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Abstract. We show that a random instance of a weighted maximum
constraint satisfaction problem (or max 2-csp), whose clauses are over
pairs of binary variables, is solvable by a deterministic algorithm in poly-
nomial expected time, in the “sparse” regime where the expected number
of clauses is half the number of variables. In particular, a maximum cut in
a random graph with edge density 1/n or less can be found in polynomial
expected time.
Our method is to show, first, that if a max 2-csp has a connected un-
derlying graph with n vertices and m edges, the solution time can be
deterministically bounded by 2(m−n)/2. Then, analyzing the tails of the
distribution of this quantity for a component of a random graph yields
our result. An alternative deterministic bound on the solution time, as
2m/5, improves upon a series of recent results.

1 Introduction

In this paper we prove that a maximum cut of a sparse random graph can be
found in polynomial expected time.

Theorem 1. For any c ≤ 1, a maximum cut of a random graph G(n, c/n) can
be found in time whose expectation is poly(n), and using space O(m+n), where
m is the size of the graph.

Our approach is to give a deterministic algorithm and bound its running
time on any graph in terms of size and cyclomatic number. We then bound the
expected running time for random instances by bounding the distribution of
cyclomatic number in components of a sparse random graph.

Theorem 2. Let G be a connected graph with m edges and n vertices. There
is an algorithm that finds a maximum cut of G in time O(m + n)min{2m/5,
2(m−n)/2}, and in space O(m + n).
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We remark that the bound in Theorem 2 is of independent interest, and
improves on previous algorithms giving bounds of 2m/4 poly(m + n) [KF02] and
2m/3 poly(m + n) [GHNR].

In fact, the algorithm employs several local reductions that take us outside
the class of max cut problems. We therefore work with the larger class max
2-csp of weighted maximum constraint satisfaction problems consisting of con-
straints on pairs (and singletons) of variables, where each variable may take two
values. Theorems 1 and 2 are then special cases of the more general Theorems
3 and 5 below.

1.1 Context

Our results are particularly interesting in the context of phase transitions for
various maximum constraint-satisfaction problems. Since the technicalities are
not relevant to our result, but only help to put it into context, we will be infor-
mal. It is well known that a random 2-sat formula with density c < 1 (where the
number of clauses is c times the number of variables) is satisfiable with proba-
bility tending to 1, as the number n of variables tends to infinity, while for c > 1,
the probability of satisfiability tends to 0 as n → ∞ [CR92, Goe96, FdlV92]; for
more detailed results, see [BBC+01]. More recently, max 2-sat has been shown
to exhibit similar behavior, so for c < 1, only an expected Θ(1/n) clauses go
unsatisfied, while for c > 1, Θ(n) clauses are unsatisfied [CGHS03, CGHS].

For a random graph G(n, c/n), with c < 1 the graph almost surely consists
solely of small trees and unicyclic components, while for c > 1, it almost surely
contains a “giant”, complex component, of order Θ(n) [Bol01]. Again, [CGHS]
proves the related facts that in a maximum cut of such a graph, for c < 1 only
an expected Θ(1) edges fail to be cut, while for c > 1 it is Θ(n).

Theorem 3 is concerned with algorithms that run in polynomial expected
time. Results on coloring random graphs in polynomial expected time can be
found in [KV02, COMS, TCO03]. For both max cut and max 2-sat, it seems
likely that the mostly-satisfiable (or mostly-cuttable) sparse instances are algo-
rithmically easy, while the not-so-satisfiable dense instances are algorithmically
hard. While, as far as we are aware, little is known about the hardness of dense
instances, our results here confirm that not only are typical sparse max cut
instances easy, but even the atypical ones can be accommodated in polynomial
expected time; see the Conclusions for further discussion.

1.2 Outline of Proof

Our proof of Theorem 3 has a few main parts. Since the maximum cut of a
graph is the combination of maximum cuts of each of its connected components,
it suffices to bound the expected time to partition the component containing a
fixed vertex.

In Theorem 5 we show that Algorithm A’s running time on a component
is bounded by a function of the component’s cyclomatic number, the number
of edges less the number of vertices plus one. For brevity we will call this the
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“excess” (a slight abuse of the standard meaning, which is just edges minus
vertices). Theorem 5 also gives a 2m/5 poly(m + n) bound on the running time.

In the randomized setting, Lemma 8 provides a bound on the exponential
moments of the excess of a component. It does so by “exploring” the component
as a branching process, dominating it with a similar process, and analyzing the
latter as a random walk. This gives stochastic bounds on the component order
u and, conditioned upon u, the “width” w (to be defined later); the excess is
easily stochastically bounded in terms of u and w.

Finally, we combine the running times, which are exponentially large in the
excess, with the exponentially small large-deviation bounds on the excess, to
show that Algorithm A runs in polynomial expected time.

2 Solving a Maximum Constraint-Satisfaction Instance

We begin by defining a class of weighted maximum constraint satisfaction prob-
lems, or max csps, generalizing max cut, and (in Theorem 5) bounding their
running time in terms of parameters of an instance.

2.1 Weighted Maximum Constraint-Satisfaction Problems

We may think of max cut as a max csp in which the constraints simply prefer
opposite “colors” on the endpoints of each edge, and all constraints have the
same “weight”. We generalize this not only for the sake of a more general result
but because we need to: intermediate steps of Algorithm A, applied to a max
cut instance, generate instances of more general type.

For our purposes, a general instance of a (weighted) max 2-csp consists of
a graph G = (V, E), and a score function consisting of: a sum of “monadic
constraint” scores of each vertex and its color, “dyadic” scores of each edge and
the pair of colors at its endpoints, and (for notational convenience) a single
“niladic” score (a constant). Specifically, there is a (niladic) score s0; for each
x ∈ V (monad) there is a pair of scores sx

R, sx
B corresponding to the two ways

that the vertex could be colored; and for each edge e = {x, y} ∈ E (dyad) there
is a 4-tuple of scores sxy

BB, sxy
BR, sxy

RB , sxy
RR corresponding to the four ways that the

edge could be colored, and the score of a coloring φ : V → {R, B} is

S(φ) := s0 +
∑

x∈V

sx
φ(x) +

∑

{x,y}∈E

sxy
φ(x)φ(y).

(Note that for any C, D ∈ {R, B}, sxy
CD and syx

DC refer to the same score, and
thus must be equal.) Let S refer to the full collection of scores sx

C and sxy
CD as

above. Then max(V, E, S) is the computational problem of finding a coloring φ
achieving maxφ S(φ).

As one quick example, max 2-sat is such a max csp. Using colors T (true)
and F (false), a SAT constraint X̄ ∨ Y is modelled as a dyadic constraint map-
ping (T, F ) to score 0 (unsatisfied) and any other coloring to score 1 (satisfied).
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Another example is max dicut, the problem of partitioning a directed graph to
maximize the number of edges passing from the left side to the right.

Our main result is that a weighted max 2-csp on a random graph G(n, c/n),
c < 1, can be solved in polynomial expected time, per the following theorem.

Theorem 3. For any c ≤ 1 and any n, let G(n, c/n) be a random graph, and
let (G, S) be any weighted max 2-csp instance over this graph. Then (G, S) can
be solved exactly in expected time poly(n), and in space O(m + n).

2.2 Algorithm A

In this section we give an algorithm for solving instances of weighted max 2-
csp. The algorithm will use 3 types of reductions. We begin by defining these
reductions. We then show how the algorithm fixes a sequence in which to apply
the reductions by looking at the underlying graph of the csp. This sequence
defines a tree of csps, which can be solved bottom-up to solve the original csp.
Finally, we bound the algorithm’s time and space requirements.

Reductions The first two reductions each produce equivalent problems with
fewer vertices, while the third produces a pair of problems, both with fewer
vertices, one of which is equivalent to the original problem.

Reduction I Let y be a vertex of degree 1, with neighbor x. Reducing (V, E, S)
on y results in a new problem (V ′, E′, S′) with V ′ = V \ y and E′ = E \ xy.
S′ is the restriction of S to V ′ and E′, except that for C, D ∈ {R, B} we set

s′xC = sx
C + max

D
{sxy

CD + sy
D},

i.e., we set

s′xR = sx
R + max{sxy

RR + sy
R, sxy

RB + sy
B}

s′xB = sx
B + max{sxy

BB + sy
B, sxy

BR + sy
R}.

Note that any coloring φ′ of V ′ can be extended to a coloring of V in two
ways, namely φR and φB (corresponding to the two colorings of x); and
the defining property of the reduction is that S′(φ′) = max{S(φR), S(φB)}.
In particular, maxφ′ S′(φ′) = maxφ S(φ), and an optimal coloring φ′ for
the problem max(V ′, E′, S′) can be extended to an optimal coloring φ for
max(V, E, S), in constant time.

xx y
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Reduction II Let y be a vertex of degree 2, with neighbors x and z. Reducing
(V, E, S) on y results in a new problem (V ′, E′, S′) with V ′ = V \ y and
E′ = (E \ {xy, yz}) ∪ {xz}. S′ is the restriction of S to V ′ and E′, except
that for C, D, E ∈ {R, B} we set

s′xz
CD = sxz

CD + max
E

{sxy
CE + syz

ED + sy
E}

i.e., we set

s′xz
RR = sxz

RR + max{sxy
RR + syz

RR + sy
R, sxy

RB + syz
BR + sy

B}
s′xz

RB = sxz
RB + max{sxy

RR + syz
RB + sy

R, sxy
RB + syz

BB + sy
B}

s′xz
BR = sxz

BR + max{sxy
BR + syz

RR + sy
R, sxy

BB + syz
BR + sy

B}
s′xz

BB = sxz
BB + max{sxy

BR + syz
RB + sy

R, sxy
BB + syz

BB + sy
B},

where our notation presumes that if xz was not an edge in E, then sxz
CD = 0

for all colors C and D. As in Reduction I, any coloring φ′ of V ′ can be
extended to V in two ways, φR and φB , and S′ picks out the larger of the two
scores. Also as in Reduction I, maxφ′ S′(φ′) = maxφ S(φ), and an optimal
coloring φ′ for max(V ′, E′, S′) can be extended to an optimal coloring φ for
max(V, E, S), in constant time. (Note that neither multiple edges nor loops
are created by this reduction, nor the next one.)

xx

y

zz

Reduction III Let y be a vertex of degree 3 or higher. Where reductions I and
II each had a single reduction of (V, E, S) to (V ′, E′, S′), here we define a pair
of reductions of (V, E, R), to (V ′, E′, SR) and (V ′, E′, SB), corresponding to
assigning the color R or B to y. We define V ′ = V \y, and E′ as the restriction
of E to V \y. For C, D, E ∈ {R, B}, SC is the restriction of S to V \y, except
that we set

(sC)0 = s0 + sy
C ,

and, for every neighbor x of y,

(sC)
x

D = sx
D + sxy

DE .

In other words, SR is the restriction of S to V \ y, except that we set (sC
0 ) =

s0 + sy
C and, for every neighbor x of y,

(sR)
x

R = sx
R + sxy

RR + sy
R

(sR)
x

B = sx
B + sxy

BR + sy
R.
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Similarly SB is given by (sB)0 = s0 + sy
B and, for every neighbor x of y,

(sB)
x

R = sx
R + sxy

RB + sy
B

(sB)
x

B = sx
B + sxy

BB + sy
B.

As in the previous reductions, any coloring φ′ of V \ y can be extended to
V in two ways, φR and φB, corresponding to the color given to y, and now
(this is different!) SR(φ′) = S(φR) and SB(φ′) = S(φB). Furthermore,

max{max
φ′

SR(φ′), max
φ′

SB(φ′)} = max
φ

S(φ),

and an optimal coloring on the left can be extended to an optimal coloring
on the right in time O(deg(y)).

x
RB

Defining Algorithm A in terms of these reductions is straightforward, and
it should come as no surprise that the running time is polynomial in n and m,
times 2 raised to the power of the number of times reduction III is employed.
We now detail this.

Setup Phase: Choosing a Sequence of Reductions First, observe that the
two problems generated by reduction III have different score sets, but the same
underlying graph. Thus each of the three reductions, considering only the graphs
and ignoring the scores, reduces a graph to a subgraph of smaller order.

Given an input graph G of order n, Algorithm A begins by constructing a
sequence G1, G2, . . . , Gi, of at most n graphs, where G1 = G is the input graph,
each subsequent graph is a reduction of its predecessor graph (ignoring scores),
and the final graph Gi has no edges.

Specifically, with an ordering on the vertices of G: if G has minimum degree 1,
apply reduction I to the first vertex of degree 1; if G has minimum degree 2, apply
reduction II to the first vertex of degree 2; and otherwise, apply reduction III to
the first vertex of maximum degree.

The precise running time of this setup procedure clearly depends on the data
structures employed, but it is clearly polynomial. Maintaining a list of vertices
of each degree, and the neighbors of each vertex, and storing only the changes at
each step rather than the new graph, the time can be limited to O(n+m) in the
RAM model (where the length of an integer’s binary representation is ignored).
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Solving the Tree of csps The sequence of graphs, along with another sequence
specifying one binary value for each type-III reduction, determines a sequence
of csps; the collection of all 2r binary sequences (where r is the number of type-
III reductions) naturally defines a tree of csps, having depth i (we generate a
child even for type-I and -II reductions) and 2r leaves (each type-III reduction
producing 2 children for each csp in the current generation). Given an optimal
solution to a csp’s child/children, an optimal solution to the csp can be found
by trying both extensions to the vertex “y”, in time O(deg(y)).

Starting from the leaf problems, and propagating their solutions upwards,
solves the original problem.

Analysis The foregoing procedure runs in time O(m+n)2r. Moreover, the tree
can be stored and traversed implicitly, as a path with nodes corresponding to the
graph reductions, and at each type-III node a state corresponding to which of the
two reductions is currently being explored, yielding a space bound of O(m + n).
Thus we have the following lemma.

Lemma 4. Given a weighted max 2-csp whose underlying graph G is con-
nected, and an order on the vertices of G, Algorithm A returns an optimal
solution in time O(m + n)2r and space O(m + n), where r(G) is the (order-
dependent) number of type-III reductions taken for G.

3 Parametric Complexity

The following theorem bounds the running time of Algorithm A in terms of
parameters of the graph underlying the csp.

Theorem 5. Given a weighted max 2-csp whose underlying graph G is con-
nected, has order n, size m, and excess κ = m − n, Algorithm A returns an
optimal solution in time O(m + n)2min{m/5,κ/2}.

We remark that to prove our expected-time result (Theorem 3), we use only
the 2κ/2 bound. However, the 2m/5O(m + n) bound, for arbitrary max 2-csps,
is of independent interest. For max cut it improves on the 2m/4 poly(m + n) of
[KF02], and for max 2-sat it matches the 2m/5 poly(m + n) bound of [GHNR]
(which also gave a 2m/3 poly(m+n) bound for max cut). These works also used
algorithms based on reductions.

In light of Lemma 4, it suffices to prove that (for any order on the vertices
of G), the number of type-III reduction steps r(G) is bounded by both m/5 and
κ/2. These two claims are proved in the following two subsections.

3.1 Bounding in Terms of Excess

Claim 6. For a connected graph G with excess κ, the number of type-III reduc-
tion steps of Algorithm A is r ≤ max{0, κ/2}.
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Proof. The proof is by induction on the order of G. If G has excess 0 (it is
unicyclic) or excess −1 (it is a tree), then type-I and -II reductions destroy all
its edges, so r = 0.

Otherwise, the first type-III reduction reduces the number of edges by at
least 3 and the number of vertices by exactly 1, thus reducing the excess to
κ′ ≤ κ − 2. If G′ has components G′

1, . . . , G
′
I , then r(G) = 1 +

∑
i r(G′

i). Given
that we applied a type-III reduction, G had minimum degree ≥ 3, so G′ has
minimum degree ≥ 2. Thus each component G′

i has minimum degree ≥ 2, and
so excess κ′

i ≥ 0. Then, by induction, r(G) = 1 +
∑

i r(G′
i) ≤ 1 +

∑
i κ′

i/2 ≤
1 + κ′/2 ≤ κ/2. Note that the inductive step r(G′

i) ≤ κ′
i/2 used the fact that

κ′
i ≥ 0. �	

3.2 Bounding in Terms of Size

Claim 7. For a graph G with m edges, the number of type-III reduction steps
of Algorithm A is at most m/5.

Proof. Since type-I and type-II steps cannot increase the number of edges, it
is enough to show that each type-III step, on average, reduces the number of
edges by 5 or more. As long as the maximum degree is d ≥ 5 this is clear, since
each type-III reduction immediately destroys d edges. Thus it suffices to consider
graphs of maximum degree d ≤ 4; since the reductions never increase the degree
of any vertex, the maximum degree will then remain at most 4.

Given a graph of maximum degree at most 4, suppose that Algorithm A
performs r type-III reduction steps, consisting of r3 reductions on vertices of
degree 3, and rk

4 reductions on vertices of degree 4 having k neighbors of degree 3
and r−k neighbors of degree 4. (If a neighbor had degree more than 4 we should
have chosen it in preference to y; degree 2 or less and we should have applied a
type-I or -II reduction instead.)

How many edges are destroyed by the r = r3 +
∑r

k=0 rk
4 type-III reductions?

Each “r3-reduction” deletes the 3 edges incident on y, each of which went to a
vertex also of degree 3 (4 or more and we would have chosen it in preference
to y, 2 or less and we would have applied a type-I or -II reduction), changing
their degrees to 2 and subjecting each to a type-II reduction, and so destroying
3 more edges. (A type-II reduction destroys edges yx and yz, and if edge xz was
not previously present it creates it, thus reducing the number of edges by at least
1, and possibly 2.) Similarly, each “rk

4 reduction”, on a degree-4 vertex adjacent
to k degree-3 vertices, along with the k type-II reductions it sets up, destroys
4 + k edges. Thus the average number of edges destroyed per step is at least

6r3 +
∑4

k=0(4 + k)rk
4

r3 +
∑4

k=0 rk
4

. (1)

Clearly this ratio is at least 5 unless the value of r0
4 can be made large, but we now

show that the rk
4 values must satisfy an additional condition which effectively

prohibits this.
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Note that each r3-reduction decreases the number of degree-3 vertices by 4
(itself and its 3 neighbors), while each rk

4 -reduction decreases it by 2k − 4 (de-
stroying k degree-3 neighbors, but also turning 4−k old degree-4 neighbors into
new degree-3 vertices). Type-I and -II reductions do not affect the number of
degree-3 vertices. Since the number of degree-3 vertices is initially non-negative,
and finally 0, the decrease must be non-negative, i.e.,

∑

k

rk
4 (2k − 4) + 4r3 ≥ 0. (2)

Subject to the constraint given by (2), how small can the ratio (1) be? To
be (slightly) pessimistic, we may let the values r3 and rk

4 range over the non-
negative reals. Multiplying the set of values by any constant affects neither the
constraint nor the ratio, so without loss of generality we may set the denominator
of (1) to 1. That is, we add a constraint

r3 +
∑

rk
4 = 1, (3)

and minimize

6r3 +
4∑

k=0

(4 + k)rk
4 . (4)

This is simply a linear program (LP) with objective function (4) and the two
constraints (2) and (3). The LP’s optimal objective value is 5, and the LP dual
solution of (1

4 , 5) establishes 5 as a lower bound. That is, adding 1
4 times con-

straint (2) to 5 times constraint (3) gives

1
4

(∑
(2k − 4)rk

4 + 4r3

)
+ 5

(
r3 +

∑
rk
4

)
= 6r3 +

∑
(4 + k/2)rk

4 ≥ 5,

so (4), which is 6r3 +
∑

(4 + k)rk
4 , must be at least this large.

This establishes that the number of edges destroyed by type-III reductions
is at least 5 times the number of such reductions, concluding the proof. �	

We note that the upper bound of m/5 is achievable; that is, m/5 type-III
reductions are needed by some graphs. An easy example is K5, with 10 edges,
reduced by two type-III reductions to K4 and K3, the latter reduced to the
empty graph by type-I and -II reductions.

4 Stochastic Size and Excess of a Random Graph

We stochastically bound the excess κ of a component of a random graph G
through a standard “exposure” process. Given a graph G and a vertex x1 in
G, together with a linear order on the vertices of G, the exposure process finds
a spanning tree of the component G1 of G that contains x1 and, in addition,
counts the number of non-tree edges of G1 (i.e., calculates the excess).
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At each step of the process, vertices are classified as “living”, “dead”, and
“unexplored”, beginning with just x1 living, and all other vertices unexplored.
At the ith step, the process takes the earliest living vertex xi. All edges from xi

to unexplored vertices are added to the spanning tree, and the number of non-
tree edges is increased by 1 for each edge from xi to a living vertex. Unexplored
vertices adjacent to xi are then reclassified as living, and xi is made dead. The
process terminates when there are no live vertices.

Now suppose G is a random graph in G(n, c/n), with the vertices ordered
at random. Let w(i) be the number of live vertices at the ith step and define
the width w = maxw(i). Let u = |G1|, so that w(0) = 1 and w(u) = 0. The
number of non-tree edges uncovered in the ith step is binomially distributed as
B(w(i) − 1, c/n), and so, conditioning on u and w(1), . . . , w(u), the number of
excess edges is distributed as B(

∑u
i=1(w(i)−1), c/n). Since

∑u
i=1(w(i)−1) ≤ uw,

the (conditioned, and therefore also the unconditioned) number of excess edges
is dominated by the random variable B(uw, c/n).

At the ith stage of the process, there are at most n − i unexplored vertices,
and so the number of new live vertices is dominated by B(n − i, 1/n). Consider
now a variant of the exposure process in which at each step we add enough
special “red” vertices to bring the number of unexplored vertices to n − i. Let
h(i) be the number of living vertices at the ith stage. Then h(0) = 1, and h(i)
is distributed as h(i− 1) + B(n− i, c/n)− 1. Let X = n∧min{t : h(t) = 0} and
H = maxi≤X h(i).

By considering the second process as an extension of the first (and exploring
the added vertices in the second process only when no other vertices remain),
we obtain a coupling between the two processes such that u ≤ X and w ≤ H .
Thus the excess of G1 is dominated by B(XH, 1/n).

Since the running time of Algorithm A is at most E(O(m + n)2κ/2), it can

be bounded by the quantity O(n2)E(
√

2
(B(XH,1/n)

). It is useful to note that

EzB(n,p) =
n∑

i=0

(
n

i

)
zipi(1−p)n−i =(pz+(1−p))n =(1+p(z−1))n ≤ exp(p(z−1)n).

In particular, E
√

2
B(n,p) ≤ exp((

√
2−1)np). In the following, we therefore focus

on bounding quantities of form Pr(X = x, H = h) exp((
√

2 − 1)xh/n).

Lemma 8. With h(t) the random process defined above, for all times i = 1, 2, . . .
parametrized as αn = i,

Pr(h(αn) ≥ 0) ≤ exp
(−3α3n/(24 − 8α)

)
. (5)

Furthermore, for any height h parametrized as h = βn, with α2/(8−4α) ≤ β ≤ α,

Pr(max
t≤αn

h(t) ≥ βn | h(αn) = 0) ≤ O(n3/2) exp

(
−

(
β − α2/4

2 − α

)2 7n

8α

)
. (6)
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In order to prove the lemma, we shall make use of the following fairly standard
bound.

Claim 9. With N = ni − (
i+1
2

)
, let Z1, Z2, . . . , ZN , be a random sequence of

binomial random variables conditioned upon
∑N

j=1 Zj = i − 1. Parametrize i =
αn. Suppose that β is in the range α2/(8 − 4α) ≤ β ≤ α, and t ≤ i. Then,
writing N ′ = nt − (

t+1
2

)
,

Pr(
N ′∑

i=1

Zi ≥ βn + (t − 1)) ≤ O(
√

n) exp

(
−

(
β − α2

8 − 4α

)2 7n

8α

)
. (7)

We omit the proof.

Proof (of Lemma 8). We first prove (5). Note that

h(i) = B ((n − 1) + · · · + (n − i), 1/n)− i + 1 = B

(
ni −

(
i + 1

2

)
, 1/n

)
− i + 1

and so h(i) ≥ 0 means that

B

(
ni −

(
i + 1

2

)
, 1/n

)
≥ i + 1 = αn + 1. (8)

This binomial r.v. has expectation
(

αn2 −
(

αn + 1
2

))
1
n
≤ (α − α2/2)n. (9)

Thus if (8) holds, the r.v. differs from its expectation by at least α2n/2.
We use the inequality that for a sum of independent 0-1 Bernoulli random

variables with parameters p1, . . . , pn and expectation µ =
∑n

i=1 pi, P(X ≥ µ +
t) ≤ exp

(−t2/(2µ + 2t/3)
)
. Together with (9) this implies that (8) has probabil-

ity at most exp
(−(α4n2/4)/(2αn(1 − α/2) + α2n/3)

)
= exp

(−3α3n/(24 − 8α)
)
.

To prove (6), we bound the conditional probability

Pr(max
t≤αn

h(t) ≥ βn | h(αn) = 0). (10)

In this part, rather than thinking of h(i) as B(ni − (
i+1
2

)
, 1/n) − i + 1, we

think of it as a sum of N = ni − (
i+1
2

)
independent Bernoulli random variables

Zi each with distribution B(1/n), plus −i + 1. Note that, conditional on the
sum of the Zis, any particular assignment of 0s and 1s is equally likely: the
collection of Zis is a random binomial sequence conditioned upon h(αn) = 0,
i.e., upon having sum αn − 1. We apply Claim 9 to show that for any given t,
the probability of each of the events comprising that in (10) is bounded by

(7), namely Pr(h(t) ≥ βn | h(αn) = 0) ≤ O(
√

n) exp
(
−

(
β − α2

8−4α

)2
7n
8α

)
.

Summing over 1 ≤ t = γn ≤ αn, the required bound (6) follows. �	
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Recall the random process h defined before Lemma 8, with stopping time X
and maximum height H .

Lemma 10.
E

[
exp

(
(
√

2 − 1)XH/n
)]

≤ n9/2.

Proof. We show that each possible pair X ∈ {1, . . . , n−1} and H ∈ {1, . . . , 1
2n2+

O(1)} contributes at most O(n3/2) to the expectation. Specifically, we show that
for all α and β, exp

(
(
√

2 − 1)αβn
)
Pr(X = αn) Pr(Y = βn) = O(n3/2).

Case 1. If β < α2/(8 − 4α) then, from Lemma 8,

Pr(X = αn) ≤ Pr(h(αn) = 0) ≤ Pr(h(αn) ≥ 0) ≤ exp
(−3α3n/(24 − 8α)

)

(11)

and so

exp
(
(
√

2 − 1)αβn
)

Pr(X = αn) ≤ exp
(

(
√

2 − 1)
α3n

8 − 4α
− 3α3n

24 − 8α

)
.

This is less than 1 provided that

√
2 − 1

8 − 4α
≤ 3

24 − 8α
,

which is easily verified to hold for all α ∈ [0, 1].

Case 2. If β ≥ α2/(8 − 4α) then, from Lemma 8, in addition to (11), we have
that

Pr(H = βn | X = αn) ≤ Pr(H ≥ βn | X = αn)

≤ O(n3/2) exp

(
−

(
β − α2/4

2 − α

)2 7n

8α

)
.

So in this case it suffices to show that

exp

([
(
√

2 − 1)αβn
]
− [

3α3n/(24 − 8α)
] −

[(
β − α2/4

2 − α

)2 7n

8α

])
≤ 1, (12)

i.e., that

[
(
√

2 − 1)αβ
]
− [

3α3/(24 − 8α)
] −

[(
β − α2/4

2 − α

)2 7
8α

]
(13)

is at most 0.
For fixed a ∈ (0, 1], (13) is maximized by

β =
4
7
(
√

2 − 1)α2 +
α2

8 − 4α
.
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Substituting this value of β into (13), and multiplying by the (positive) quantity
(α− 2)(α− 3)/α3 gives a quadratic which is easily seen to be negative on (0, 1].

Thus, in both Case 1 and Case 2, for any α and β, the contribution of the
X = αn, H = βn term to the expectation of (

√
2 − 1)XH/n is at most O(n3/2),

and the sum of all O(n3) such contributions (recalling that X and H may take
on O(n) and O(n2) possible values, respectively) is O(n9/2). �	

We can now prove Theorem 3.

Proof (of Theorem 3). By Theorem 5, and the remarks before Lemma 8, Al-

gorithm A runs in expected time E(O(m + n)
√

2
κ ≤ O(n2)E(

√
2

B(XH)
) ≤

O(n2)E(exp((
√

2−1)XH/n)). But it follows from Lemma 10 that this is O(n13/2).
�	

5 Conclusions

In the present paper we focus on max cut. Our result for “sparse” instances is
strong in that it applies right up to c = 1, and we expect it could be extended
through the scaling window, to c = 1+λn−1/3 (at the expense of a constant factor
depending on λ in the run time, and additional complication in the analysis). We
also believe that our methods can be extended to max 2-sat, but the analysis
is certainly more complicated. In fact our results already apply to any max csp,
and in particular to max 2-sat, but only in the regime where there are about
n/2 clauses on n variables; since it is likely that random instances with up to
about n clauses can be solved efficiently on average (the 2-sat phase transition
occurs around n clauses), our present result for max 2-sat is relatively weak.

Since max cut is in general NP-hard (and even NP-hard to approximate
to better than a 16/17 factor [TSSW00]), it would be interesting to resolve
whether dense instances of max cut as well as sparse ones can be solved in
polynomial expected time (thus separating the average-case hardness from the
worst-case hardness) or whether random dense instances are hard. Precisely the
same questions can be asked about max 2-sat, and in both cases we would guess
that dense instances are hard, even on average.
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