a random bipartition. Then since p(1− p) ≥ 1/n,
it follows from Lemma 7 that

E
∑
x∈X

∣∣|Γ(x) ∩ Y | − p|Y |
∣∣ ≥√p(1− p)n3/2/20. (10)

Now let X+ = {x ∈ X : |Γ(x) ∩ Y | ≥ p|Y |} and X− = X \X+; so

dp(X, Y ) =
∑

x∈X+

(
|Γ(x) ∩ Y | − p|Y |

)
+
∑

x∈X−

(
|Γ(x) ∩ Y | − p|Y |

)
.

Since Edp(X, Y ) = 0, we have

E
∑

x∈X+

∣∣|Γ(x) ∩ Y | − p|Y |
∣∣ = E

∑
x∈X−

∣∣|Γ(x) ∩ Y | − p|Y |
∣∣

and so by (10)

E dp(X+, Y ) = E
∑

x∈X+

(
|Γ(x) ∩ Y | − p|Y |

)
≥
√
p(1− p)n3/2/40. (11)

Now E dp(Y ) = 0, so (11) implies

E
(
dp(X+, Y ) + αdp(Y )

)
≥
√
p(1− p)n3/2/40. (12)

Let X+, Y be a pair of sets achieving at least the expectation in (12) and let Z
be a random subset of X+, where each vertex of X+ is chosen independently
with probability 1/α. Then it follows from (12) that

E dp(Z ∪ Y ) = E
(
dp(Z) + dp(Z, Y ) + dp(Y )

)
=

1

α2
dp(X) +

1

α
dp(X, Y ) + dp(Y )

≥ 1

α2
dp(X) +

1

α

√
p(1− p)n3/2/40.

Since disc+
p (G) =

√
p(1− p)n3/2/80α, this implies

dp(X)/α2 ≤ −(1/α)
√
p(1− p)n3/2/80

and so dp(X) ≤ −α
√
p(1− p)n3/2/80, which gives the desired lower bound

on disc−p (G).
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Finally in this section we give the proofs of Lemmas 5 and 6, postponed
from earlier.

Proof of Lemma 5. A simple calculation shows that for n = 2k we have
E|
∑n

i=1 εi| = 21−2kk
(
2k
k

)
and for n = 2k + 1 we have E|

∑n
i=1 εi| = 2−2k(2k +

1)
(
2k
k

)
= E|

∑n+1
i=1 εi|. Let sn = E|

∑n
i=1 εi|/

√
n. Then, for k ≥ 1, s2k+2/s2k =

(k + 1
2
)/
√
k(k + 1) > 1 and, for k ≥ 0, s2k+3/s2k+1 =

√
(k + 3

2
)(k + 1

2
)/(k +

1) < 1. Thus (s2k)∞k=1 is increasing and (s2k+1)
∞
k=0 is decreasing; both con-

verge to E|N(0, 1)| =
√

2/π. Therefore sn ≥ s2 = 1/
√

2 for all n.

Proof of Lemma 6. We may clearly assume that all ai are nonnegative. Since∑n
i=1 εiai is symmetric about 0, the expectation is minimized for a given a

when A = 0. Now if ai 6= aj then let a′i = a′j = (ai +aj)/2; it is easily checked
that E|B + εiai + εjaj| ≥ E|B + εia

′
i + εja

′
j| for every real B. It follows that

E|
∑n

i=1 εiai| ≥ E|
∑n

i=1 εia|, where a =
∑n

i=1 ai/n. Thus, by Lemma 5,

E|
n∑

i=1

εiai − A| ≥ aE|
n∑

i=1

εi| ≥ a
√
n/2 = ||a||1/

√
2n.

The second inequality follows directly from the first.

Note that in fact proof of Lemma 5 implies the inequalities E|
∑n

i=1 ai| ≥√
2/πn||a||1 if n is odd and E|

∑n
i=1 ai| ≥ (1 + o(1))

√
2/πn||a||1 for general

n.

3 Hypergraph discrepancy

In this section we turn our attention to hypergraphs. After defining a little
notation, we begin with a result for weighted hypergraphs; we then turn to
the consideration of unweighted hypergraphs.

If G is the complete k-uniform hypergraph with edge-weighting w and
X ⊆ V (G), we define

d(X) =
∑

K∈X(k)

w(K).

As in definitions (1) and (2) we define disc+(G) = maxX⊂V (G) d(X) and
disc−(G) = −minX⊂V (G) d(X); we also define

disc(G) = max{disc+(G), disc−(G)}.
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Note that this is consistent with the definitions for an unweighted hypergraph
G by taking w(e) = 1 if e ∈ E(G) and w(e) = −1 otherwise.

For disjoint sets X1, . . . , Xt and integers k1, . . . , kt such that
∑t

i=1 ki = k,
we define

dk1,...,kt(X1, . . . , Xt) =
∑′

w(e),

where the sum is over edges e with |e ∩Xi| = ki for every i.
We can now state the first result of the section.

Theorem 8. Let G be the complete k-uniform hypergraph of order n with
edge-weighting w such that

∑
w(e) = 0 and

∑
|w(e)| =

(
n
k

)
. Then

disc+(G)disc−(G) ≥ 2−14k2

nk+1.

We shall need three lemmas. In the first lemma we use the fact that
if P (x) is a polynomial of degree k with supx∈[0,1] |P (x)| ≤ 1 then every

coefficient of P (x) has absolute value at most 2kk2k/k!. (Tamás Erdélyi
[4] pointed out to us that this is an elementary consequence of Markov’s
Inequality; see [3].)

Lemma 9. If G is a complete k-uniform hypergraph with edge-weighting w
and disc(G) ≤M then for disjoint subsets X, Y of V (G) and 0 ≤ i ≤ k,

|di,k−i(X, Y )| ≤ 22k2

M.

Proof. Let Z be a random subset of X, where each vertex is chosen indepen-
dently with probability p. Then

E(d(Z ∪ Y )) =
k∑

i=0

pidi,k−i(X, Y ).

Since disc(G) ≤ M , it follows that max0≤p≤1 |
∑k

i=0 p
idi,k−i(X, Y )| ≤ M and

so max0≤i≤k |di,k−i(X, Y )| ≤ 2kk2kM/k! ≤ 22k2
M .

We also need an analogue of Lemma 7.

Lemma 10. Let G be a complete k-uniform hypergraph of order n with edge-
weighting w. Let V (G) = U ∪W be a random bipartition. Then

E
∑

K∈U(k−1)

|dk−1,1(K,W )| ≥ k2−k
∑

L∈V (G)(k)

|w(L)|/
√

2n.
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Proof. Let V = V (G) = U ∪W be a random bipartition. Given K ∈ V (k−1),
it follows from Lemma 6 that

E|dk−1,1(K,W \K)| ≥
∑

v∈V \K

|w(K ∪ {v})|/
√

8n.

Since the event {K ⊂ U} and the random variable dk−1,1(K,W \ K) are
independent, and each edge L ∈ V (k) occurs k times as K ∪ {v}, we have

E
∑

K∈U(k−1)

|dk−1,1(K,W )| =
∑

K∈V (k−1)

P(K ⊂ U)E|dk−1,1(K,W \K)|

≥
∑

K∈V (k−1)

2−k+1
∑

v∈V \K

|w(K ∪ {v})|/
√

8n

= k2−k
∑

L∈V (k)

|w(L)|/
√

2n.

The following lemma will be useful several times.

Lemma 11. Let G be a k-uniform hypergraph of order n with edge-weighting
w. Suppose that α ≥ 1 and X, Y are disjoint subsets of V (G) with

d1,k−1(X, Y ) + αd(Y ) = M ≥ 0. (13)

Then either
disc+(G) ≥ 2−3k2

M/α

or
disc−(G) ≥ 2−3k2

Mα.

Proof. If |di,k−i(X, Y )| ≥ 2−k2
αM for some 0 ≤ i ≤ k then we are done by

Lemma 9. Otherwise, let Z be a random subset of X, obtained by choosing
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each vertex of X independently with probability 1/α. Then

E d(Z ∪ Y ) = E
k∑

i=0

di,k−i(Z, Y )

=
k∑

i=0

di,k−i(X, Y )/αi

≥ d(Y ) + d1,k−1(X, Y )/α−
k∑

i=2

2−k2

αM/αi

≥ M/α− (k − 1)2−k2

M/α

≥ 2−3k2

M/α.

Since some set Z must achieve this bound, we obtain the desired bound on
disc+(G).

We can now prove the main theorem of this section.

Proof of Theorem 8. As in the proof of Theorem 1, we may assume that
disc+(G) ≤ disc−(G). If disc+(G) ≥ 2−7k2

n(k+1)/2 we are done. Other-
wise, suppose disc+(G) = 2−7k2

n(k+1)/2/α for some α > 1: we shall show
disc−(G) ≥ 2−7k2

αn(k+1)/2.
Note first that for disjoint sets X, Y ⊂ V (G), if

d1,k−1(X, Y ) + αd(Y ) ≥ 2−4k2

n(k+1)/2 (14)

then we are done by Lemma 11. It is therefore enough to find disjoint X, Y
satisfying (14).

Let V (G) = Xk ∪Wk−1 be a random bipartition and let Wk−1 = Xk−1 ∪
Wk−2, . . . ,W2 = X2 ∪ W1 be random bipartitions where, as usual, in each
bipartition each vertex is assigned independently to either vertex class with
probability 1/2. We define weightings wi on the i-sets in Wi for each i by

wi(K) = di,1,...,1(K,Xi+1, . . . , Xk). (15)

Let Wk = V (G) and define wk = w. Then for 1 ≤ i < k and K ∈ W (i)
i ,

wi(K) = di,1,...,1(K,Xi+1, . . . , Xk)

=
∑

x∈Xi+1

di+1,1,...,1(K ∪ {x}, Xi+2, . . . , Xk)

=
∑

x∈Xi+1

wi+1(K ∪ {x}).

13



It therefore follows from Lemma 10 that given Wi+1 and wi+1,

E
∑

K∈W
(i)
i

|wi(K)| ≥ (i+ 1)2−(i+1)
∑

L∈W
(i+1)
i+1

|wi+1(L)|/
√

2n. (16)

It follows that

E
∑
x∈W1

|d1,...,1({x}, X2, . . . , Xk)| = E
∑
x∈W1

|w1(x)|

≥ k!2−(k+1
2 )

∑
K∈W

(k)
k

|wk(K)|/(
√

2n)k−1

= k!2−(k+1
2 )
(
n

k

)
/(2n)(k−1)/2.

Let X+
1 = {x ∈ W1 : d1,...,1(x,X2, . . . , Xk) > 0}. Then, as in (11),

E d1,...,1(X
+
1 , X2, . . . , Xk) ≥ 1

2
k!2−(k+1

2 )
(
n

k

)
/(2n)(k−1)/2 ≥ 2−2k2

n(k+1)/2.

(17)
We partition the edges in V0 = X+

1 ∪
⋃k

i=2Xi that meet X+
1 in exactly

one vertex as follows. For a nonempty S ⊂ {2, . . . , k}, let VS =
⋃

i∈S Xi

and ES = {K ∪ {x} : x ∈ X+
1 , K ∈ V

(k−1)
S , |K ∩ Xi| > 0 ∀i ∈ S}. Let

dS =
∑

K∈ES
w(K) and note that d1,k−1(X

+, VS) =
∑
∅6=T⊂S dT and d{2,...,k} =

d1,...,1(X
+
1 , X2, . . . , Xk). Let S0 be minimal with |dS0| ≥ (2k)−k+|S|d{2,...,k}.

Then

max
S⊂{2,...,k}

|d1,k−1(X
+
1 , S)| ≥ |d1,k−1(X

+
1 , VS0)|

≥ |dS0| −
∑
∅6=T(S0

|dT |

≥
(
(2k)−k+|S0| −

|S0|−1∑
i=1

k|S0|−i(2k)−k+i
)
d{2,...,k}

≥ d{2,...,k}/2(2k)k−1

≥ 2−k2

d{2,...,k}.

Thus it follows from (17) that

E max
S⊂{2,...,k}

|d1,k−1(X
+
1 , VS)| ≥ 2−3k2

n(k+1)/2

14



and so there is some S ⊂ {2, . . . , k} with

E|d1,k−1(X
+
1 , VS)| ≥ 2−3k2

n(k+1)/2/2k.

Now let Y = VS and X+
S = {x ∈ W1 : d1,k−1({x}, VS) > 0}. Then, since

E d1,k−1(W1, VS) = 0, we have

E d1,k−1(X
+
S , VS) ≥ 2−3k2

n(k+1)/2/2k+1 ≥ 2−4k2

n(k+1)/2.

Finally, since E d(VS) = 0, we have

E d1,k−1(X
+
S , VS) + αd(VS) ≥ 2−4k2

n(k+1)/2.

It follows that there are sets X, Y satisfying (14).

We note that Theorem 8 implies the following bound on disc+
p (G)disc−p (G)

for unweighted hypergraphs G.

Corollary 12. Let G be a k-uniform hypergraph with n vertices and p
(

n
k

)
edges. Then

disc+
p (G)disc−p (G) ≥ 2−14k2+2p2(1− p)2nk+1.

Proof. The result is trivial if p = 0 or p = 1. Otherwise, letH be the complete
k-uniform hypergraph on the same vertex set as G with edge-weighting w
defined by w(e) = 1/2p if e ∈ E(G) and w(e) = −1/2(1−p) otherwise. Then∑
w(e) = 0 and

∑
|w(e)| =

(
n
k

)
, and so, by Theorem 8,

disc+(H)disc−(H) ≥ 2−14k2

nk+1.

Now for Y ⊂ V (G),

d(G)
p (Y ) = e(Y )− p

(
|Y |
2

)
=

∑
K∈Y (k)

(1K∈E(G) − p)

=
∑

K∈Y (k)

2p(1− p)w(K)

= 2p(1− p)d(H)(Y ).

Thus
disc+

p (G)disc−p (G) = 4p2(1− p)2disc+(H)disc−(H), (18)

which implies the required bound.
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We can, however, improve upon the p2(1 − p)2 term in Corollary 12 (at
the cost of a slightly worse constant) to obtain a bound similar to that in
Theorem 1. First, however, we need a version of Lemma 7 for unweighted
hypergraphs.

Lemma 13. Let G be a k-uniform hypergraph of order n with p
(

n
k

)
edges,

where p(1−p) ≥ 1/n and n ≥ 2k. Let V (G) = X∪Y be a random bipartition.
Then

E
∑

K∈X(k−1)

∣∣dk−1,1(K,Y )− p|Y |
∣∣ ≥ 2−2k2

√
p(1− p)nk− 1

2 .

Proof. We follow the argument of Lemma 7. As before, we may assume
p ≤ 1/2. Let V = V (G) = X ∪ Y be a random bipartition. For K ∈ V (k−1),
let d(K) be the number of edges of G containing K and define r(K) by
d(K) = p(n− k + 1) + r(K). Let d = p(n− k + 1). Then, as in Lemma 7,

E
∣∣dk−1,1(K,Y \K)− p|Y \K|

∣∣ ≥ 1

2
max{|r(K)|, (1− p)

√
d(K)/2}.

For K ∈ V (k−1), we define I(K) = 1 if K ⊂ X and I(K) = 0 otherwise.
Then I(K) and dk−1,1(K,Y \K) are independent random variables, so

E
∑

K∈X(k−1)

∣∣dk−1,1(K,Y )− p|Y |
∣∣

= E
∑

K∈V (k−1)

I(K)
∣∣dk−1,1(K,Y \K)− p|Y \K|

∣∣
= 2−k+1

∑
K∈V (k−1)

E
∣∣dk−1,1(K,Y \K)− p|Y \K|

∣∣
≥ 2−k max{

∑
K∈V (k−1)

|r(K)|,
∑

K∈V (k−1)

(1− p)
√
d(K)/2}

≥ 2−(k+1)
∑

K∈V (k−1)

|r(K)|+ (1− p)
√
d(K)/2.

Since |r(K)| + (1 − p)
√
d(x)/2 is minimized when r(K) = 0 and d(K) =

p(n− k + 1),

E
∑

K∈X(k−1)

∣∣dk−1,1(K,Y )− p|Y |
∣∣ ≥ (

n

k − 1

)
2−(k+1)(1− p)

√
p(n− k + 1)/2

> 2−2k2
√
p(1− p)nk− 1

2 .
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Theorem 14. Let G be a k-uniform hypergraph of order n with p
(

n
k

)
edges,

where p(1− p) ≥ 1/n. Then

disc+
p (G)disc−p (G) ≥ 2−18k2

p(1− p)nk+1.

Proof. Let H be the complete k-uniform hypergraph on V (G) with weighting
w(e) = 1 − p if e ∈ E(G) and w(e) = −p otherwise. Then disc+(H) =
disc+

p (G) and disc−(H) = disc−p (G). Note that w(H) = 0. As usual we may

assume p ≤ 1/2 and disc−(H) ≥ disc+(H) = 2−9k2
√
p(1− p)n(k+1)/2/α. If

α ≤ 1 we are done, so we may assume α ≥ 1. We will show that disc−(H) ≥
2−9k2

√
p(1− p)αn(k+1)/2. If there are disjoint X, Y ⊂ V (H) with

d1,k−1(X, Y ) + αd(Y ) ≥ 2−6k2
√
p(1− p)n(k+1)/2 (19)

then we are done by Lemma 11. Thus it is enough to find disjoint X, Y
satisfying (19).

As in the proof of Theorem 8, we define random sets Wk = X ⊃ Wk−1 ⊃
· · · ⊃ W1, where the i-sets in Wi are weighted as in equation (15). Then by
Lemma 13,

E
∑

K∈W
(k−1)
k−1

|wk−1(K)| ≥ 2−2k2
√
p(1− p)nk− 1

2 , (20)

while W1, . . . ,Wk−2 satisfy (16). We have

E
∑
x∈W1

|w1(x)| ≥ (k − 1)! 2−(k
2)

∑
K∈W

(k−1)
k−1

|wk−1(K)|/(
√

2n)k−2,

and so, defining X+
1 as before, we can replace (17) by

E d1,...,1(X
+
1 , X2, . . . , Xk) ≥ 2−4k2

√
p(1− p)n(k+1)/2. (21)

The argument is completed as before (with all bounds changed by a factor
2−2k2

√
p(1− p)).

The following corollary is immediate.

Corollary 15. Let G be a k-uniform hypergraph of order n with p
(

n
k

)
edges,

where p(1− p) ≥ 1/n. Then

discp(G) ≥ 2−9k2
√
p(1− p)n(k+1)/2.
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We note that Corollaries 2 and 15 are best possible up to the value of the
constant 2−9k2

. To see this, let G ∈ G(k)(n, p) be a random k-uniform hyper-
graph, where each possible edge is present independently with probability p,
and let S ⊂ V (G). Let N =

(
n
k

)
and h = (1+ε)k!−1/2

√
2p(1− p) ln 2n(k+1)/2.

Then by standard bounds on the tail of the binomial distribution (see [2],
Theorem 1.3), provided p(1− p) ≥ ckn

1−k, for any subset S of V (G) we have

P(|dp(S)| ≥ h) ≤ P(|B(N, p)−Np| ≥ h) < 2−n

for sufficiently large n. Thus there is some k-uniform hypergraph G of order
n with discp(G) ≤ h.

Let us also note that the gain from p2(1− p)2 to p(1− p) between Corol-
lary 12 and Theorem 14 comes because a “typical ” vertex in G has degree
p
(

n−1
k−1

)
: so if p is small, then the weight around a typical vertex is con-

centrated in fairly few edges. We remark that no similar bound is pos-
sible for the larger class of k-uniform hypergraphs with

∑
|w(e)| =

(
n
k

)
such that

∑
max{w(e), 0} = p

(
n
k

)
: consider a random k-uniform hyper-

graph H ∈ G(k)(n, 1/2), and let G be the weighted hypergraph obtained
by giving each edge weight 2p and each non-edge weight −2(1− p). Then if
e(H) = 1

2

(
n
k

)
(which happens with probability at least c′kn

−k/2 if
(

n
k

)
is even)

we have
∑
|w(e)| =

(
n
k

)
and

∑
max{w(e), 0} = p

(
n
k

)
. On the other hand,

it follows from (18) that disc+
p (G)disc−p (G) = 4p2(1 − p)2disc+(H)disc−(H),

while disc+(H) and disc−(H) are both O(n(k+1)/2) with exponentially small
failure probability.

It is interesting to ask about the range in which Theorem 1 and Theo-
rem 14 are sharp (up to the constant). For instance, in the case of graphs
the remarks above show that disc+

p (G) and disc−p (G) can both be around

c
√
p(1− p)n3/2. When p is (about) 1/2, the complete bipartite graph and

its complement show that we can have discrepancy O(n) on one side (and
cn2 on the other). Thus Theorem 1 is sharp in in middle of the the scale
from cn to c′n2, and (for p = 1/2) is sharp at the ends. How sharp is it at
other parts of the scale, or at the ends when p 6= 1/2?

The constant in Theorem 14 is clearly not best possible. A more careful
version of the argument should improve it to 2−ck ln k; it would be of interest
to know the correct order of magnitude. It would also be interesting to know
what happens in the range n1−k ≤ p ≤ 1/n.
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4 Subgraph discrepancy

In previous sections we have been concerned with the discrepancy of sub-
graphs or, equivalently, 2-colourings of the complete graph. We begin this
section by considering 2-colourings of an arbitrary graph: questions of this
form were raised by Sós in [11].

For a k-uniform hypergraph G, a subgraph H of G and a real number
p ∈ [0, 1], we define

disc+
p (H,G) = max

S⊂V (G)
e(H[S])− pe(G[S])

and
disc−p (H,G) = max

S⊂V (G)
pe(G[S])− e(H[S]).

Note that if G is the complete k-uniform hypergraph then these two defini-
tions agree with (1) and (2). We set

discp(H,G) = max{disc+
p (H,G), disc−p (H,G)}.

We begin with a fairly straightforward analogue to Theorem 8. Note that
arguing as in Corollary 12 gives a bound with p2(1− p)2 in place of p(1− p).

Theorem 16. Let G be a k-uniform hypergraph with n vertices and m edges,
and let H be a subgraph of G with pm edges, where p(1− p) ≥ 1/n. Then

disc+
p (H,G)disc−p (H,G) ≥ 2−18k2

p(1− p)m2/nk−1.

We first need a version of Lemma 13.

Lemma 17. Let G be a k-uniform hypergraph with n vertices and m edges,
and let H ⊂ G be a subhypergraph of G with pm edges, where p(1−p) ≥ 1/n.
Let V (G) = X ∪ Y be a random bipartition. Then

E
∑

K∈X(k−1)

|d(H)
k−1,1(K,Y )− pd(G)

k−1,1(K,Y )| ≥ 2−(k+1)
√
p(1− p)m/

√
n.

Proof. For a partition V (G) = X ∪ Y , let us write

f(X, Y ) =
∑

K∈X(k−1)

|d(H)
k−1,1(K,Y )− pd(G)

k−1,1(K,Y )|.

19



As in Lemma 13, we may assume that p ≤ 1/2 or else replace H by its
complement in G. For K ∈ V (k−1), let dH(K) be the number of edges of
H containing K and let dG(K) be the number of edges of G containing K.
Define r(K) by dH(K) = pdG(K) + r(K). Then, as in Lemma 13,

E|d(H)
k−1,1(K,Y \K)− pd(G)

k−1,1(K,Y )| ≥ 1

2
max{|r(K)|, (1− p)

√
dH(K)/2}.

Thus
Ef(X, Y ) ≥ 2−(k+1)

∑
K∈V (k−1)

|r(K)|+ (1− p)
√
dH(K)/2.

Now |r(K)|+(1−p)
√
dH(K)/2 is minimized when r(K) = 0 and so dH(K) =

pdG(K). Thus

Ef(X, Y ) ≥ 2−(k+1)
∑

K∈V (k−1)

(1− p)
√
pdG(K)/2

≥ 2−(k+1)
∑

K∈V (k−1)

(1− p)dG(K)
√
p/2n

since dG(K) < n. Now
∑

K∈V (k−1) dG(K) = km, so

Ef(X, Y ) ≥ 2−(k+1)km(1− p)
√
p/2n

≥ 2−(k+1)
√
p(1− p)m/

√
n.

Theorem 16 now follows by a modification of the proof of Theorem 14.

Proof of Theorem 16. Let V = V (G). We may assume p ≤ 1/2 or replace H
by its complement in G. We define, as in Theorem 14, an edge-weighting w
on V (k) by w(K) = 1 − p if K ∈ E(H), w(K) = −p if K ∈ E(G) \ E(H)
and w(K) = 0 otherwise. Note that then w(V ) = 0. We may assume

disc−p (H,G) ≥ disc+
p (H,G) = 2−9k2

√
p(1− p)e(G)/

√
n

k−1
α. If α ≤ 1 we are

done, so we may assume α ≥ 1. If there are disjoint X, Y with

d1,k−1(X, Y ) + αd(Y ) ≥ 2−6k2
√
p(1− p)m/n(k−1)/2,

then we are done as before by Lemma 11. Once again, we define random
subsets Wk = X ⊃ Wk−1 ⊃ · · · ⊃ W1. Applying Lemma 17 instead of
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Lemma 13 to Wk−1, we can replace (20) by

E
∑

K∈W
(k−1)
k−1

|wk−1(K)| ≥ 2−2k2
√
p(1− p)m/

√
n. (22)

As before, W1, . . . ,Wk−2 satisfy (16); applying this k − 2 times to (22), we
see that (instead of (21)) we obtain

Ed(X+
1 , X2, . . . , Xn) ≥ 2−4k2

√
p(1− p)m/n(k−1)/2,

and the argument is completed as before.

Corollary 18. Let G be a k-uniform hypergraph with n vertices and m edges,
and H a subgraph of G with pm edges, where p(1− p) ≥ 1/n. Then

discp(H,G) ≥ 2−9k2
√
p(1− p)m/n(k−1)/2.

We obtain stronger results when there is a restriction on the maximum
overlap between edges of positive and negative weights.

Theorem 19. Let G be a complete k-uniform hypergraph of order n with
edge-weighting w. Suppose in addition that, for some 1 ≤ s ≤ r, if w(e) > 0
and w(e′) < 0 then |e ∩ e′| < s. Let M =

∑
|w(e)| and m =

∑
w(e). If

m = (2p− 1)M , where p(1− p) ≥ 1/n, then

disc+
p (G)disc−p (G) ≥ 2−18k2

p2(1− p)2M2/ns−1.

Proof. Suppose first that p = 1/2, and let E = {e : w(e) 6= 0}. As in
the proof of Theorem 8, we may assume disc+(G) ≤ disc−(G). Suppose
disc+(G) = 2−9k2

e(H)/n(s−1)/2α, where α ≥ 1. If there are disjoint X, Y
with

d1,k−1(X, Y ) + αd(Y ) ≥ 2−6k2

e(H)/n(s−1)/2

then we are done by Lemma 11. Otherwise, define Wi, Xi and wi as before,
and consider Ws and ws. Since w(e) > 0 and w(e′) < 0 implies |e ∩ e′| < s,

we have, for K ∈ W (s)
s ,

|ws(K)| =
∑

e∩Ws=K, |e∩Xi|=1∀i>s

|w(e)|
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and so
E
∑

K∈W
(s)
s

|ws(K)| = E
∑

|e∩Ws|=s, |e∩Xi|=1∀i>s

|w(e)|.

Let Ae be the event that |e ∩Ws| = s and |e ∩Wi| = 1 for all i > s. Then
PAe > 2−k2

and so E
∑

K∈W
(s)
s
|ws(K)| ≥ 2−k2

M . Applying Lemma 10 as in

(16), we obtain that

E
∑
x∈W1

|d1,...,1({x}, X2, . . . , Xk)| ≥ E
∑

K∈W
(s)
s

|wS(K)|/(
√

2n)s−1

≥ 2−2k2

M/n(s−1)/2.

The rest of the argument follows as in the proof of Theorem 8.
Now suppose p 6= 1/2. As in the proof of Corollary 12, we multiply all

positive edge-weights by 1/2p and all negative edge-weights by −1/2(1− p)
to obtain a new edge-weighting w′. The result follows immediately.

As an application of Theorem 19, let us consider the complete subgraphs
of a graph and its complement. For t ≥ 2 and a graph G, we write kt(G) for
the number of copies of Kt of G. We write

discKk
(G) = max

S⊂V (G)
|kk(G[S])− kk(G[S])|.

For instance, discK2(G) is just disc(G). Clearly, complete subgraphs of G
meet complete subgraphs of its complement in at most one vertex: applying
Theorem 19 to the k-uniform hypergraph of complete or independent k-sets
gives the following result.

Corollary 20. For every graph G of order n,

discKk
(G) ≥ ckn

k− 1
2 .

For instance, in some subset S,

|k3(G[S])− k3(G[S])| ≥ cn5/2.

Considering random graphs shows that this result is best possible up to
the constant. A similar approach yields results in some cases for discH(G)
where H is not a complete graph (and discH is defined in the obvious way).
It would be interesting to determine the correct order of magnitude of discH

for all graphs H. When H is fairly dense, so that copies of H and H cannot
overlap very much, we obtain a lower bound on discH(G) using Theorem 19.
However, when H is sparse this gives a much weaker bound; for instance,
what can we say when H is a tree?
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