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Abstract

A hole in a graph G is an induced cycle of length at least four, and a k-multihole in G is a set of
pairwise disjoint and nonadjacent holes. It is well known that if G does not contain any holes then
its chromatic number is equal to its clique number. In this paper we show that, for any k, if G does
not contain a k-multihole, then its chromatic number is at most a polynomial function of its clique
number. We show that the same result holds if we ask for all the holes to be odd or of length four;
and if we ask for the holes to be longer than any fixed constant or of length four. This is part of a
broader study of graph classes that are polynomially χ-bounded.



1 Introduction

A function φ : N → N is a binding function for a graph G if χ(G) ≤ φ(ω(G)), where χ(G), ω(G)
denote the chromatic number of G and the size of the largest clique of G, respectively. A class C of
graphs is hereditary if for every G ∈ C, every graph isomorphic to an induced subgraph of G also
belongs to C. A hereditary class C is χ-bounded if there is a function φ that is a binding function
for each G ∈ C, and if so, we call φ a binding function for the class; if there exists a polynomial
binding function, we say that C is poly-χ-bounded (see [11] for a survey on χ-bounded classes, and [8]
on poly-χ-bounded classes). While many classes are known to be χ-bounded, the proofs frequently
give quite fast-growing functions, and it is natural to ask whether this is necessary. A remarkable
conjecture of Louis Esperet [5] asserted that every χ-bounded hereditary class is poly-χ-bounded.
But this was recently disproved by Briański, Davies and Walczak [2]. So the question now is: which
hereditary classes are poly-χ-bounded?

A hereditary graph class is defined by excluding some induced subgraphs. A graph is H-free if
it has no induced subgraph isomorphic to H, and {H1, H2}-free means both H1-free and H2-free.
There is a mass of results on χ-bounded classes where one of the excluded graphs is a forest, but in
this paper we consider some classes where every excluded graph has a cycle. A hole is an induced
cycle of length at least four, and odd-hole-free means containing no odd hole. A four-hole means a
hole of length four. Let us say a k-multihole of a graph G is an induced subgraph with k components,
each a cycle of length at least four. We denote the k-vertex path by Pk and the k-vertex cycle by
Ck.

Graphs with no 1-multihole are chordal and hence perfect. The class of graphs with no k-multihole
in which all the cycles have odd length, is shown in [9] to be χ-bounded, but it contains the class
of {P5, C5}-free graphs, and we cannot yet prove it is poly-χ-bounded (see [15] for the best current
bounds). If we replace “odd” by “long”, the same applies: it is shown in [10] that for every ` ≥ 0,
the class of graphs with no k-multihole in which all the cycles have length at least ` is χ-bounded
(and we cannot yet prove it is poly-χ-bounded, for the same reason). But we can if we permit cycles
of length four to be components of the multiholes we are excluding. We will show:

1.1 For each integer k ≥ 0, let C be the class of all graphs G with no k-multihole in which every
component either has length four or odd length. Then C is poly-χ-bounded.

If we change “odd” to “long”, it also works:

1.2 For all integer k ≥ 0 and ` ≥ 4, let C be the class of all graphs G with no k-multihole in which
every component either has length four or length at least `. Then C is poly-χ-bounded.

This second one we can make stronger (we could not prove the corresponding strengthening of
the first):

1.3 For all integers k, s ≥ 0, and ` ≥ 4, let C be the class of all graphs G such that no induced
subgraph of G has exactly k components, each of which is either isomorphic to Ks,s or a cycle of
length at least `. Then C is poly-χ-bounded.

(In general, Ks,t denotes the complete bipartite graph with parts of cardinality s and t.) Both these
results derive from a theorem about Ks,s, which we will explain in the next section.
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2 Excluding a disjoint union, and self-isolation

If A ⊆ V (G), G[A] denotes the subgraph of G induced on A; and we write χ(A) for χ(G[A]) and
ω(A) for ω(G[A]). Two disjoint subsets of V (G) are anticomplete if there are no edges between them,
and complete if every vertex of the first subset is adjacent to every vertex of the second. A graph
G contains a graph H if some induced subgraph of G is isomorphic to H, and such a subgraph is a
copy of H. A function φ : N→ N is non-decreasing if φ(x) ≤ φ(y) for all x, y ∈ N with x ≤ y.

Let us say a graph H is self-isolating if for every non-decreasing polynomial ψ : N→ N, there is
a polynomial φ : N→ N with the following property. For every graph G with χ(G) > φ(ω(G)), there
exists A ⊆ V (G) with χ(A) > ψ(ω(A)), such that either

� G[A] is H-free, or

� G contains a copy H ′ of H such that V (H ′) is disjoint from and anticomplete to A.

Self-isolation is of interest in considering polynomial χ-boundedness for the class of H-free graphs,
where H is a forest. Say a forest H is good if the class of H-free graphs is polynomially χ-bounded.
It might be true that every forest is good (strengthening the Gyárfás-Sumner conjecture [6, 16] from
χ-boundedness to polynomial χ-boundedness), but this has only been proved for a few simple kinds
of tree H, and some (not all) of the forests that are disjoint unions of these trees. It is not known
that if trees H1, H2 are good, then the disjoint union of H1 and H2 is good. For instance, trees
of diameter three are good [14], but disjoint unions of them might not be as far as we know. But
self-isolation helps here: if H1 and H2 are good forests, and one of them is self-isolating, then the
disjoint union of H1 and H2 is good. Some good trees are known to be self-isolating (namely, stars
and four-vertex paths), so we can happily take disjoint unions with them and preserve goodness.

Which graphs are self-isolating? We know very little at the moment: there are very few graphs
that we know to have the property, and none that we know not to have the property. (Could it be
that all graphs are self-isolating? Certainly, if we change the definition of self-isolating, replacing
the polynomials φ, ψ by general functions, it is easy to show that all graphs have the property,
by induction on ω(G).) A graph is self-isolating if all its components are self-isolating, but the
only connected graphs that we know are self-isolating are complete graphs (proved below), paths of
arbitrary length (proved in [4]), and complete bipartite graphs (proved in the next section). The
main result of [13] was that stars are self-isolating, so our result that complete bipartite graphs are
self-isolating generalizes this. The last takes up the main part of this paper, and is most of what we
need to prove 1.1 and 1.3.

First, complete isolation:

2.1 Every complete graph is self-isolating.

Proof. (This proof was derived from a similar proof in [7].) Let ψ : N → N be a non-decreasing
polynomial, and let H be a k-vertex complete graph. Let φ be the polynomial φ(x) = (x+1)kψ(x)+x
for x ∈ N. Now let G be a graph with chromatic number more than φ(ω(G)), and let K be a clique of
G with cardinality ω(G). If ω(G) < k, then the first bullet in the definition of self-isolating holds, so
we assume that ω(G) ≥ k. For each X ⊆ K with |X| = k, let AX be the set of vertices in V (G) \K
that are nonadjacent to every vertex in X; and for every Y ⊆ K with |Y | = k− 1, let BY be the set
of vertices in V (G) \K that are adjacent to every vertex in K \ Y . Thus V (G) \K is the union of
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)
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and χ(G \K) > (ω(G) + 1)kψ(ω(G)), one of the sets AX or BY has chromatic number more than
ψ(ω(G)). If χ(AX) > ψ(ω(G)) for some X, then G[X] is a copy of H anticomplete to AX , and since
ψ(ω(G)) ≥ ψ(ω(AX)), the second bullet in the definition of self-isolating holds. If χ(BY ) > ψ(ω(G))
for some Y , then since |K \ Y | = ω(G) − k + 1 and BY is complete to K \ Y , it follows that
ω(BY ) < k and so G[BY ] is H-free, and the first bullet in the definition of self-isolating holds. This
proves 2.1.

3 Complete bipartite isolation

We turn to the proof that

3.1 Every complete bipartite graph is self-isolating.

We will in fact prove something a little stronger. Let ψ : N → N be some non-decreasing function.
An induced subgraph H of a graph G is ψ-nondominating if there exists a set A ⊆ V (G) disjoint
from and anticomplete to V (H), with χ(A)) ≥ ψ(ω(A)). If ψ : N → N is a non-decreasing function
and q ≥ 0 is an integer, a (ψ, q)-sprinkling in a graph G is a pair (P,Q) of disjoint subsets of V (G),
such that

� χ(P ) > ψ(ω(P )); and

� χ(Q) > ψ(ω(Q)) + qr, where r is the maximum over v ∈ P of the chromatic number of the set
of neighbours of v in Q.

(This is closely related to what was called a “(ψ, q)-scattering” in [4].) We will prove:

3.2 Let s, q ≥ 0 be integers, and let ψ : N → N be a non-decreasing polynomial. Then there is a
polynomial φ : N → N with the following property. For every graphs G with with χ(G) > φ(ω(G)),
either:

� there is a ψ-nondominating copy of Ks,s in G, or

� there is a (ψ, q)-sprinkling in G.

Proof of 3.1, assuming 3.2. Let s, s′ ≥ 0 be integers, where s′ ≤ s. We will show that Ks,s′ is
self-isolating. (It is not enough to show this when s = s′, because we do not know that every induced
subgraph of a self-isolating graph is self-isolating.) Let ψ : N → N be a non-decreasing polynomial,
let q = s + s′, and let φ satisfy 3.2. Let G be a graph with χ(G) > φ(ω(G)). We claim that either
there is a ψ-nondominating copy of Ks,s′ in G, or there exists A ⊆ V (G) with χ(A) > ψ(ω(A)) such
that G[A] is Ks,s′-free. If there is a ψ-nondominating copy of Ks,s in G, then there is also one of
Ks,s′ , so by 3.2, we may assume that there is a (ψ, q)-sprinkling (P,Q) in G. If G[P ] is Ks,s′-free,
the claim holds, so we assume that there is a copy H of Ks,s′ in G[P ]. Thus |H| = q. Let r be the
maximum over v ∈ P of the chromatic number of the set of neighbours of v in Q. The set of vertices
in Q with a neighbour in V (H) has chromatic number at most |H|r = qr; and χ(Q) > ψ(ω(Q)) + qr
from the definition of a (ψ, q)-sprinkling. Consequently H is ψ-nondominating, and hence Ks,s′ is
self-isolating.
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To prove 3.2 we will need the following lemma:

3.3 For every graph G that is not a complete graph, there is a vertex v such that the set of vertices
different from and nonadjacent to v has chromatic number at least χ(G)/ω(G).

Proof. Let X be a maximum clique of G, and for each x ∈ X, let Dx be the set of vertices of G
different from and nonadjacent to x. Since G is nonnull, it follows that X 6= ∅. But V (G) is the
union of the sets Dx ∪ {x} over x ∈ X, because of the maximality of X; and so there exists v ∈ X
such that χ(Dv ∪ {v}) ≥ χ(G)/ω(G). Choose such a vertex v with Dv 6= ∅ if possible. If Dv 6= ∅,
then χ(Dv ∪ {v}) = χ(Dv), since there are no edges between v and Dv, and so the theorem holds.
Thus we may assume (for a contradiction) that Dv = ∅, and so 1 = χ(Dv ∪ {v}) ≥ χ(G)/ω(G).
Since χ(G)/ω(G) ≥ 1, equality holds, and so χ(Dx ∪ {x}) ≥ χ(G)/ω(G) for every x ∈ X; and so
Dx = ∅ for all x ∈ X, from the choice of v. Consequently V (G) = X, and G is a complete graph, a
contradiction. This proves 3.3.

The proof of 3.2 will be by examining the largest “template” in G. With s fixed, let us say that,
for all integers t, k ≥ 0, a (t, k)-template in G is a sequence (A1, . . . , Ak) of pairwise disjoint subsets of
V (G), each of cardinality t, such that for 1 ≤ i < j ≤ k, and for every stable set S ⊆ Aj with |S| = s,
every vertex in Ai has a neighbour in S. The next result will enable us to find a (t, 2)-template. If
v ∈ V (G), we denote the set of neighbours of a vertex v by N(v) or NG(v).

3.4 Let s, q, t ≥ 0 be integers, and let ψ : N→ N be a non-decreasing polynomial. Let G be a graph
with

χ(G) > ω(G)s ((s+ ts)ψ(ω(G)) + t) and

χ(G) ≥ qst+
(
2 + q + q2 + · · ·+ qs−1

)
ψ(ω(G)) + 2.

Then either

� there is a ψ-nondominating copy of Ks,s in G, or

� there is a (ψ, q)-sprinkling in G, or

� G contains a (t, 2)-template.

Proof. We may assume that s, t ≥ 1. Define p = ψ(ω(G)). For 0 ≤ i ≤ s, define

mi = ω(G)s−i (tsp+ t) +
(
1 + ω(G) + · · ·+ ω(G)s−i−1

)
p

ni = qs−it+
(
1 + q + q2 + · · ·+ qs−i−1

)
p.

Thus ms = tsp + t, and mi = ω(G)mi+1 + p for 0 ≤ i < s; and ns = t and ni = qni+1 + p for
0 ≤ i < s. By hypothesis, χ(G) > m0 and χ(G) > n0 + p+ 1.

(1) There is a vertex v1 such that χ(N(v1)) > n1 and χ(M(v1)) > m1, where M(v1) = V (G) \
(N(v1) ∪ {v1}).
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Let S be the set of all vertices v with χ(N(v)) ≤ n1. If χ(S) > p, choose a subset P ⊆ S with
χ(P ) = p+ 1, and let Q = V (G) \ P . Then

χ(Q) ≥ χ(G)− (p+ 1) > n0 = p+ qn1,

and so (P,Q) is a (ψ, q)-sprinkling. We therefore assume that χ(S) ≤ p. Let R = V (G) \ S. Thus

χ(R) ≥ χ(G)− p > m0 − p = ω(G)m1 ≥ ω(G),

and so R is not a clique. By 3.3, there exists v1 ∈ R such that the set of vertices in R different from
and nonadjacent to v1 has chromatic number at least χ(R)/ω(G) > m1, and so χ(M(v1)) > m1.
This proves (1).

Choose a stable set S ⊆ V (G) with |S| ≤ s, maximal such that χ(N(S)) > n|S| and χ(M(S)) >
m|S|, where N(S) denotes the set of all vertices in V (G) \ S that are adjacent to every vertex in S,
and M(S) denotes the set of all vertices in V (G)\S that are nonadjacent to every vertex in S. From
(1), |S| ≥ 1. Now there are two cases, |S| < s and |S| = s.

Suppose first that |S| < s. Let A be the set of all vertices v ∈ M(S) such that the set of
neighbours of v in N(S) has chromatic number at most n|S|+1. Since χ(N(S)) > n|S| = qn|S|+1 + p,
we may assume that χ(A) ≤ p, because otherwise (A,N(S)) is a (ψ, q)-sprinkling. Hence

χ(B) ≥ χ(M(S))− p > m|S| − p = ω(G)m|S|+1,

where B = M(S) \ A. Since m|S|+1 ≥ 1 (because t ≥ 1), it follows that B is not a clique, and so
from 3.3, there is a vertex v ∈ B such that the set of vertices in B, different from and nonadjacent
to v, has chromatic number at least χ(B)/ω(G) > m|S|+1. But then adding v to S contradicts the
maximality of S.

Now suppose that |S| = s. Since χ(N(S)) > ns = t, we may choose T ⊆ N(S) with |T | = t. Let
A be the set of vertices in M(S) that have s non-neighbours in T that are pairwise nonadjacent, and
let B = M(S) \A. For each stable set S′ ⊆ T with |S′| = s, we may assume that the set of vertices
in M(S) with no neighbour in S′ has chromatic number at most p, because otherwise G[S ∪ S′] is a
ψ-nondominating copy of Ks,s. The number of such sets S′ is at most ts, and so χ(A) ≤ tsp. Hence

χ(B) ≥ χ(M(S))− tsp > ms − tsp = t,

and so there exists M ⊆ B with |M | = t. But then (M,T ) is a (t, 2)-template. This proves 3.4.

We also need the following version of Ramsey’s theorem (proved for instance in [13]).

3.5 For all integers s ≥ 1 and r ≥ 2, if a graph G has no stable subset of size s and no clique of
size more than r, then |V (G)| < rs.

Now we use 3.4 to prove 3.2, which we restate in a strengthened form:

3.6 Let s, q ≥ 0 be integers, and let ψ : N → N be a non-decreasing polynomial. Let φ, φ′ : N → N
be the polynomials defined by

φ′(x) = xs
(
sψ(x) + (s+ 1)sxs(s+1)ψ(x) + (s+ 1)xs+1

)
+ qs(s+ 1)xs+1 +

(
2 + q + q2 + · · ·+ qs−1

)
ψ(x) + 2

φ(x) = (s+ 1)2sx2+2s(s+1)ψ(x) + (s+ 1)sx1+s(s+1)φ′(x) + (x+ 1)(s+ 1)xs+1.

for all x ∈ N. Let G be a graph with χ(G) > φ(ω(G)). Then either:
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� there is a ψ-nondominating copy of Ks,s in G, or

� there is a (ψ, q)-sprinkling in G.

Proof. Let t = (s+ 1)ω(G)s+1. Thus

χ(G) > ω(G)2t2sψ(ω(G) + ω(G)tsφ′(ω(G)) + (ω(G) + 1)t.

We claim we may assume that:

(1) If A ⊆ V (G) with χ(A) > φ′(ω(G)) then G[A] contains a (t, 2)-template.

Suppose not. Let G′ = G[A]. Since χ(A) > φ′(ω(G)) and ψ is nondecreasing, it follows that

χ(G′) > ω(G′)s
(
tsψ(ω(G′)) + t

)
+ sω(G′)sψ(ω(G′))

and χ(G′) ≥ qst+
(
2 + q + q2 + · · ·+ qs−1

)
ψ(ω(G′)) + 2. By 3.4 applied to G′, either

� there is a ψ-nondominating copy of Ks,s in G′ (and hence in G), or

� there is a (ψ, q)-sprinkling in G′ (and hence in G), or

� G′ contains a (t, 2)-template.

We may assume that neither of the first two bullets hold, so the third holds. This proves (1).

For 2 ≤ k ≤ ω(G) + 1, define tk = (s+ 1)ω(G)s+1 − s(k − 2)ω(G)s. Thus t2 = t, and 0 ≤ tk ≤ t
for 2 ≤ k ≤ ω(G) + 1. By (1) applied to G, there is a (t2, 2)-template in G. Choose an integer k
with 2 ≤ k ≤ ω(G) + 1, maximum such that there is a (tk, k)-template in G, and let (A1, . . . , Ak) be
such a template.

(2) k ≤ ω(G).

Suppose that k = ω(G) + 1. Inductively for i = 1, . . . , k, suppose that vertices a1, . . . , ai−1 are
defined, and define ai as follows. For 1 ≤ h < i, the non-neighbours of ah in Ai do not include a
stable set of cardinality s, from the definition of a (tk, k)-template. Hence by 3.5 (taking r = ω(G)),
there are at most ω(G)s vertices in Ai nonadjacent to ah, and hence at most ω(G)s+1 vertices in Ai

that are nonadjacent to at least one of a1, . . . , ai−1. Since

|Ai| = tk ≥ (s+ 1)ω(G)s+1 − s(ω(G)− 1)ω(G)s > ω(G)s+1,

some vertex ai ∈ Ai is adjacent to all of a1, . . . , ai−1. This completes the inductive definition. But
then {a1, . . . , aω(G)+1} is a clique in G, a contradiction. This proves (2).

Let Z = V (G) \ (A1 ∪ · · · ∪Ak). For 1 ≤ i ≤ k, let Si be the set of all stable sets contained in Ai

with cardinality s. For each S ∈ Si, let DS be the set of vertices in Z with no neighbour in S, and
let Yi be the union of the sets DS over S ∈ Si.

(3) |Z \ (Y1 ∪ · · · ∪ Yk)| < tk+1.
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Suppose not, and choose A ⊆ Z \ (Y1 ∪ · · · ∪ Yk) with |A| = tk+1. For 1 ≤ i ≤ k, choose Bi ⊆ Ai

with |Bi| = tk+1. Then (A,B1, B2, . . . , Bk) is a (tk+1, k+ 1)-template, contrary to the maximality of
k. This proves (3).

For each v ∈ Y1 ∪ · · · ∪ Yk, choose i ∈ {1, . . . , k} minimum such that v ∈ Yi, and choose S ∈ Si
such that v ∈ DS . We call S the home of v.

(4) Let 1 ≤ i ≤ k, and let S ∈ Si. The set of vertices in DS with home S has chromatic num-
ber at most ω(G)tsψ(ω(G)) + φ′(ω(G)).

Let F be the set of vertices in DS with home S. By 3.5, as in the proof of (2), for i+ 1 ≤ j ≤ k there
are at most sω(G)s vertices in Aj with a non-neighbour in S, and since |Aj | = tk = tk+1 + sω(G)s,
there exists Bj ⊆ Aj with |Bj | = tk+1 complete to S. For 1 ≤ h < i, choose Bh ⊆ Ah with
|Bh| = tk+1 arbitrarily. Let F ′ be the set of vertices v ∈ F such that v has no neighbour in S′ for
some j ∈ {i+1, . . . , k} and some S′ ∈ Sj . For i+1 ≤ j ≤ k, and each S′ ∈ Sj , the chromatic number
of the set of vertices in F with no neighbour in S′ is at most ψ(ω(G)), since the copy of Ks,s induced
on S ∪ S′ is not ψ-nondominating; and so χ(F ′) ≤ ω(G)tsψ(ω(G)), since there are at most ω(G)ts

choices for the pair (j, S′). Let F ′′ = F \ F ′. If G[F ′′] contains a (t, 2)-template, then it contains a
(tk+1, 2)-template (C1, C2) say; and then

(C1, C2, B1, . . . , Bi−1, Bi+1, . . . , Bk)

is a (tk+1, k+ 1)-template in G, from the definition of a home, a contradiction. Thus G[F ′′] contains
no such template, and so χ(F ′′) ≤ φ′(ω(G)) by (1). Hence χ(F ) ≤ ω(G)tsψ(ω(G)) + φ′(ω(G)). This
proves (4).

Now every vertex in Y1 ∪ · · · ∪ Yk has a home, and there are only at most ω(G)ts choices of a
home; so by (4), χ(Y1 ∪ · · · ∪ Yk) ≤ ω(G)2t2sψ(ω(G)) + ω(G)tsφ′(ω(G)). Hence

χ(G) ≤ ω(G)2t2sψ(ω(G)) + ω(G)tsφ′(ω(G)) + |Z \ (Y1 ∪ · · · ∪ Yk)|+ |A1 ∪ · · · ∪Ak|
≤ ω(G)2t2sψ(ω(G)) + ω(G)tsφ′(ω(G)) + (ω(G) + 1)t,

a contradiction. This proves 3.6.

4 Odd holes

Now we deduce 1.2. Let us say a hole in G is special if its length is either four or odd. We need a
result proved in [9], the following:

4.1 Let x ∈ N, and let G be a graph such that χ(N(v)) ≤ x for every vertex v ∈ V (G). If C is
a shortest odd hole in G, the set of vertices of G that belong to or have a neighbour in V (C) has
chromatic number at most 21x.

We deduce:
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4.2 Let ψ : N → N be some non-decreasing polynomial, let n ∈ N, and let G be a graph such that
χ(N(v)) ≤ n for every vertex v ∈ V (G). If χ(G) > max(ω(G), 21n + ψ(ω(G))) then G contains a
ψ-nondominating special hole.

Proof. Since χ(G) > ω(G), G is not perfect, and so contains either a four-hole or an odd hole (by
the strong perfect graph theorem [3], since odd antiholes of length at least seven contain four-holes).
Let C be either a four-hole, or a shortest odd hole of G. Let A be the set of vertices in V (G) \ V (C)
that have no neighbour in V (C), and B = V (G) \ A. If C has length four then χ(B) ≤ 4n, and if
C is a shortest odd hole of G, then χ(B) ≤ 21n by 4.1. Consequently χ(A) > ψ(ω(G)) ≥ ψ(ω(A)),
and so C is a ψ-nondominating special hole. This proves 4.2.

We also need:

4.3 Let G be a graph containing no four-hole, let n ∈ N, and let X ⊆ V (G) be the set of all v ∈ V (G)
with χ(N(v)) > n. If χ(X) > ω(G), then there exist disjoint sets A,B ⊆ V (G), anticomplete, with
χ(A), χ(B) > n/2− ω(G).

Proof. Let us say an edge xy of G is rich if χ(N(x) \N(y)) > n/2− ω(G) and χ(N(y) \N(x)) >
n/2− ω(G). Since there is no four-hole, it is enough to prove that there is a rich edge.

Since χ(X) > ω(G), the graph G[X] is not perfect, and so contains a four-vertex induced path
with vertices v1-v2-v3-v4 in order. Let

A1 =N(v1) \ (N(v3) ∪N(v4))

A2 =N(v2) \ (N(v4) ∪ (N(v1) ∩N(v3)))

A3 =N(v3) \ (N(v1) ∪ (N(v2) ∩N(v4)))

A4 =N(v4) \ (N(v2) ∪N(v1)).

Since there is no four-hole, N(v1) ∩ N(v3) is a clique, and so is N(v1) ∩ N(v4), and therefore
χ(A1) > n − 2ω(G). Since N(v2) ∩ N(v4) and N(v1) ∩ N(v3)) are cliques, it also follows that
χ(A2) > n− 2ω(G), and similarly χ(Ai) > n− 2ω(G) for 1 ≤ i ≤ 4.

Now v2 is anticomplete to A1\A2, and v1 is anticomplete to A2\A1, so if χ(A1∩A2) ≤ n/2−ω(G),
then χ(A1 \A2) > n/2− ω(G) and χ(A2 \A1) > n/2− ω(G), and so the edge v1v2 is rich.

Thus we may assume that χ(A1 ∩ A2) > n/2 − ω(G), and similarly χ(A3 ∩ A4) > n/2 − ω(G).
But A1 ∩ A2 ⊆ N(v2) \ N(v3), and A3 ∩ A4 ⊆ N(v3) \ N(v2), and so the edge v2v3 is rich. This
proves 4.3.

We put 4.2 and 4.3 together to prove the following:

4.4 Let ψ : N→ N be some non-decreasing polynomial. If G is a C4-free graph with

χ(G) > 85ω(G) + 43ψ(ω(G))

then G contains a ψ-nondominating odd hole.

Proof. Let G be a C4-free graph with χ(G) > 85ω(G) + 43ψ(ω(G)). Define n = 4ω(G) + 2ψ(ω(G)).
Let A be the set of all vertices v of G such that χ(N(v)) ≤ n, and B = V (G) \A. By 4.2 applied

to G[A], we may assume that

χ(A) ≤ max(ω(A), 21n+ ψ(ω(A))) = 21n+ ψ(ω(A)) ≤ 84ω(G) + 43ψ(ω(G))
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and so χ(B) ≥ χ(G) − χ(A) > ω(G). By 4.3 there exist disjoint sets X,Y ⊆ V (G), anticomplete,
with χ(X), χ(Y ) > n/2−ω(G) ≥ ω(G) +ψ(ω(G)). Since χ(X) > ω(G) ≥ ω(X), G[X] is not perfect
and so contains a special hole C, and hence an odd hole since G has no four-holes. Since V (C) is
anticomplete to Y , and χ(Y ) > ψ(ω(G)) ≥ ψ(ω(Y )), C is ψ-nondominating. This proves 4.4.

This in turn is used to prove:

4.5 Let ψ : N→ N be some non-decreasing polynomial. Then there is a non-decreasing polynomial
φ : N→ N such that if χ(G) > φ(ω(G)) then G contains a ψ-nondominating special hole.

Proof. Let ψ′(x) = 85x+43ψ(x) for x ∈ N, and let φ satisfy 3.2 with ψ replaced by ψ′, taking s = 2
and q = 4. We claim that φ satisfies 4.5. Thus, let G be a graph with χ(G) > φ(ω(G)). By 3.2,
either there is a ψ′-nondominating four-hole in G, or there is a (ψ′, 4)-sprinkling in G. In the first
case, this four-hole is also ψ-nondominating, since ψ(x) ≤ ψ′(x) for x ∈ N, so we assume the second
case holds. Let (P,Q) be a (ψ′, 4)-sprinkling in G, and let r be the maximum chromatic number
over v ∈ P of the set of neighbours of v in Q. Thus χ(Q) > 4r + ψ′(ω(Q)), from the definition of
a (ψ′, 4)-sprinkling. If G[P ] has a four-hole H, the set of vertices in Q with a neighbour in V (H)
has chromatic number at most 4r, and so there is a subset of Q with chromatic number more than
ψ′(ω(Q)) ≥ ψ(ω(Q)) anticomplete to H, and so H is ψ-nondominating. Thus we may assume that
G[P ] has no four-hole. By 4.4, G[P ], and hence G, contains a ψ-nondominating odd hole. This
proves 4.5.

We deduce 1.1, which we restate:

4.6 For each integer k ≥ 0, let C be the class of all graphs G with no k-multihole in which every
component is special. Then C is poly-χ-bounded.

Proof. Let us say a k-multihole is special if each of its components is a special hole. We proceed by
induction on k. The result is true when k = 1, because graphs containing no special hole are perfect;
so we assume that k ≥ 2, and there is a polynomial binding function ψ : N → N for the class of all
graphs with no special (k−1)-multihole Ck−1 (and we may assume ψ is non-decreasing). Let φ satisfy
4.5; we claim that φ is a binding function for the class of all graphs with no special k-multihole.
Thus, let G be a graph with χ(G) > φ(ω(G)); we must show that G contains a special k-multihole.
By the choice of φ, G contains a ψ-nondominating special hole H say. Choose A ⊆ V (G) \ V (H),
anticomplete to V (H), such that χ(A) > ψ(ω(A)). From the inductive hypothesis, G[A] contains a
special (k − 1)-multihole, and so G contains a special k-multihole. This proves 4.6.

5 Long holes

In this section we will prove 1.3. The proof is similar to that of 1.1. Fix an integer ` ≥ 4, and we say
a hole is long if its length is at least `. Let τ(G) denote the largest integer t such that G contains
Kt,t as a subgraph. We need a result proved in [1] (see also [12]), the following:

5.1 There exists an integer c > 0 such that χ(G) ≤ τ(G)c + 1 for every graph G with no long hole.

We deduce:
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5.2 Let s ∈ N; then the class of Ks,s-free graphs with no long hole is poly-χ-bounded.

Proof. Let c ≥ 1 be as in 5.1, and let φ be the polynomial φ(x) = xcs for x ∈ N. Let G be a
Ks,s-free graph with no long hole. We will show that φ is a binding function for G. Suppose that
τ(G) ≥ ω(G)s, and let A,B be disjoint subsets of V (G), both of cardinality at least ω(G)s and
complete to each other. By 3.5, there exist stable sets A′ ⊆ A and B′ ⊆ B both of cardinality s; but
then G[A′ ∪B′] is a copy of Ks,s, a contradiction. So τ(G) < ω(G)s. By 5.1,

χ(G) ≤ (ω(G)s − 1)c + 1 ≤ ω(G)cs = φ(ω(G)),

and so φ is a binding function for G, and hence for the class of Ks,s-free graphs with no long hole.
This proves 5.2.

Next we need an analogue of 4.2, the following:

5.3 Let n ∈ N, and let G be a graph such that χ(N(v)) ≤ n for every vertex v ∈ V (G). If C is
a shortest long hole in G, the set of vertices of G that belong to or have a neighbour in V (C) has
chromatic number at most (`+ 1)n.

Proof. Let C have vertices c1-c2- · · · -ck-c1 in order. Let P be the path c1-c2- · · · -c`−3, and let Q be
the path C \ V (P ).

(1) If v ∈ V (G) \ V (C) has no neighbour in V (P ), then all neighbours of v in V (Q) belong to a
three-vertex subpath of Q.

Suppose not, and choose i, j minimum and maximum respectively such that ci, cj ∈ V (Q) are neigh-
bours of v. Thus j − i ≥ 3, and so

c1-c2- · · · -ci-v-cj-cj+1- · · · -ck-c1

is a long hole (because j ≥ `− 2) that is shorter than C, a contradiction. This proves (1).

For 1 ≤ i ≤ k, let Ai be the set of vertices in V (G) \ V (C) that are adjacent to ci and to none of
c1, . . . , ci−1.

(2) Ai is anticomplete to Aj for `− 2 ≤ i < j ≤ k with j − i ≥ 4.

Suppose that u ∈ Ai and v ∈ Aj are adjacent. Choose j′ ≥ j maximum such that cj′ is adja-
cent to v; thus j′ ≥ j ≥ i+ 4, and so by (1), u is non-adjacent to cj′ , . . . , ck. Hence

c1-c2- · · · -ci-u-v-cj′-cj′+1- · · · -ck-c1

is a long hole shorter than C, a contradiction. This proves (2).

For t = 1, 2, 3, 4 let It be the set of all integers i ∈ {`−2, . . . , k} such that i− t is divisible by four.
Thus I1, I2, I3, I4 form a partition of {`− 2, . . . , k}. Moreover, for all t ∈ {1, . . . , 4}, and all distinct
i, j ∈ It, there is no edge between Ai ∪ {ci+1} and Aj ∪ {cj+1}, by (2); and so

⋃
i∈It Ai ∪ {ci+1} has

chromatic number at most n. Hence the set of all vertices in V (G) that belong to or have a neighbour
in V (C) has chromatic number at most (` + 1)n, since those that belong to or have a neighbour in
P have chromatic number at most (`− 3)n, and the others have chromatic number at most 4n. This
proves 5.3.
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Now we need an analogue of 4.3, the following:

5.4 Let s ∈ N, let G be a Ks,s-free graph, with no long hole of length at most 2s`. Let n ∈ N, and
let B ⊆ V (G) be the set of vertices v of G such that χ(N(v)) > n. If G[B] contains a long hole, then
there exist disjoint sets X,Y ⊆ B, anticomplete, with χ(X), χ(Y ) > n− (2s`)sω(G)s.

Proof. We may assume that G[B] has a hole of length more than 2s`, and so contains an induced
path P with 2s`− 1 vertices. Let the vertices of P be p1-p2- · · · -pr in order, where r = 2s`− 1. For
each stable subset S ⊆ V (P ) with |S| = s, let DS be the set of vertices in V (G) \ V (P ) that are
adjacent to every vertex in S. Since G is Ks,s-free, it follows from 3.5 that |DS | ≤ ω(G)s. Let D
be the set of vertices in V (G) \ V (P ) that have s pairwise nonadjacent neighbours in V (P ). Since
there are at most (2s`)s choices of S, it follows that χ(D) ≤ (2s`)sω(G)s. Let F = V (G)\(V (P )∪D).

(1) For each v ∈ F , if i, j are minimum and maximum such that v is adjacent to pi, pj, then
j − i ≤ (s− 2)(`− 2) + 1.

Let v ∈ F . Choose t ≥ 0 maximum such that there exist 1 ≤ i1 < · · · < it ≤ r satisfying:

� i1 is the least i such that v is adjacent to pi;

� v is adjacent to pik for 1 ≤ k ≤ t;

� ik+1 ≥ ik + 2 for 1 ≤ k ≤ t− 1;

� v is nonadjacent to pj for 1 ≤ k ≤ t− 1 and for each j ∈ {ik + 2, . . . , ik+1 − 1}.

Since {pi1 , pi2 , . . . , pit} is a stable set, and v ∈ F , it follows that t < s. Moreover, for 1 ≤ k < t, v is
nonadjacent to each pj for each j ∈ {ik + 2, . . . , ik+1 − 1}; so one of

v-pik -pik+1- · · · -pik+1

v-pik+1-pik+2- · · · -pik+1

is an induced cycle. This cycle has length at most 2s`, since P has only r = 2s` − 1 vertices; and
so the cycle has length less than `, since G has no long hole of length at most 2s`. Consequently
ik+1 − ik ≤ ` − 2, and so it − i1 ≤ (s − 2)(` − 2). From the maximality of t, v is nonadjacent to pj
for all j ≥ it + 2. This proves (1).

Let X be the set of neighbours of p1 in V (G) \ D, and let Y be the set of neighbours of pr in
V (G) \D.

(2) X is disjoint from and anticomplete to Y .

Since r − 1 > (s − 2)(` − 2) + 1, (1) implies that X ∩ Y = ∅. Suppose that u ∈ X and v ∈ Y are
adjacent. Choose i ∈ {1, . . . , r} maximum such that u is adjacent to pi, and choose j ∈ {1, . . . , r}
minimum such that v is adjacent to pj . By (1), i−1 ≤ (s−2)(`−2)+1, and r−j ≤ (s−2)(`−2)+1.
Hence i− 1 + r − j ≤ 2((s− 2)(`− 2) + 1), and so

j − i ≥ (r − 1)− 2((s− 2)(`− 2) + 1) = 4`+ 4s− 12.
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But then u-pi-pi+1- · · · -pj-v-u is a hole of length at least 4` + 4s − 9 ≥ ` and at most 2s`, a
contradiction. This proves (2).

But χ(N(p1)) ≥ n, and so χ(X) ≥ n−χ(D) ≥ n− (2s`)sω(G)s, and the same for Y . This proves
5.4.

Next, combining 5.3 and 5.4, we have an analogue of 4.4:

5.5 Let s ∈ N, and let ψ : N → N be some non-decreasing polynomial. There is a non-decreasing
polynomial φ : N → N with the following property. If G is a Ks,s-free graph with no long hole of
length at most 2s`, and no ψ-nondominating long hole, then χ(G) ≤ φ(ω(G)).

Proof. By 5.2, there is a non-decreasing polynomial θ : N → N that is a binding function for the
class of Ks,s-free graphs with no long hole. Define φ by

φ(x) = 2θ(x) + ψ(x) + (`+ 1) ((2s`)sxs + θ(x) + ψ(x)) .

We claim that φ satisfies 5.5. Thus, let G be a Ks,s-free graph with no long hole of length at most
2s`, and no ψ-nondominating long hole. Let

n = (2s`)sω(G)s + θ(ω(G)) + ψ(ω(G)).

Let A be the set of vertices v ∈ V (G) such that χ(N(v)) ≤ n, and B = V (G) \A.

(1) χ(A) ≤ θ(ω(G)) + ψ(ω(G)) + (`+ 1)n.

Suppose not. Then by 5.2, G[A] has a long hole; let C be a shortest long hole of G[A]. By 5.3
applied to G[A], the set of vertices of A that belong to or have a neighbour in V (C) has chromatic
number at most (`+ 1)n, and so there is a subset of A \ V (C) anticomplete to V (C) with chromatic
number more than χ(A)− (`+ 1)n ≥ ψ(ω(G)). Hence C is ψ-nondominating, a contradiction. This
proves (1).

(2) χ(B) ≤ θ(ω(G)).

Suppose not. Then G[B] has a long hole by 5.2. By 5.4, there exist disjoint sets X,Y ⊆ B,
anticomplete, with χ(X), χ(Y ) > n − (2s`)sω(G)s. Since χ(X) ≥ θ(ω(G)), G[X] has a long hole,
and it is ψ-nondominating since χ(Y ) ≥ ψ(ω(G)), a contradiction. This proves (2).

From (1) and (2), it follows that

χ(G) ≤ 2θ(ω(G)) + ψ(ω(G)) + (`+ 1)n.

This proves 5.5.
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This implies:

5.6 Let s ∈ N, and let ψ : N → N be some non-decreasing polynomial. Then there is a non-
decreasing polynomial φ : N → N such that if χ(G) > φ(ω(G)) then G contains either a ψ-
nondominating copy of Ks,s, or a ψ-nondominating long hole.

Proof. By 5.5, there is a non-decreasing polynomial ψ′ : N → N with the following property. If G
is a Ks,s-free graph with no long hole of length at most 2s`, and χ(G) > ψ′(ω(G)), then G contains
a ψ-nondominating long hole.

Let φ satisfy 3.2 with ψ replaced by ψ′, taking q = 2s`. We claim that φ satisfies 5.6. Thus, let
G be a graph with χ(G) > φ(ω(G)). By 3.2, either there is a ψ′-nondominating copy of Ks,s in G, or
there is a (ψ′, 2s`)-sprinkling in G. In the first case, this copy of Ks,s is also ψ-nondominating, since
ψ(x) ≤ ψ′(x) for x ∈ N, so we assume the second case holds. Let (P,Q) be a (ψ′, 2s`)-sprinkling in
G, and let r be the maximum chromatic number over v ∈ P of the set of neighbours of v in Q. Thus
χ(Q) > 2s`r+ψ′(ω(Q)), from the definition of a (ψ′, 2s`)-sprinkling. If G[P ] contains H where H is
either a copy of Ks,s or a long hole of length at most 2s`, the set of vertices in Q with a neighbour
in V (H) has chromatic number at most |H|r ≤ 2s`r, and so there is a subset of Q with chromatic
number more than ψ′(ω(Q)) ≥ ψ(ω(Q)) anticomplete to H; and therefore H is ψ-nondominating.
Thus we may assume that G[P ] is Ks,s-free and has no long hole of length at most 2s`. By 5.5, G[P ],
and hence G, contains a ψ-nondominating long hole. This proves 5.6.

Finally, we prove 1.3, which we restate:

5.7 For all integers k, s ≥ 0 and ` ≥ 4, let C be the class of all graphs G such that no induced
subgraph of G has exactly k components, each of which is either a copy of Ks,s or a cycle of length
at least `. Then C is poly-χ-bounded.

Proof. (The proof is just like that of 4.6.) Let us say an induced subgraph H of a graph G is a
k-object if it has exactly k components, and each is either a copy of Ks,s or a cycle of length at least
`. Thus Ck is the class of graphs with no k-object. We prove by induction on k that Ck is poly-χ-
bounded. The result is true when k = 1, by 5.2, so we assume that k ≥ 2, and there is a polynomial
binding function ψ : N → N for Ck−1 (and we may assume ψ is non-decreasing). Let φ satisfy 5.6;
we claim that φ is a binding function for Ck. Thus, let G be a graph with χ(G) > φ(ω(G)); we
must show that G contains a k-object. By the choice of c, G contains a ψ-nondominating induced
subgraph H, where H is either a copy of Ks,s or a long hole. Choose A ⊆ V (G)\V (H), anticomplete
to V (H), such that χ(A) > ψ(ω(A)). From the inductive hypothesis, G[A] contains a (k− 1)-object,
and so G contains a k-object. This proves 5.7.
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Grenoble Alpes (2017), 24, https://tel.archives-ouvertes.fr/tel-01850463/document.
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