Better bounds for perpetual gossiping

A.D. Scott
Department of Pure Mathematics
and Mathematical Statistics,
University of Cambridge,
16 Mill Lane, Cambridge, CB2 1SB, England.

Abstract

In the perpetual gossiping problem, introduced by Liestman and Richards, information may be generated at any time and at any vertex of a graph G; adjacent vertices can communicate by telephone calls. We define $W_{k}(G)$ to be the minimum w such that, placing at most k calls each time unit, we can ensure that every piece of information is known to every vertex within w time units of its generation. Improving upon results of Liestman and Richards, we give bounds on $W_{k}(G)$ for the cases when G is a path, cycle or hypercube.

§1. Introduction

In gossiping problems, each vertex of a graph knows a different piece of information which must be transmitted by telephone calls (along the edges of the graph) to every other vertex. Each telephone call involves exactly two vertices, each of which learns all the information known by the other vertex. A typical gossiping problem asks for the minimum number of calls required for every vertex to learn the information known to every other vertex; it has been shown by various authors (see [1], [3]) that $2 n-4$ calls are required for the complete graph on n vertices (this is sometimes known as the 'gossiping dons' problem; see [2]). For a survey on gossiping and related problems see Hedetniemi, Hedetniemi and Liestman [3].

In the perpetual gossiping problem, information may be generated at any time and at any vertex of a graph and must be communicated to the rest of the graph as quickly as possible. More formally, information may be generated at any set of vertices at the beginning of each time unit, and calls are made during the time unit (we may assume that it is generated at every vertex at the beginning of each time unit). A perpetual gossip scheme for a graph G is a sequence $\left(E_{i}\right)_{i=1}^{\infty}$, where E_{i} is an independent set of edges in G (each vertex can be involved in at most one call per time unit); $\left(E_{i}\right)_{i=1}^{\infty}$ is a k-call perpetual gossip scheme if in addition $\left|E_{i}\right| \leq k$ for every i (at most k calls are made each time unit). A piece of information generated at vertex v at the beginning of time unit $i+1$ is known to vertex v^{\prime} by time $i+w$ iff there is a sequence $\left\langle e_{1}, t_{1}\right\rangle, \ldots,\left\langle e_{s}, t_{s}\right\rangle$ such that $i+1 \leq t_{i}<\cdots<t_{s} \leq i+w$, e_{j} is an edge in $E_{t_{j}}$ for $j=1, \ldots, s$, and $e_{1} \ldots e_{s}$ is a path from v to v^{\prime}. If it is defined, we say that a perpetual gossip scheme P has gossip window of size w iff w is the smallest integer such that, for every i, every piece of information generated by time $i+1$ is known to every vertex by time $i+w$. It is easily seen that if, for a graph G, there is a k-call perpetual gossip scheme P with gossip window of size w, then there is a k call perpetual gossip scheme P^{\prime} that has the same window size and is also periodic.

In this paper we consider the problem, introduced by Liestman and Richards [4], of determining the smallest window size of a k-call perpetual gossip scheme for a fixed graph G. Given a graph G, we define $W_{k}(G)$ to be the smallest integer w such that there is a k-call perpetual gossip scheme P for G with gossip window
of size w. Liestman and Richards [4] gave bounds for $W_{k}(G)$ when G is a path, cycle, hypercube or complete graph. In this paper we give substantial improvements on some of these bounds. In particular, we determine $W_{k}\left(P_{n}\right)$ to within an additive constant, sharpen the lower bound on $W_{k}\left(C_{n}\right)$ and give asymptotically best possible bounds on $W_{k}\left(Q_{n}\right)$ for $k=o\left(2^{n} / n\right)$.

A lower bound on $W_{k}(G)$ is clearly given by $W_{k}(G) \geq \operatorname{diam}(G)$. As we shall remark below, for paths, cycles and hypercubes $W_{k}(G)$ is very close to $\operatorname{diam}(G)$; in fact, we have $W_{k}(G) \leq \operatorname{diam}(G)+1$ for $k \geq n / 2$.

We shall write $\langle e, t\rangle$ for a call made along edge e at time t; we say that $\langle e, t\rangle$ carries a piece of information a if one of the vertices of e knows a by time t.

We use standard notation [2]. We shall write $P_{n}\left(C_{n}\right)$ for the path (cycle) on n vertices and Q_{d} for the cube on 2^{d} vertices.

§2. Paths

For $k \geq\lceil(n-1) / 2\rceil$, the path P_{n} satisfies $w_{k}\left(P_{n}\right)=1$ (colour the edges of P_{n} alternately red and blue; the call scheme is obtained by alternating between all red and all blue edges). The range of interest is thus $k \leq\lceil(n-1) / 2\rceil$.

Liestman and Richards [4] prove that, for $n \geq 3$,

$$
W_{1}\left(P_{n}\right)=3 n-6
$$

and, for $n \geq 3$ and $2 \leq k \leq\left\lceil\frac{n-1}{2}\right\rceil$,

$$
\begin{equation*}
n+\left\lceil\frac{n-1}{k}\right\rceil-2 \leq W_{k}\left(P_{n}\right) \leq n+2\left\lceil\frac{n-2}{k}\right\rceil-2 . \tag{1}
\end{equation*}
$$

We prove that the upper bound is essentially best possible.

Theorem 1. For $n \geq 3$ and any k,

$$
W_{k}\left(P_{n}\right) \geq n+\left\lceil\frac{2(n-4)}{k}\right\rceil-4
$$

Proof. Let P be a path with n vertices, with endvertices A and B, and let the edges from A to B be labelled $1, \ldots, n-1$ in that order. Let C be an optimal
k-call perpetual gossiping scheme for P with gossip window of size $w=W_{k}(P)$. Let a_{t} and b_{t} denote the information generated at the beginning of the t th time unit at A and B respectively. We shall consider only information generated at A and B. Let us first consider information generated at A, and let C_{A} be a minimal subset of the call scheme C such that, for every t, a_{t} reaches B by time $t+w$. For every t, let $C_{A}\left(a_{t}\right)$ be the set of calls in C_{A} that first carries a_{t} along each edge. More precisely, $\langle i, s\rangle$ is in $C_{A}\left(a_{t}\right)$ iff

$$
\begin{equation*}
s=\inf \left\{u:\langle i, u\rangle \in C_{A} \text { and }\langle i, u\rangle \text { carries } a_{t}\right\} \tag{2}
\end{equation*}
$$

Clearly $C_{A}\left(a_{t}\right)$ is a path from A to B.
Now we claim that, for any s and t, either $C_{A}\left(a_{s}\right)=C_{A}\left(a_{t}\right)$ or $C_{A}\left(a_{s}\right)$ and $C_{A}\left(a_{t}\right)$ are disjoint. Indeed, suppose that

$$
C_{A}\left(a_{s}\right)=\left\{\left\langle 1, s_{1}\right\rangle, \ldots,\left\langle n-1, s_{n-1}\right\rangle\right\}
$$

and

$$
C_{A}\left(a_{t}\right)=\left\{\left\langle 1, t_{1}\right\rangle, \ldots,\left\langle n-1, t_{n-1}\right\rangle\right\}
$$

and that $s_{j}=t_{j}$, with j as small as possible. We shall show that $C_{A}\left(a_{s}\right)=C_{A}\left(a_{t}\right)$. Since $\left\langle j, s_{j}\right\rangle=\left\langle j, t_{j}\right\rangle$ carries both a_{s} and a_{t}, the call $\left\langle j+1, \min \left(s_{j+1}, t_{j+1}\right)\right\rangle$ also carries both a_{s} and a_{t}. It follows from (2) that $s_{j+1}=t_{j+1}$, and so by an inductive argument we have $s_{i}=t_{i}$ for $i \geq j$. In particular, a_{s} and a_{t} reach B at the same time. Now suppose that $j>1$. Without loss of generality, we may assume that $s_{1}<t_{1}$. We claim that this contradicts the definition of C_{A}. Let $C_{A}{ }^{\prime}=C_{A} \backslash\left\langle 1, s_{1}\right\rangle$, and suppose that a_{r} does not reach B by time $r+w$ under the call scheme $C_{A}{ }^{\prime}$. Now if $\left\langle 1, s_{1}\right\rangle$ is not in $C_{A}\left(a_{r}\right)$ then $C_{A}\left(a_{r}\right) \subset C_{A}{ }^{\prime}$, and a_{r} reaches B by time $r+w$. Otherwise, $\left\langle 1, s_{1}\right\rangle \in C_{A}\left(a_{r}\right)$ and so $C_{A}\left(a_{r}\right)$ and $C_{A}\left(a_{s}\right)$ coincide in their first call. Thus, as we have shown, $C_{A}\left(a_{r}\right)=C_{A}\left(a_{s}\right)$, and so a_{r} reaches B at the same time as a_{s} and a_{t}. However, since $t_{1}>s_{1}$ we have $C_{A}\left(a_{t}\right) \subset C_{A}{ }^{\prime}$, and so a_{r} reaches B in $C_{A}{ }^{\prime}$, by way of $C_{A}\left(a_{t}\right)$, at the same time as a_{s} and a_{t}, which is the same time that a_{r} reaches B in C_{A} Therefore we must have $j=1$ and so $C_{A}\left(a_{s}\right)=C_{A}\left(a_{t}\right)$.

We have shown that the sets $C_{A}\left(a_{t}\right)$ partition C_{A} into a collection of paths from A to B. Now a given path from A to B takes time at least $n-1$, so the time
between two paths leaving A is at most $w-n+1$. Let us define C_{B} analogously to C_{A} : we get a collection of paths from B to A, with at most $w-n+1$ time units between the beginning of two consecutive paths. Consider a path P from A to B in C_{A}, say starting at time $t+1$. Now P must finish, at the latest, at time $t+w$. Therefore any path in C_{B} that meets P must start no later than time $t-w+1$ and end no later than time $t+2 w$. Suppose P meets p paths Q_{1}, \ldots, Q_{p} from C_{B}. Since these paths are pairwise disjoint, Q_{1}, \ldots, Q_{p} must together use $p(n-1)$ calls, all of which must occur between time $t-w+1$ and time $t+2 w$. At most $3 w k$ calls can occur in this period, so $3 w k \geq p(n-1)$ and hence

$$
p \leq \frac{3 w k}{n-1}
$$

Let $p_{0}=3 w k /(n-1)$. Since a path must leave each of A and B at least once every $w-n+1$ time units, and each path meets at most p_{0} paths in the other direction, the average number of calls per time unit must be at least

$$
\frac{2(n-1)-p_{0}}{w-n+1}
$$

This quantity must be at most k, and so

$$
\begin{aligned}
w & \geq n-1+\frac{2(n-1)}{k}-\frac{p_{0}}{k} \\
& \geq n-1+\frac{2(n-1)}{k}-\frac{3 w}{n-1}
\end{aligned}
$$

Thus

$$
w\left(1+\frac{3}{n-1}\right) \geq n-1+\frac{2(n-1)}{k}
$$

and so

$$
\begin{aligned}
w\left(1-\left(\frac{3}{n-1}\right)^{2}\right) & \geq\left(1-\frac{3}{n-1}\right)\left(n-1+\frac{2(n-1)}{k}\right) \\
& =n-4+\frac{2(n-4)}{k} .
\end{aligned}
$$

Hence

$$
w \geq n-4+\left\lceil\frac{2(n-4)}{k}\right\rceil
$$

The upper bound in (1), which Liestman and Richards obtained by specifying a perpetual gossiping scheme, is probably best possible. This might follow from a more careful version of the argument above.

§3. Cycles

It is easily seen that cycles satisfy $W_{k}\left(C_{n}\right) \leq\lfloor n / 2\rfloor+2$ for $k \geq n / 2$, by taking a similar construction to that used for paths. Liestman and Richards [4] prove that, for $n \geq 3$,

$$
W_{1}\left(C_{n}\right)=2 n-3,
$$

and for $n \geq 3$ and $2 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$,

$$
\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{n-1}{2 k}\right\rfloor \leq W_{k}\left(C_{n}\right) \leq\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{n-1}{\lfloor k / 2\rfloor}\right\rfloor-2+f
$$

where $f=0$ if n is even and $f=2$ if n is odd. (Note that $\operatorname{diam}\left(C_{n}\right)=\lfloor n / 2\rfloor$). A careful examination of their construction for the upper bound shows that, in fact,

$$
\begin{equation*}
W_{k}\left(C_{n}\right) \leq\left\lfloor\frac{n}{2}\right\rfloor+\frac{n}{2\lfloor k / 2\rfloor}+\frac{n}{2\lceil k / 2\rceil}+c, \tag{3}
\end{equation*}
$$

where c is a constant ($c=3$ will do).
Our aim is to improve the lower bound. We begin with a result valid for all k.

Theorem 2. For $n \geq 6$ and any k,

$$
W_{k}\left(C_{n}\right) \geq\left\lfloor\frac{n}{2}\right\rfloor+\frac{n}{k}+O(1)
$$

Proof. Let A and B be points on C_{n}, distance $\left\lfloor\frac{n}{2}\right\rfloor$ apart, and let C be an optimal gossiping scheme for C_{n} with gossip window of size $w=W_{k}\left(C_{n}\right)$. We would like to be able to identify the two paths between A and B, to get a single path of length $n / 2$, and then apply Theorem 1 to get the desired lower bound. However, this approach involves some technical problems: the paths may be different lengths, and (less trivially) a legitimate call scheme in the cycle may correspond to an illegitimate scheme in the path, since we could end up with simultaneous calls on adjacent edges.

This being the case, we instead mimic the method of proof of Theorem 1. Once again, let C_{A} be a minimal subset of the calls C such that, for every t, a_{t} reaches B by time $t+w$, and let C_{B} be defined analogously. A similar argument to that in the proof of Theorem 1 gives us a set of paths from A to B partitioning C_{A} and a set of paths from B to A partitioning C_{B}, where each path has length at least $\left\lfloor\frac{n}{2}\right\rfloor$. The same set of calculations as before, with $\lfloor n / 2\rfloor$ in place of n, yields

$$
\begin{aligned}
W_{k}\left(C_{n}\right) & \geq\left\lfloor\frac{n}{2}\right\rfloor+\left\lceil\frac{2(\lfloor n / 2\rfloor-4)}{k}\right\rceil-4 \\
& \geq\left\lfloor\frac{n}{2}\right\rfloor+\frac{n-9}{k}-4
\end{aligned}
$$

For $k \geq 5$ we can do rather better than this.

Theorem 3. For $n \geq 3$ and $k \geq 5$ we have

$$
\begin{equation*}
W_{k}\left(C_{n}\right) \geq\left\lfloor\frac{n}{2}\right\rfloor+\frac{3 n}{2 k}+O(1) \tag{4}
\end{equation*}
$$

Proof. We may assume that $n \geq n_{0}$, for any fixed n_{0}, adjusting the $O(1)$ term if necessary. For $k \geq 5$ it follows from (3) that $W_{k}\left(C_{n}\right) \leq \frac{11 n}{12}+O(1)$. Let n_{0} be large enough such that $W_{k}\left(C_{n}\right)<\frac{12 n}{13}$ for $n \geq n_{0}$; we shall assume $n \geq n_{0}$.

As before, let C be an optimal gossiping scheme for C_{n} with gossip window of size $w=W_{k}\left(C_{n}\right)$. Let A_{0}, \ldots, A_{12} be thirteen points spread as evenly as possible around C_{n}, with A_{i} closest to A_{i+1} and A_{i-1} for each i (we take $A_{0} \equiv A_{13}$). We shall consider only the information generated by A_{i}, for each i. Let a_{t} be the information generated at A_{1} at time t, and let C be an optimal call scheme for C_{n}. Since $W_{k}\left(C_{n}\right)<\frac{12 n}{13}$, a_{t} must first reach A_{0} and A_{2} along the shortest path to each of these vertices (going round the other way would take too many time units). Let P_{1} be the path from A_{0} to A_{2} containing A_{1} and let \mathcal{C}_{1} be a minimal set of calls from C such that, for every t, a_{t} reaches each of A_{0} and A_{2} no later in \mathcal{C}_{1} than in C. Let \mathcal{C}_{i} be the analogous set of calls for A_{i}, for $i=1, \ldots, 13$. As before, we see that \mathcal{C}_{i} can be decomposed into a set of paths from A_{i} to A_{i-1} or from A_{i} to A_{i+1}.

Now let us consider a particular piece of information a_{t}. Suppose the first path in \mathcal{C}_{1} from A_{1} to A_{0} starting at time t or later begins at time $a_{t+t_{1}}$ and the first path to A_{2} begins at time $a_{t+t_{2}}$. It is easily seen that a_{t} does not reach the whole of C_{n} before time $t+r$, where

$$
\begin{equation*}
r=\frac{n-1+t_{1}+t_{2}}{2} \tag{5}
\end{equation*}
$$

since at time r the paths through A_{0} and A_{2} have reached at most $r-t_{1}$ and $r-t_{2}$ vertices respectively. Now suppose that paths leave A_{1} (to A_{0} or A_{2}) on average every s time units (we may assume that this average exists, since we may assume that C is periodic). We claim that there is some t such that, if $t+t_{1}$ and $t+t_{2}$ are the starting times of the earliest paths from A_{1} to A_{0} and from A_{1} to A_{2} respectively, then $t_{1}+t_{2} \geq 3 s-2$. Indeed, suppose paths leave A_{1} at times $s_{1} \leq s_{2} \leq \cdots$, . For $i \geq 1$, let $r_{i}=s_{i+1}-s_{i}$, so $r_{i} \geq 0$. The piece of information a_{i+1} leaves A_{1} in one direction no earlier than s_{i+1}, and in the other direction no earlier than s_{i+2}. Thus the sum of the two waiting times is at most $\left(s_{i+1}-s_{i}-1\right)+\left(s_{i+2}-s_{i}-1\right)=2 r_{i}+r_{i+1}-2$. Since the average value of r_{i} is s, the average of $2 r_{i}+r_{i+1}-2$ is $3 s-2$, as claimed.

It follows from (5) that

$$
w \geq \frac{n-1+3 s-2}{2}
$$

and so

$$
\begin{equation*}
s \leq \frac{2 w-n+3}{3} \tag{6}
\end{equation*}
$$

Let P be any path from A_{1} to A_{0} in \mathcal{C}_{1}, and let Q be a path from A_{0} to A_{1} in \mathcal{C}_{0} that meets P. Now if P starts at time t then Q must start no earlier than time $t-w+1$ and finish no later than time $t+2 w$ (since each path takes no more than w time units). Since there are at most $3 k w$ calls made in this time and each path requires at least $\left\lfloor\frac{n}{13}\right\rfloor$ calls, P can meet at most p paths, where

$$
\begin{equation*}
p \leq 3 k w /\left\lfloor\frac{n}{13}\right\rfloor \tag{7}
\end{equation*}
$$

(note that the paths met by P are pairwise disjoint). Now, summing the calls in $\bigcup_{i=1}^{13} \mathcal{C}_{i}$, it follows from (6) that the average number of calls per time unit is at least

$$
13\left(\left\lfloor\frac{n}{13}\right\rfloor-\frac{p}{2}\right) /\left(\frac{2 w-n+3}{3}\right) .
$$

Thus

$$
k \geq \frac{39\left\lfloor\frac{n}{13}\right\rfloor-\frac{39 p}{2}}{2 w-n+3}
$$

and so

$$
w \geq \frac{n}{2}+\frac{3 n}{2 k}+O(1)
$$

since it follows from (3) and (7) that $p=O(k)$. The assertion of the theorem follows immediately.

We conjecture that the upper bound given in (3), which follows from a perpetual gossiping scheme given by Liestman and Richards [4], is best possible. In order to prove this it seems necessary somehow to take account of the way that chains of calls running round C_{n} in opposite directions are 'staggered'.

§4. Hypercubes

Let Q_{d} denote the d-dimensional hypercube, which has diameter $\operatorname{diam}\left(Q_{d}\right)=d$. Liestman and Richards [4] prove that, for $d \geq 2$ and $1 \leq k \leq 2^{d-1}$,

$$
W_{k}\left(Q_{d}\right) \leq \min \left\{(d+1)\left\lceil\frac{2^{d-1}}{k}\right\rceil-1,2^{d-1}+\left\lfloor\frac{2^{d}}{\lfloor k / 2\rfloor}\right\rfloor-2\right\}
$$

and

$$
W_{k}\left(Q_{d}\right) \geq\left\lfloor\frac{2^{d-1}-1}{k}\right\rfloor+\left\lceil\log _{2} k\right\rceil+\left\lceil\frac{2^{d}-2^{\left\lceil\log _{2} k\right\rceil}}{k}\right\rceil .
$$

We determine the asymptotic value of $W_{k}\left(Q_{d}\right)$, provided that $k=k(d)$ does not grow too fast.

Theorem 4. Let $k=k(d)$ satisfy $k(d)=o\left(2^{d} / d\right)$. Then

$$
W_{k}\left(Q_{d}\right)=(1+o(1)) \frac{2^{d+1}}{k}
$$

Proof. We begin with the lower bound. Liestman and Richards [4] showed that $W_{k}\left(K_{n}\right) \geq\left\lceil\frac{2 n-4}{k}\right\rceil$. Since Q_{d} can be identified with a subgraph of $K_{2^{d}}$, it is clear that

$$
W_{k}\left(Q_{d}\right) \geq W_{k}\left(K_{2^{d}}\right) \geq\left\lfloor\frac{2^{d+1}-4}{k}\right\rfloor=(1+o(1)) \frac{2^{d+1}}{k}
$$

For the upper bound, we construct a perpetual gossiping scheme. One approach would be to split Q_{d} into many subcubes of equal size and conduct simultaneous Hamiltonian cycles in each of them. This would suffice for gossiping within each subcube, but not for gossiping between subcubes. Our idea is then to insert fairly frequent phases of gossiping between the subcubes such that different Hamiltonian cycles regularly exchange information.

More precisely, suppose $d \geq 3$ and let $i=\left\lceil\log _{2} k\right\rceil$. Pick h such that $h=o\left(2^{d} / k d\right)$ and $h \rightarrow \infty$ as $n \rightarrow \infty$. Let $h_{j}=\left\lfloor 2^{d-i} j / h\right\rfloor$, for $j=0, \ldots, h$. Fixing the first i coordinates, we obtain a $(d-i)$-dimensional subcube: let $R_{1}, \ldots, R_{2^{i}}$ be the subcubes obtained in this way. Similarly, let $S_{1}, \ldots, S_{2^{d-i}}$ be the i-dimensional subcubes obtained by fixing all but the first i coordinates. (Thus we have split $Q_{d} \cong Q_{i} \times Q_{d-i}$ into subcubes in two ways.) Let $v_{1}^{(j)}, \ldots, v_{2^{d-i}}^{(j)}$ be a Hamiltonian cycle in R_{j}, for $j=1, \ldots, 2^{i}$; call this cycle C_{j}. Picking the Hamiltonian cycles appropriately and relabelling if necessary, we may assume that $V_{i}^{(j)}$ is the unique vertex in $R_{j} \cap S_{i}$. We split each Hamiltonian cycle into h paths by setting $P_{s}^{(j)}$ to be the portion of C_{j} from $v_{h_{s-1}}^{(j)}$ to $v_{h_{s}}^{(j)}$, where we take $h_{2^{i}} \equiv h_{0}$.
We construct a call scheme as follows. We begin with simultaneously tracing out the paths $P_{1}^{(j)}$, for $j=1, \ldots, 2^{i}$. If $k=2^{i}$ then we can do this easily. In the general case, we 'stagger' the cycles as follows. Let $e_{1}^{(j)} \ldots e_{r}^{(j)}$ be the edges of the path chosen in R_{j}, where $r=h_{1}-h_{0}$. The call scheme is obtained by moving through the sequence $e_{1}^{(1)}, \ldots, e_{1}^{\left(2^{i}\right)}, e_{2}^{(1)}, \ldots, e_{2}^{\left(2^{i}\right)}, \ldots, e_{r}^{(1)}, \ldots, e_{r}^{\left(2^{i}\right)}$, taking k calls each time unit. This takes total time at most $\left\lceil\left(h_{1}-h_{0}\right) 2^{i} / k\right\rceil+1$.

We now perform all-to-all gossiping on the i-dimensional cube $S_{h_{1}}$ of endvertices of the paths $P_{1}^{(j)}$, in $2 d$ time units (this can be done by making calls in $S_{h_{1}}$ along all edges in a given direction, which takes at most 2 time units, then repeating for the other directions in $S_{h_{1}}$). We continue with the paths $P_{2}^{(j)}$ and then the cube $S_{h_{2}}$, and so on.

A vertex can remain free from calls for at most

$$
\begin{aligned}
\sum_{j=1}^{h}\left(\left\lceil\frac{\left(h_{j}-h_{j-1}\right) 2^{i}}{k}\right\rceil+1\right)+2 d h & \leq h \frac{\left(2^{d-i} / h\right) 2^{i}}{k}+2 h+2 d h \\
& =\frac{2^{d}}{k}+2 h+2 d h
\end{aligned}
$$

time units. Once information has been transmitted from a vertex, it is transmitted to every other cycle within

$$
\max _{j}\left(\left\lceil\frac{\left(h_{j}-h_{j-1}\right) 2^{i}}{k}\right\rceil+1\right)+2 d \leq(1+o(1)) \frac{2^{d}}{h k}+2 d
$$

time units, and is then transmitted to every other vertex in at most another

$$
\frac{2^{d}}{k}+2 h+2 d h
$$

time units. Thus the maximum time for a given piece of information to reach a given vertex is at most

$$
\frac{2^{d+1}}{k}+4 h+4 d h+(1+o(1)) \frac{2^{d}}{k h}+2 d=(1+o(1)) \frac{2^{d+1}}{k}
$$

References

[1] R. Bumby, A Problem with Telephones, SIAM J. Alg. Disc. Meth. 2 (1981), 13-18.
[2] B. Bollobás, Extremal Graph Theory, Academic Press, 1978, xx +488 pp.
[3] S.T. Hedetniemi, S.M. Hedetniemi and A.L. Liestman, A Survey of Broadcasting and Gossiping on Communication Networks, Networks 18 (1988), 314-349.
[4] A.L. Liestman and D. Richards, Perpetual Gossiping, Parallel Processing, to appear.

