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Abstract

We construct a graph with n vertices where the smoothed runtime of the 3-
FLIP algorithm for the 3-Opt Local Max-Cut problem can be as large as 2Ω(

√
n).

This provides the first example where a local search algorithm for the Max-Cut
problem can fail to be efficient in the framework of smoothed analysis. We also
give a new construction of graphs where the runtime of the FLIP algorithm for the
Local Max-Cut problem is 2Ω(n) for any pivot rule. This graph is much smaller and
has a simpler structure than previous constructions.

1 Introduction

In the Max-Cut problem, the vertices of a weighted graph have to be partitioned into
two sets such that the sum of the weights of all edges crossing between the sets is
maximal. Since this problem is computationally hard to solve [Kar72], local search is
often used to compute reasonably good solutions in an acceptable time. A standard
form of local search for the Max-Cut problem is the FLIP algorithm which repeatedly
moves individual vertices across the cut until it reaches a local optimum; similarly, the
k-FLIP algorithm moves up to k vertices in each step. The FLIP algorithm performs
well in practice [GNWZ95, DHL99], despite the fact that there exist graphs where the
algorithm takes exponential time to terminate [SY91, ET11, MT10].

An important approach for closing the gap between the worst-case analysis and the
empirical performance of algorithms is through smoothed analysis [ST04]. This method
has been particularly effective for local search algorithms [Man15]. In this framework,
the runtime of the FLIP algorithm is analysed after a small amount of random noise
is added to the edge weights of the graph. Recent work has shown that the smoothed
runtime of the FLIP algorithm is polynomial or quasi-polynomial in various different
settings [ER17, CGVG+20, ET11, GGM22, ABPW17, BCC21]. Similarly, the 2-FLIP al-
gorithm has been shown to have a smoothed quasi-polynomial runtime in complete
graphs [CGVGY23].

In this paper, we consider the 3-FLIP algorithm. In light of the previous work, it might
be expected that smoothed analysis should give the same picture, with a polynomial or
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near-polynomial smoothed runtime. We show that this is not the case: the smoothed
runtime of the 3-FLIP algorithm in an n-vertex graph can be exponentially large in

√
n.

Theorem 1.1. There exist graphs G with O(n) vertices such that the following holds. Let
a < b be real numbers. Suppose that the edge weights of G are chosen uniformly at random in
the interval [a, b] and consider a uniformly random initial cut of G. Then, with high probability
there are executions of the 3-FLIP algorithm from this initial cut that take 2Ω(

√
n) steps.

This is the first example of a local search algorithm for the Max-Cut problem whose
smoothed runtime can be inefficient. We note that Theorem 1.1 is also quite robust:
the weights can be smoothed across any interval, and the proofs could be adjusted to
handle other smoothing distributions.

Returning to the non-smoothed problem, we also give a new construction of graphs
with maximum degree four where the FLIP algorithm takes exponential time to termi-
nate. While graphs with these properties were previously constructed by Monien and
Tscheuschner [MT10], our construction has a simpler structure and uses fewer vertices.

Theorem 1.2. There exist graphs with O(n) vertices and maximum degree four which have an
initial cut from which every possible execution of the FLIP algorithm ending in a local optimum
takes Ω(2n) steps.

This paper is organized as follows. In Sections 1.1 and 1.2 we give some background on
local search and smoothed analysis for the Max-Cut problem. We then provide the new
construction of graphs with the properties from Theorem 1.2 in Section 2. Theorem 1.1
is proved in Section 3. We conclude with some discussion in Section 4.

1.1 Local Search

The Max-Cut problem has found many practical applications, including circuit layout
design [BGJR88, CKC83, Pin84, CD87], clustering [PZ06], the analysis of newsgroups
[ARSX03], and more [PT95, BH91, CCG04, Bra07]. However, Max-Cut is NP-hard
[Kar72], and so there likely exists no efficient algorithm solving this problem. Instead,
in applications of Max-Cut, local search is often used to compute large cuts in a short
amount of time.

Local search algorithms are successful in a variety of optimization problems, such as
linear programming [ST04] or the travelling salesman problem [JM97]. For Max-Cut,
a simple but successful form of local search is the FLIP algorithm, which starts with
some initial cut and then repeatedly moves individual vertices across the cut until it
reaches a local optimum. A pivot rule determines which vertex to move if there are
multiple vertices that could be moved to yield a local improvement. Local Max-Cut is
the problem of finding local optimum, that is a cut which cannot be improved by flip-
ping the position of a single vertex. The Local Max-Cut problem is related to Hopfield
neural networks [Hop82] and Nash equilibria in party affiliation games [FPT04].

While the FLIP algorithm performs well in practice [GNWZ95, DHL99], worst-case
analysis cannot explain its good performance. Schäffer and Yannakakis [SY91] have
shown that the Local Max-Cut problem is PLS-complete where PLS is the complexity
class of all polynomial local search problems. This is already the case even for Local
Max-Cut on graphs whose maximum degree is five [ET11]. Not only does this prove
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that the Local Max-Cut problem cannot be solved efficiently unless PLS ⊆ P, it also
implies that there exist graphs where the FLIP algorithm takes exponential time to
terminate. In fact, Monien and Tscheuschner [MT10] have shown that there are graphs
of maximum degree four with this property, thus proving Theorem 1.2. We provide a
new construction of such graphs. Note that the condition of having maximum degree
four cannot be reduced since the FLIP algorithm runs in polynomial time on graphs
whose maximum degree is three [Pol95].

1.2 Smoothed Analysis

Besides the FLIP algorithm, there are also many other algorithms whose worst case
analysis incorrectly predicts their real-world performance. To explain this difference
for the simplex algorithm, Spielman and Teng [ST04] introduced smoothed analysis.
This framework adds a small amount of random noise to the input data to model slight
imprecisions occurring in the real world. If the expected runtime of an algorithm on
these perturbed inputs is efficient, this may explain why the algorithm has a good
practical performance. Smoothed analysis has been applied to many areas in computer
science [MR11, ST09], in particular to local search algorithms [ERV14, AMR11, Man15].

To perform a smoothed analysis of the FLIP algorithm, we add a small amount of
random noise to each edge weight of the graph. In this setting, Etscheid and Röglin
[ER17] have shown that the FLIP algorithm runs in smoothed quasi-polynomial time.
This means that the expected runtime is bounded by ϕnO(log n) where ϕ is a parame-
ter controlling magnitude of the perturbations applied to the inputs. This bound was
later improved to ϕnO(

√
log n) by [CGVG+20]. Moreover, in graphs with logarithmic

maximum degree and in complete graphs, the FLIP algorithm runs in smoothed poly-
nomial time [ET11, GGM22, ABPW17]. The best known smoothed runtime bound for
the FLIP algorithm in complete graphs is O(ϕn7.83) [BCC21].

There are also local search algorithms for the Max-Cut problem which move more than
one vertex across the cut in each step [KL70, GNWZ95]. One such algorithm is the k-
FLIP algorithm which moves up to k vertices in each step. k-Opt Local Max-Cut is
the corresponding problem of finding a cut which cannot be improved even if we are
allowed to move up to k vertices across the cut at once. As already noted, the 2-FLIP
algorithm has a smoothed quasi-polynomial runtime in complete graphs [CGVGY23].

The proofs of these results for the FLIP and 2-FLIP algorithms show that with a small
amount of random noise, the expected number of steps of every possible execution
of the local search from any initial cut is at most quasi-polynomial. In contrast, we
show with Theorem 1.1 that this is not true for the 3-FLIP algorithm. Even if a large
amount of random noise is added to the graph and if we consider a random initial
cut, the runtime of the 3-FLIP algorithm can nevertheless be as large as 2Ω(

√
n). This

provides the first example where a local search algorithm for the Max-Cut problem
has a superpolynomial smoothed runtime. While most pivot rules, such as a greedy
pivot rule, will not take these long local search sequences, this means that at best the
3-FLIP algorithm can only have an efficient smoothed runtime for specific pivot rules
or restricted graph classes.
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1.3 Preliminaries

For any integer k ∈ N, we write [k] := {1, . . . , k}. If G = (V, E) is a graph, we denote
by N(v) the neighbourhood of a vertex v. A cut of G is a function σ : V → {−1, 1}.
This cut partitions the vertices of G into {v ∈ V : σ(v) = 1} and {v ∈ V : σ(v) = −1}.
We say that an edge uv ∈ E crosses the cut if σ(u) ̸= σ(v). If G is weighted, we denote
its edge weights by X ∈ RE. The value of a cut σ is

v(σ) :=
1
2 ∑

uv∈E
(1 − σ(u)σ(v))Xuv.

Thus, the Max-Cut problem is the problem of finding a cut σ which maximizes v(σ).

A k-flip sequence is a sequence L = V1, . . . , Vℓ of subsets Vi ⊆ V such that |Vi| ≤ k
for all i ∈ [ℓ]. L can be interpreted as a sequence of ℓ moves whose i-th step moves
all vertices from Vi across the cut. For some initial cut σ, we define σL to be the cut
obtained from σ by performing all moves from L. This means that σL is defined by
σL(v) := (−1)n(v)σ(v) where n(v) denotes the number of occurrences of v in L. The
change in the cut value caused by performing all moves from L is ∆L(σ) := v(σL)− v(σ).
For example, for a single vertex v, it can be checked that

∆v(σ) = ∑
u∈N(v)

σ(u)σ(v)Xuv.

Finally, L is improving from σ0 if ∆Vi(σi−1) > 0 for all i ∈ [ℓ] where σi is defined in-
ductively by σi := σ

Vi
i−1. With these definitions, an execution of the k-FLIP algorithm

corresponds to an improving k-flip sequence ending in a local optimum.

2 Runtime of the FLIP algorithm

First, we present a small graph where the FLIP algorithm takes exponential time to
terminate. Our example is given by the graph Gn and its initial cut depicted in Figure 1.
Using O(n) vertices, this graph generates exponential improving sequences of length
Ω(3n). The graph is constructed inductively as follows:

• The base case is a graph F0 consisting of a single edge v0,1v0,8 with weight 7 whose
endpoints are on opposite sides of the cut.

• We construct a graph Fn from Fn−1 by adding a path with eight new vertices
vn,1, . . . , vn,8 to the graph, with consecutive vertices positioned on alternating
sides of the cut and vn,1 on the same side of the cut as vn−1,1. For all k ∈ [7],
the edge vn,kvn,k+1 is assigned a weight of (7 − 2⌊k/2⌋) · 8n.
The new vertices are joined to those of Fn−1 as follows: vn,2, vn,4, and vn,6 are
joined to vn−1,1. These edges are assigned a weight of 8n except for the edge
vn,4vn−1,1 which receives the negative weight −8n. The vertices vn,3, vn,5, and vn,7
are connected to vn−1,8 with edges of weight of 1, expect that the weight of the
edge vn,5vn−1,8 is −1.

• To obtain Gn, two new vertices w1 and w2 are added to Fn with w1 on the same
side of the cut as vn,1 and w2 on the opposite side. Then, w1 is joined to vn,1 with
an edge of weight 8n+1 and w2 is joined to w1 with an edge of weight 2 · 8n+1.
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Figure 1: A graph Gn with O(n) vertices where the FLIP algorithm runs in time Ω(3n).

In total, Gn has 8n+ 4 ∈ O(n) vertices and 13n+ 3 ∈ O(n) edges whose weights range
(in modulus) from 1 to 2 · 8n+1. The maximum degree of Gn is four.

The idea behind this construction is that the initial configuration of Fn is a local max-
cut, but moving the start vertex vn,1 across this cut will trigger an exponential improving
sequence. This sequence will then move the vertices vn,2 to vn,8 one-by-one across
the cut. Moreover, while doing so, it forces the improving sequence of Fn−1 to be
performed three times, once each after the moves of vn,2, vn,4, and vn,6. This results in
the exponential growth of the length of that sequence. Because the additional vertices
of Gn ensure that moving vn,1 across the cut in the first step is improving, Gn will
perform this exponential improving sequence. Moreover, we can prove that this is in
fact the unique improving sequence of Gn. This gives the following result.

Theorem 2.1. For the graph Gn and its initial cut depicted in Figure 1, every improving
sequence ending in a local optimum has a length of Ω(3n).

Proof. Let L0 := v0,1, v0,8 and

Ln := vn,1, vn,2, Ln−1, vn,3, vn,4, Ln−1, vn,5, vn,6, Ln−1, vn,7, vn,8.

The length of Ln is Ω(3n), and a simple induction shows that Ln moves every vertex of
Fn an odd number of times across the cut (w1 and w2 remain fixed). We claim that Ln is
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improving from the initial cut of Gn. For this purpose, we will show by induction on
n that every step of Ln, except for potentially the first step, is improving when starting
from the initial cut of Fn. This is clearly satisfied for the base case L0. For any n > 0,
consider the following cases:

• Let k ∈ {2, 4, 6, 8}. Then, since the weight of the edge vn,kvn,k−1 is higher than the
absolute weights of all other edges incident to vn,k combined, moving vn,k across
the cut is improving if and only if vn,k and vn,k−1 are on the same side of the cut.
This condition is satisfied during the move of vn,k in Ln since vn,k and vn,k−1 start
on opposite sides of the cut but vn,k−1 moves across the cut immediately before
vn,k. Hence, the move of vn,k in Ln is improving.

• Let k ∈ {3, 7}. In this case, the edges vn,kvn,k−1 and vn,kvn,k+1 have the same
weight while the third edge vn,kvn−1,8 has a weight of 1. So, there are two situ-
ations in which moving vn,k across the cut is improving: Either vn,k−1 and vn,k+1
are both on the same side of the cut as vn,k, or this is satisfied by one of these two
vertices and additionally the vertex vn−1,8.
Because vn,k and vn−1,8 start on opposite sides of the cut and Ln−1 moves vn−1,8
an odd number of times across the cut, vn−1,8 will be on the same side of the cut
as vn,k during the move of vn,k in Ln. This is also true for vn,k−1 since vn,k−1 starts
on the opposite side of the cut from vn,k but moves exactly once across the cut
before the move of vn,k. Hence, the second condition from above is satisfied, and
so the move of vn,k in Ln is also improving.

• For vn,5, the behaviour is almost exactly the same as for vn,3 and vn,7, except that
vn−1,8 must be on the opposite side of the cut from vn,5 to make the move of vn,5
improving. Since this is satisfied in Ln, the move of vn,5 is also improving.

• Whenever vn−1,1 moves in Ln as the first step of Ln−1, it can be checked that either
vn,2 and vn,6 will both be on the same side of the cut as vn−1,1, or this is satisfied
by one of these two vertices and additionally vn,4 is on the opposite side of the
cut. In both of these cases, the contributions of the mentioned vertices outweigh
all other edges incident to vn−1,1 combined, ensuring that the moves of vn−1,1 in
Ln are improving.

• We also have to reverify that the moves of vn−1,8 in Ln as part of Ln−1 are im-
proving because we have connected new edges to that vertex. However, this is
no problem: The weight of the edge vn−1,8vn−1,7 is still higher than the absolute
weights of all other edges incident to vn−1,8 combined. As for vn,8, we therefore
get that the moves of vn−1,8 in Ln are improving.

• Finally, all other moves of Ln−1 are improving in Ln by induction since we con-
nected no new edges to these vertices and so the improvements of these moves
in Ln when starting from Fn are the same as the improvements of these moves in
Ln−1 when starting from Fn−1.

Hence, every move of Ln, except for potentially the first move, is improving when
starting from the initial cut of Fn. Due to the additional vertices and edges from Gn, the
first move of Ln in Gn will also be improving. Therefore, Ln is an improving sequence
of length Ω(3n) in Gn.

Lastly, we will show that Ln is the only improving sequence of Gn ending in a local
optimum, which concludes the proof of the theorem. For this, we show that each move
of Ln is the unique improving move at that time step. Then, every improving sequence
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must perform exactly the moves from Ln, as required. Again, we divide into cases:

• For k ∈ {2, 4, 6, 8}, recall that moving vn,k across the cut is improving if and only
if vn,k and vn,k−1 are on the same side of the cut. However, these two vertices
start on opposite sides of cut, and this remains true until vn,k−1 moves. More-
over, because vn,k moves immediately after vn,k−1, these vertices will again be on
opposite sides of the cut after the move of vn,k. Hence, vn,k and vn,k−1 are only on
the same side of the cut during the move of vn,k in Ln, and so vn,k cannot move at
any other time step. Similar arguments apply to vn−1,8.

• For k ∈ {3, 7}, recall that moving vn,k across the cut is improving if and only if
either vn,k−1 and vn,k+1 are both on the same side of the cut as vn,k, or if this is
satisfied by one of these two vertices and additionally the vertex vn−1,8. It can
be checked that the first case never occurs while the second case is only satisfied
when vn,k moves in Ln. Hence, vn,k cannot move at any other time step than
during its move in Ln. Similar arguments apply to vn,5.

• For vn−1,1, note that a move of that vertex can only become improving if one of
its adjacent vertices has moved. Since we already know that vn−1,1 moves imme-
diately after every move of vn,2, vn,4, or vn,6 in Ln, this could only be problematic
if a move of vn−1,1 becomes improving after one of the moves of vn−1,2 in Ln.
However, this is never the case because vn−1,2 will always move to the opposite
side of the cut from vn−1,1 and will therefore only reinforce the current position
of vn−1,1 on its side of the cut.

• Finally, for all other vertices of Fn−1, we can show by induction that they cannot
move at any other time step than during their moves in Ln.

Hence, a move of a vertex of Fn is only improving when this vertex moves in Ln. More-
over, a move of w1 or w2 is never improving in Gn. This is again due to similar reasons
as for vn,2, vn,4, vn,6, and vn,8: Because the edge between w1 and w2 outweighs all other
edges incident to these vertices, moving one of these two vertices is only improving if
they are both on the same side of the cut, but this is never the case. Hence, as required,
the moves of Ln are the unique improving moves at their time steps.

In particular, because the FLIP algorithm performs an improving sequence until it
reaches a local optimum, it needs an exponential number of steps to terminate for the
graph Gn, and this holds regardless of the chosen pivot rule. This proves Theorem 1.2.

3 Smoothed runtime of the 3-FLIP algorithm

Next, we show that the 3-FLIP algorithm can have a superpolynomial smoothed run-
time even if we choose all edge weights of the graph uniformly at random.

3.1 Linear combinations of uniform random variables

We will need a result about linear combinations of uniform random variables with co-
efficients −1 and 1. We will prove that with high probability these linear combinations
can approximate any value in a large interval up to some exponentially small error.
Since the local improvements during the execution of the 3-FLIP algorithm correspond
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Figure 2: Proof strategy for Theorem 3.1.

to such linear combinations, this will allow us to control these local improvements in
graphs whose edge weights are chosen uniformly at random.

Theorem 3.1. There exists c > 0 such that the following holds. Let n ∈ N be a natural
number, b ∈ R be a real number, and X1, . . . , X2n be independent random variables chosen
uniformly at random in the interval [b, b + 1]. Then, it holds that

P

(
∀x ∈

[
−n

5
,

n
5

]
: min

a1,...,a2n∈{−1,1}

∣∣∣∣∣x −
2n

∑
i=1

aiXi

∣∣∣∣∣ < 2−cn

)
≥ 1 − 2−Ω(n).

The idea of the proof of this theorem is as follows. For Yi := Xi − Xn+i, we want to look
at the set Ak of all values in [−1, 1] that we can approximate up to an error of ε := 2−cn

using linear combinations of Y1, . . . , Yk, that is

Ak :=

({
k

∑
i=1

aiYi : ai ∈ {−1, 1}
}
+ (−ε, ε)

)
∩ [−1, 1]

where A + B := {x + y : x ∈ A, y ∈ B} (see Figure 2). If some Ak covers the entire
interval [−1, 1] and if the sum of the remaining random variables is sufficiently large,
it will follow that An will cover [−n/5, n/5] as required by Theorem 3.1. To prove that
some Ak covers [−1, 1], we would like to argue that the Lebesgue measure of Ak grows
by a constant factor C > 1 from Ak to Ak+1, so that An is Cn times larger than the set
A0 = (−ε, ε) and must therefore, for a suitable ε, cover [−1, 1] as wanted.

Unfortunately, it is sometimes unlikely that the measure of Ak grows, for example if Ak
covers almost all of [−1, 1] or if Ak is close to the boundary of that interval. So instead,
we consider linear combinations with coefficients 0 and 1. This ensures that Ak is
always a subset of Ak+1. As a consequence, we will show that λ(Ak+1) ≥ C · λ(Ak)
holds with constant positive probability as long as the measure of Ak is not yet too
large. Moreover, once λ(Ak) is large, we will show that A2k is likely to cover the entire
interval. We do this by splitting A2k into two independent copies of Ak and combining
them appropriately. By transforming the coefficients back to −1 and 1, this yields the
following proof of Theorem 3.1.
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Proof. Let m := ⌊n/40⌋ and ε := (200/201)m/400. Define Yi := 2(Xi − Xn+i). For
k ∈ [n] and δ > 0, let

Aδ
k :=

{
k

∑
i=1

aiYi : ai ∈ {0, 1}
}
+ (−δ, δ) and Ak := Aε

k ∩ [−1, 1].

Thus, Ak is the set of all values in the interval [−1, 1] that can be approximated up to
an error of ε using linear combinations of Y1, . . . , Yk with coefficients 0 or 1. Note that
Ak ⊆ Ak+1 and so λ(Ak+1) ≥ λ(Ak). If λ(Ak) ≤ 8/5, we will show that there is a
constant positive probability that λ(Ak+1) is significantly larger than λ(Ak).

Claim 3.2. If λ(Ak) ≤ 8/5, then P(λ(Ak+1) ≥ (201/200) · λ(Ak)) ≥ 1/200.

Proof. Define Bk := [−1, 1] \ Ak. Then, Ak ∪ ((Ak + Yk+1) ∩ Bk) is a disjoint union
contained in Ak+1 and so λ(Ak+1) ≥ λ(Ak) + λ((Ak + Yk+1) ∩ Bk). Since Yk+1 takes
values in the interval [−2, 2] with probability density function (2 − |y|)/4,

E(λ((Ak + Yk+1) ∩ Bk)) =
∫ 2

−2

2 − |y|
4

λ((Ak + y) ∩ Bk)dy

≥ 1
20

∫ 9
5

− 9
5

λ((Ak + y) ∩ Bk)dy

=
1
20

∫ 9
5

− 9
5

∫
Ak

1x+y∈Bk dx dy

=
1
20

∫
Ak

∫ 9
5

− 9
5

1y+x∈Bk dy dx

=
1
20

∫
Ak

λ

(([
−9

5
,

9
5

]
+ x
)
∩ Bk

)
dx.

Note that x ∈ Ak ⊆ [−1, 1] and Bk ⊆ [−1, 1]. Therefore, λ(([−9/5, 9/5] + x) ∩ Bk) ≥
λ(Bk)− 1/5 = 9/5 − λ(Ak) ≥ 1/5 and thus

E(λ((Ak + Yk+1) ∩ Bk)) ≥
1

20

∫
Ak

1
5

dx =
λ(Ak)

100
.

On the other hand, we know that λ((Ak + Yk+1) ∩ Bk) ≤ λ(Ak + Yk+1) = λ(Ak). If
P(λ((Ak + Yk+1) ∩ Bk) ≥ λ(Ak)/200) ≤ 1/200, then

E(λ((Ak + Yk+1) ∩ Bk)) ≤
199
200

λ(Ak)

200
+

1
200

λ(Ak) <
λ(Ak)

100
,

which gives a contradiction. Thus, P(λ((Ak + Yk+1) ∩ Bk) ≥ λ(Ak)/200) ≥ 1/200.
Because the event λ((Ak +Yk+1) ∩ Bk) ≥ λ(Ak)/200 implies that λ(Ak+1) ≥ λ(Ak) +
λ((Ak + Yk+1) ∩ Bk) ≥ (201/200) · λ(Ak), we conclude that

P

(
λ(Ak+1) ≥

201
200

λ(Ak)

)
≥ P

(
λ((Ak + Yk+1) ∩ Bk) ≥

λ(Ak)

200

)
≥ 1

200
. ■

By a Chernoff bound, it follows that with high probability approximately m/200 of the
first m sets A1, . . . ,Am will either have a measure of at least 8/5 or otherwise be larger
than their predecessor by a factor of 201/200. Since the original set A0 has a measure
of 2ε, our choice of ε then implies that the measure of Am must be at least 8/5.
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Claim 3.3. P(λ(Am) ≥ 8/5) ≥ 1 − 2−Ω(n).

Proof. Denote by Ek the event Ek := {λ(Ak) ≥ 8/5 or λ(Ak) ≥ (201/200) · λ(Ak−1)}.
From Claim 3.2 we know that P(Ek) ≥ 1/200 holds regardless of the occurrence of
E1, . . . , Ek−1. Hence, the sequence of indicator variables 1Ek of these events stochas-
tically dominates a collection of independent Bernoulli random variables Z1, . . . , Zm
which take the value 1 with probability 1/200. With Z := ∑m

i=1 Zi, we get from a Cher-
noff bound that

P

(
m

∑
i=1

1Ei ≥
m

400

)
≥ P

(
Z ≥ m

400

)
≥ 1 − 2−Ω(n).

If at least one of the events Ek occurs because λ(Ak) ≥ 8/5 is satisfied, then by mono-
tonicity we will have λ(Am) ≥ 8/5. On the other hand, if all of these events occur only
because λ(Ak) ≥ (201/200) · λ(Ak−1), then

λ(Am) ≥
(

201
200

) m
400

λ(A0) =

(
201
200

) m
400

2ε = 2 ≥ 8
5

.

Hence, in all cases ∑m
i=1 1Ei ≥ m/400 implies that λ(Am) ≥ 8/5, and so

P

(
λ(Am) ≥

8
5

)
≥ P

(
m

∑
i=1

1Ei ≥
m

400

)
≥ 1 − 2−Ω(n). ■

We have shown that with high probability, Am covers at least 4/5 of the interval
[−1, 1] using only the random variables Y1, . . . , Ym; the same arguments also apply
to Ym+1, . . . , Y2m. We now show that this implies that A2ε

2m covers the entire interval
[−1, 1] with high probability.

Claim 3.4. P
(
[−1, 1] ⊆ A2ε

2m
)
≥ 1 − 2−Ω(n).

Proof. Define Bm := ({∑2m
i=m+1 −aiYi : ai ∈ {0, 1}}+ (−ε, ε)) ∩ [−1, 1]. Note that −Yi

has the same distribution as Yi. Thus, as for the set Am, we get from Claim 3.3 that
P(λ(Bm) ≥ 8/5) ≥ 1 − 2−Ω(n). Applying the union bound yields

P

(
min{λ(Am), λ(Bm)} ≥ 8

5

)
≥ 1 − 2−Ω(n).

Assume now that min{λ(Am), λ(Bm)} ≥ 8/5 is satisfied, and let x ∈ [−1, 1] be arbi-
trary. Since |x| ≤ 1, the set C := (Bm + x) ∩ [−1, 1] satisfies λ(C) ≥ λ(Bm)− 1 ≥ 3/5.
If Am and C were disjoint, this would imply 11/5 = 8/5 + 3/5 ≤ λ(Am) + λ(C) =
λ(Am ∪ C) ≤ λ([−1, 1]) = 2, giving a contradiction. Hence, Am ∩ C ̸= ∅ and so there
exists some y ∈ Am ∩ C.

By definition of Am and C, this means that there exist a1, . . . , a2m ∈ {0, 1} as well as
δ1, δ2 ∈ (−ε, ε) such that ∑m

i=1 aiYi + δ1 = y = ∑2m
i=m+1 −aiYi + δ2 + x. Reordering this

equation yields x = ∑2m
i=1 aiYi + δ1 − δ2 with δ1 − δ2 ∈ (−2ε, 2ε) and thus x ∈ A2ε

2m.
Since x ∈ [−1, 1] was arbitrary, we get [−1, 1] ⊆ A2ε

2m, and so we conclude that

P
(
[−1, 1] ⊆ A2ε

2m

)
≥ P

(
min{λ(Am), λ(Bm)} ≥ 8

5

)
≥ 1 − 2−Ω(n). ■
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We have now shown that every value in the interval [−1, 1] can be approximated using
linear combinations of Y1, . . . , Y2m with coefficients ai ∈ {0, 1} up to an error of 2ε.
Next, we transfer this result to linear combinations of X1, . . . , Xn with ai ∈ {−1, 1}.
This effectively shifts the set A2ε

2m away from the origin, and we use the remaining
variables to recenter the set to the origin. This only works if the sum of the absolute
values of those variables is sufficiently large. To show that this is the case, recall the
following version of Hoeffding’s Inequality [Hoe63].

Lemma 3.5 (Hoeffding’s Inequality). Let Z1, . . . , Zn be independent bounded random vari-
ables with Zi ∈ [a, b] and define Z := ∑n

i=1 Zi. Then,

P(|Z − E(Z)| ≥ tn) ≤ 2 exp
(
− 2nt2

(b − a)2

)
.

We apply this inequality in our setting to the absolute value of Zi := Xi − Xn+i.

Claim 3.6. P(n/4 ≤ ∑n
i=2m+1|Zi|) ≥ 1 − 2−Ω(n).

Proof. Let Z := ∑n
i=2m+1|Zi|. As E(|Zi|) = 1/3, we have E(Z) = (n− 2m)/3 ≥ 19n/60

and so by Hoeffding’s Inequality

P(Z ≤ n/4) ≤ P
(
|Z − E(Z)| ≥ n

15

)
≤ 2−Ω(n). ■

Finally, we show that the event from the previous claim allow us to recenter the shifted
copy of A2ε

2m to the origin. We need the following observation.

Claim 3.7. Let x ∈ [−n/4, n/4] be arbitrary and suppose that n/4 ≤ ∑n
i=2m+1|Zi|. Then,

there exist a2m+1, . . . , an ∈ {−1, 1} such that x + ∑n
i=2m+1 aiZi ∈ [−1, 1].

Proof. We may assume that all Zi are positive. Start with a2m+1 = · · · = an = 1 and
change these coefficients one-by-one from 1 to −1. Note that x + ∑n

i=2m+1 Zi ≥ 0 and
x + ∑n

i=2m+1 −Zi ≤ 0, so this process will change the sum x + ∑n
i=2m+1 aiZi from a

positive to a negative value. Moreover, changing ai from 1 to −1 changes the value of
the sum by at most 2. Thus, at some point it holds that x + ∑n

i=2m+1 aiZi ∈ [−1, 1]. ■

Finally, assume that the two events from Claims 3.4 and 3.6 occur simultaneously. Let
x ∈ [−n/5, n/5] be arbitrary. Note that x + ∑2m

i=1 Zi ∈ [−n/4, n/4]. So, by Claim 3.7
there exist a2m+1, . . . , an ∈ {−1, 1} with y := x + ∑2m

i=1 Zi + ∑n
i=2m+1 aiZi ∈ [−1, 1].

Hence, y ∈ A2ε
2m and so there exist a1, . . . , a2m ∈ {0, 1} and some δ ∈ (−2ε, 2ε) such that

y = ∑2m
i=1 aiYi + δ. By the definition of Yi and Zi, this yields

x +
2m

∑
i=1

(Xi − Xn+i) +
n

∑
i=2m+1

ai(Xi − Xn+i) = y =
2m

∑
i=1

2ai(Xi − Xn+i) + δ

and so

x −
2m

∑
i=1

(2ai − 1)︸ ︷︷ ︸
∈{−1,1}

(Xi − Xn+i)−
n

∑
i=2m+1

−ai︸︷︷︸
∈{−1,1}

(Xi − Xn+i) = δ ∈ (−2ε, 2ε).
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Figure 3: A graph Hk with n ∈ O(k2) vertices where the 3-FLIP algorithm can have a
smoothed runtime of up to 2Ω(

√
n).

Note that there exists c > 0 such that 2ε ≤ 2−cn. Since x ∈ [−n/5, n/5] was arbitrary,
we can now apply the union bound to Claims 3.4 and 3.6 to conclude that

P

(
∀x ∈

[
−n

5
,

n
5

]
: min

a1,...,an∈{−1,1}

∣∣∣∣∣x −
n

∑
i=1

aiXi

∣∣∣∣∣ < 2−cn

)
≥ 1 − 2−Ω(n).

3.2 Construction of a superpolynomial smoothed example

Using Theorem 3.1, we now construct a graph Hk with n ∈ O(k2) vertices where the
3-FLIP algorithm can have a smoothed runtime of Ω(2k) = 2Ω(

√
n). For any k ∈ N, let

nk ∈ O(k) be such that 2−cnk/128 < 3−k for the c given by Theorem 3.1. The graph Hk,
depicted in Figure 3, is a disjoint union of the following graphs:

• For every i ∈ [k], the graph contains two trees Svi and Swi . These two trees are
obtained by taking a copy of K1,2nk and attaching two new vertices to each leaf.
We denote the centers of Svi and Swi by vi and wi respectively.

Because Svi and Swi have 6nk + 1 ∈ O(k) vertices each, the graph Hk has a total of
2k(6nk + 1) ∈ O(k2) vertices as claimed. To study the smoothed complexity of the
3-FLIP algorithm in Hk, suppose that the edge weights of Hk are chosen uniformly at
random and consider a uniformly random initial cut σ of Hk. To show that the 3-FLIP
algorithm can have a superpolynomial runtime in this setting, we start by moving a
subset of the neighbours of vi and wi across the cut. This allows us to get a very precise
control over the local improvements of a move of vi or wi later in the execution of the
algorithm. This is given by the following result.

Lemma 3.8. Let b ∈ R be a real number. Suppose that the edge weights of the graph Hk are
chosen uniformly at random in the interval [b, b + 1] and that σ is a uniformly random cut of
Hk. Then, with high probability there exists a 3-flip sequence L that is improving from σ such
that |∆u(σL)− 3−(i−1)| < 3−k for all i ∈ [k] and u ∈ {vi, wi}.

Proof. We may assume that b ≥ −1/2 since the case b ≤ −1/2 is analogous. Let i ∈ [k]
and u ∈ {vi, wi}. For each s ∈ N(u), denote by s1, s2 ∈ N(s) \ {u} the two neighbours
of s apart from u. Let Es be the event that σ(s) = σ(s1) = σ(s2) and Xss1 + Xss2 > b + 1,
and let Su ⊆ N(u) be the subset of those neighbours s of u where the event Es occurs.
These events are independent with P(Es) ≥ 1/32. So, a Chernoff bound implies that

P
(
|Su| ≥

nk
32

)
= P

(
|Su| ≥

|N(u)|
64

)
≥ 1 − 2−Ω(nk).
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Define
Du := ∑

s∈N(u)\Su

σ(u)σ(s).

Note that σ(u)σ(s) is chosen uniformly at random in {−1, 1}, independent of the event
Es. Since Du is a sum of at most 2nk such independent random variables, a Chernoff
bound implies that

P
(
|Du| ≤

nk
64

)
≥ 1 − 2−Ω(nk).

If Eu is the event that |Su| ≥ nk/32 and |Du| ≤ nk/64 are both satisfied, this implies
that P(Eu) = 1 − 2−Ω(nk).

Let m := ⌊nk/128⌋ and let Tu ⊆ Su be a subset of size 2m. If Eu occurs, then we have
that |Su \ Tu| ≥ nk/64 ≥ |Du|. So, the fact that |N(u) \ Su| + |Su \ Tu| = 2(nk − m)
is even implies that there exist coefficients aus ∈ {−1, 1} for s ∈ Su \ Tu such that
Du + ∑s∈Su\Tu aus = 0. Define

∆u := ∑
s∈N(u)\Su

σ(u)σ(s)Xus + ∑
s∈Su\Tu

ausXus.

Note that Xus is distributed uniformly at random in [b, b+ 1], independent of the events
Eu and Es. By pairing up variables with positive and negative coefficients, ∆u can be
written as a sum of nk −m independent random variables taking values in [−1, 1], each
with expectation 0. So E(∆u) = 0 and Hoeffding’s Inequality implies that

P
(
|∆u| ≤

nk
1024

)
≥ 1 − 2−Ω(nk).

Let Fu be the event that there exist coefficients aus ∈ {−1, 1} for s ∈ Tu such that
|3−(i−1) − ∆u − ∑s∈Tu ausXus| < 3−k. If Eu and |∆u| ≤ nk/1024 are both satisfied, then
|3−(i−1)−∆u| ≤ 1+ nk/1024 ≤ m/5. Moreover, the random variables Xus for all s ∈ Tu
are independent of these two conditions. So, Theorem 3.1 shows that the probability
of Fu conditioned on these two events will be at least 1 − 2−Ω(nk), and thus

P(Fu) = P
(

Fu

∣∣∣ Eu and |∆u| ≤
nk

1024

)
P
(

Eu and |∆u| ≤
nk

1024

)
≥ 1 − 2−Ω(nk).

Applying the union bound shows that with high probability all the events Fu will occur.
Consider the case where this happens.

Let L be the 3-flip sequence moving every vertex s ∈ Su with σ(u)σ(s) ̸= aus individ-
ually across the cut. Because the event Es occurs for every s ∈ Su, these moves are
improving. Let τ := σL be the resulting cut, so τ(s) = −σ(s) for exactly those s ∈ Su
with σ(u)σ(s) ̸= aus. In particular, this implies that τ(u)τ(s) = aus for all s ∈ Su while
τ(u)τ(s) = σ(u)σ(s) for all s ∈ N(u) \ Su. Therefore,

∆u(τ) = ∑
s∈N(u)

τ(u)τ(s)Xus = ∆u + ∑
s∈Tu

ausXus,

and so we conclude that |∆u(τ)− 3−(i−1)| < 3−k because the event Fu occurs.

Given these controlled local improvements, we now construct an improving 3-flip se-
quence of length Ω(2k) in Hk. This 3-flip sequence acts like a binary counter on the
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vertices v1, . . . , vk. Whenever vi is on the side σL(vi) of the cut, this corresponds to a 0
at position i of the binary counter, while otherwise it corresponds to a 1. For any i, the
sequence will first perform a binary counter sequence on vi+1, . . . , vk, will then move
vi across the cut while resetting the positions of vi+1, . . . , vk, and will afterwards again
perform a binary counter sequence on vi+1, . . . , vk. Since this construction requires a
move of vi to reset the positions of vi+1, . . . , vk and these vertices cannot all move in
the same step, the vertices wi+1, . . . , wk are used to pass on the task of resetting the
positions of vi+1, . . . , vk. This yields the following result.

Lemma 3.9. Let σ be a cut of the graph Hk with |∆u(σ)− 3−(i−1)| < 3−k for all i ∈ [k] and
u ∈ {vi, wi}. Then, there exists at least one 3-flip sequence that is improving from σ and has
length Ω(2k).

Proof. Let Vi := {vi, . . . , vk}, Ui := Vi ∪ {wi, . . . , wk}, and U := U1. If τ is a cut of Hk
satisfying τ|V\U = σ|V\U, we have for u ∈ U that

∆u(τ) = ∑
s∈N(u)

τ(u) τ(s)︸︷︷︸
=σ(s) since s/∈U

Xus = τ(u)σ(u) ∑
s∈N(u)

σ(u)σ(s)Xus = τ(u)σ(u)∆u(σ).

Hence, as long as we move only vertices from U, moving u from the side σ(u) to the
side −σ(u) of the cut changes the cut value by ∆u(σ) while moving u from −σ(u) to
σ(u) yields a change of −∆u(σ). In particular, if i < k, moving u ∈ {vi, wi} from the
side σ(u) to the side −σ(u) of the cut while simultaneously moving vi+1 and wi+1 from
−σ(vi+1) to σ(vi+1) and −σ(wi+1) to σ(wi+1) respectively increases the cut value by

∆u(σ)− ∆vi+1(σ)− ∆wi+1(σ) > (3−(i−1) − 3−k) + 2 · (−3−i − 3−k) ≥ 0, (1)

implying that such a move is improving.

We use this to provide an improving 3-flip sequence of length Ω(2k) in Hk. Consider
any cut τ with τ|V\U = σ|V\U and τ|Vi = σ|Vi . We will show by induction on k − i that
there exists a 3-flip sequence L of length ≥ 2k−i which is improving from τ and uses
only vertices from Ui. The base case i = k is trivially satisfied by the 3-flip sequence
L := (vk) which moves only the vertex vk across the cut since this move increases the
cut value by ∆vk(σ) > 3−(k−1) − 3−k > 0 and is therefore improving.

Now, consider an arbitrary i ∈ [k − 1] and assume that the induction hypothesis holds
for i + 1. Suppose that τ|V\U = σ|V\U and τ|Vi = σ|Vi . Since τ|Vi+1 = σ|Vi+1 , we can
immediately apply the induction hypothesis and get an improving 3-flip sequence L1
of length ≥ 2k−(i+1) starting from τ and using only vertices from Ui+1. Let τ1 := τL1

be the resulting cut after the moves from L1.

Next, let L2 be the 3-flip sequence moving every vertex u ∈ Ui+1 with τ1(u) = σ(u)
individually to the side −σ(u) of the cut. Again, these moves increase the cut value by
∆u(σ) > 0. Moreover, the resulting cut τ2 := τL2

1 will satisfy τ2|Ui+1 = −σ|Ui+1 while
τ2(vi) = σ(vi) since vi was not yet moved at all. That is, vi is on the side σ(vi) of the
cut while vj and wj for j > i are on the sides −σ(vj) and −σ(wj) respectively. Then, we
perform the following sequence of moves:

L3 := (vi, vi+1, wi+1), (wi+1, vi+2, wi+2), (wi+2, vi+3, wi+3), . . . , (wk−1, vk, wk).
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Since each step of this sequence moves a vertex u ∈ {vj, wj} from the side σ(u) to
the side −σ(u) of the cut while moving vj+1 and wj+1 from −σ(vj+1) to σ(vj+1) and
−σ(wj+1) to σ(wj+1) respectively, we know from (1) that all of these moves are im-
proving. Moreover, because L3 moves every vertex from Vi+1 exactly once across the
cut, the resulting cut τ3 := τL3

2 satisfies τ3|Vi+1 = −τ2|Vi+1 = σ|Vi+1 . Hence, we can
again apply the induction hypothesis and perform an improving 3-flip sequence L4 of
length ≥ 2k−(i+1) starting from τ3 and using only the vertices from Ui+1.

Let L be the concatenation of L1, L2, L3, and L4. Since each of these four sequences is
improving, L is improving. Moreover, L uses only vertices from Ui since this holds for
L1, L2, L3, and L4. Lastly, because the lengths of L1 and L4 are ≥ 2k−(i+1), the length
of L is ≥ 2 · 2k−(i+1) = 2k−i. Therefore, the induction hypothesis holds for i and so by
induction for all i ∈ [k]. With i = 1 and τ = σ, this yields a 3-flip sequence of length
≥ 2k−1 ∈ Ω(2k) which is improving from σ.

Combining these two lemmas and rescaling the edge weights proves Theorem 1.1.

We note that the 3-FLIP algorithm can be easily adapted in this example to avoid the
improving 3-flip sequence of superpolynomial length. Indeed, this can be achieved
by using the greedy pivot rule which always chooses the move maximizing the local
improvement in each step. We also note that our example is quite sparse. So, for spe-
cific pivot rules and dense graphs, the smoothed complexity of the 3-FLIP algorithm
remains open.

It is also interesting to consider the 2-FLIP algorithm. However, the example from
above cannot be adapted to show that the 2-FLIP algorithm would have a superpolyno-
mial smoothed runtime since it would only yield improving 2-flip sequences of length
Ω(k2). In fact, we can prove the following.

Theorem 3.10. Let G be a graph and I ⊆ V be an independent set. Then, every improving
2-flip sequence of G which uses only vertices from I has a length of O(n2).

Proof. Let I = {v1, . . . , vk}. Since I is an independent set, moving a vertex vi across
the cut will always result in the same change to the cut value. Denote this change by
∆i > 0 and let si be such that moving vi from the side si to −si of the cut changes the
cut value by ∆i while moving vi from −si to si changes the cut value by −∆i. By sorting
the vertices v1, . . . , vk, we may assume that ∆1 ≥ ∆2 ≥ · · · ≥ ∆k.

Let L be any improving 2-flip sequence of G. For any cut σ of G, assign a token to every
vertex vi with σ(vi) = si and consider how these tokens change during the execution of
L. For this purpose, assume that a single step of L moves two vertices vi and vj across
the cut where i < j. Since this move is improving and ∆i ≥ ∆j, this step must move vi
from the side si to −si of the cut. In particular, vi loses a token during this step. If vj
gains a token during this move, we imagine the token to be moved from vi to vj.

Hence, during every step of L, either at least one token gets removed from G or a token
moves from some vertex vi to a vertex vj with j > i. Since there are at most k tokens
at the beginning and each of these tokens can move at most k − 1 times, it follows that
the length of L is at most k2 ∈ O(n2).
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As the 3-flip sequence from Lemma 3.9 moved only vertices from an independent set,
no small change to this example can yield superquadratic improving 2-flip sequences.

4 Open problems

Theorem 1.1 showed that the smoothed runtime of the 3-FLIP algorithm on arbitrary
graphs can be as large as 2Ω(

√
n) while previous results [ER17, CGVG+20] showed that

the FLIP algorithm has at most a smoothed quasi-polynomial runtime in this setting.
It would be interesting to determine how the 2-FLIP algorithm behaves on arbitrary
graphs. A result from Boodaghians, Kulkarni, and Mehta [BKM18] implies that an effi-
cient smoothed runtime of the 2-FLIP algorithm would also prove that the sequential-
better-response algorithm for k-strategy network coordination games has an efficient
smoothed runtime as well.

It would also be interesting to determine whether the 3-FLIP algorithm has an efficient
smoothed runtime for certain pivot rules such as the greedy pivot rule, or in certain
graph classes like complete graphs. It seems difficult to adapt the example from this
paper to these settings. However, at least in arbitrary graphs, our example implies that
one cannot show that every improving 3-flip sequence from any initial cut has quasi-
polynomial length when proving such results without imposing additional restrictions
on the 3-flip sequences considered.

Finally, it would be interesting to determine whether the smoothed runtime of the
FLIP algorithm on arbitrary graphs is polynomial, and whether the 2-FLIP algorithm
has a smoothed polynomial runtime on complete graphs. In these settings, only quasi-
polynomial smoothed runtime bounds are known [ER17, CGVG+20, CGVGY23].
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