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Abstract. In the perpetual gossiping problem, introduced by Liestman and Richards,

information may be generated at any time and at any vertex of a graph G; adjacent

vertices can communicate by telephone calls. We define Wk(G) to be the minimum w

such that, placing at most k calls each time unit, we can ensure that every piece of

information is known to every vertex within w time units of its generation. Improving

upon results of Liestman and Richards, we give bounds on Wk(G) for the cases when G

is a path, cycle or hypercube.
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§1. Introduction

In gossiping problems, each vertex of a graph knows a different piece of information

which must be transmitted by telephone calls (along the edges of the graph) to

every other vertex. Each telephone call involves exactly two vertices, each of

which learns all the information known by the other vertex. A typical gossiping

problem asks for the minimum number of calls required for every vertex to learn

the information known to every other vertex; it has been shown by various authors

(see [1], [3]) that 2n − 4 calls are required for the complete graph on n vertices

(this is sometimes known as the ‘gossiping dons’ problem; see [2]). For a survey

on gossiping and related problems see Hedetniemi, Hedetniemi and Liestman [3].

In the perpetual gossiping problem, information may be generated at any time and

at any vertex of a graph and must be communicated to the rest of the graph as

quickly as possible. More formally, information may be generated at any set of

vertices at the beginning of each time unit, and calls are made during the time unit

(we may assume that it is generated at every vertex at the beginning of each time

unit). A perpetual gossip scheme for a graph G is a sequence (Ei)
∞
i=1, where Ei is

an independent set of edges in G (each vertex can be involved in at most one call

per time unit); (Ei)
∞
i=1 is a k-call perpetual gossip scheme if in addition |Ei| ≤ k for

every i (at most k calls are made each time unit). A piece of information generated

at vertex v at the beginning of time unit i+ 1 is known to vertex v′ by time i+w

iff there is a sequence 〈e1, t1〉, . . . , 〈es, ts〉 such that i + 1 ≤ ti < · · · < ts ≤ i + w,

ej is an edge in Etj for j = 1, . . . , s, and e1 . . . es is a path from v to v′. If it is

defined, we say that a perpetual gossip scheme P has gossip window of size w iff w

is the smallest integer such that, for every i, every piece of information generated

by time i + 1 is known to every vertex by time i + w. It is easily seen that if, for

a graph G, there is a k-call perpetual gossip scheme P with gossip window of size

w, then there is a k call perpetual gossip scheme P ′ that has the same window

size and is also periodic.

In this paper we consider the problem, introduced by Liestman and Richards [4],

of determining the smallest window size of a k-call perpetual gossip scheme for a

fixed graph G. Given a graph G, we define Wk(G) to be the smallest integer w

such that there is a k-call perpetual gossip scheme P for G with gossip window
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of size w. Liestman and Richards [4] gave bounds for Wk(G) when G is a path,

cycle, hypercube or complete graph. In this paper we give substantial improve-

ments on some of these bounds. In particular, we determine Wk(Pn) to within an

additive constant, sharpen the lower bound on Wk(Cn) and give asymptotically

best possible bounds on Wk(Qn) for k = o(2n/n).

A lower bound on Wk(G) is clearly given by Wk(G) ≥ diam(G). As we shall

remark below, for paths, cycles and hypercubes Wk(G) is very close to diam(G);

in fact, we have Wk(G) ≤ diam(G) + 1 for k ≥ n/2.

We shall write 〈e, t〉 for a call made along edge e at time t; we say that 〈e, t〉 carries
a piece of information a if one of the vertices of e knows a by time t.

We use standard notation [2]. We shall write Pn (Cn) for the path (cycle) on n

vertices and Qd for the cube on 2d vertices.

§2. Paths

For k ≥ d(n − 1)/2e, the path Pn satisfies wk(Pn) = 1 (colour the edges of Pn

alternately red and blue; the call scheme is obtained by alternating between all

red and all blue edges). The range of interest is thus k ≤ d(n− 1)/2e.

Liestman and Richards [4] prove that, for n ≥ 3,

W1(Pn) = 3n− 6

and, for n ≥ 3 and 2 ≤ k ≤ dn−12 e,

n +

⌈
n− 1

k

⌉
− 2 ≤Wk(Pn) ≤ n + 2

⌈
n− 2

k

⌉
− 2. (1)

We prove that the upper bound is essentially best possible.

Theorem 1. For n ≥ 3 and any k,

Wk(Pn) ≥ n +

⌈
2(n− 4)

k

⌉
− 4.

Proof. Let P be a path with n vertices, with endvertices A and B, and let the

edges from A to B be labelled 1, . . . , n − 1 in that order. Let C be an optimal
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k-call perpetual gossiping scheme for P with gossip window of size w = Wk(P ).

Let at and bt denote the information generated at the beginning of the tth time

unit at A and B respectively. We shall consider only information generated at A

and B. Let us first consider information generated at A, and let CA be a minimal

subset of the call scheme C such that, for every t, at reaches B by time t+w. For

every t, let CA(at) be the set of calls in CA that first carries at along each edge.

More precisely, 〈i, s〉 is in CA(at) iff

s = inf{u : 〈i, u〉 ∈ CA and 〈i, u〉 carries at}. (2)

Clearly CA(at) is a path from A to B.

Now we claim that, for any s and t, either CA(as) = CA(at) or CA(as) and CA(at)

are disjoint. Indeed, suppose that

CA(as) = {〈1, s1〉, . . . , 〈n− 1, sn−1〉}

and

CA(at) = {〈1, t1〉, . . . , 〈n− 1, tn−1〉},

and that sj = tj , with j as small as possible. We shall show that CA(as) = CA(at).

Since 〈j, sj〉 = 〈j, tj〉 carries both as and at, the call 〈j + 1,min(sj+1, tj+1)〉 also

carries both as and at. It follows from (2) that sj+1 = tj+1, and so by an inductive

argument we have si = ti for i ≥ j. In particular, as and at reach B at the same

time. Now suppose that j > 1. Without loss of generality, we may assume that

s1 < t1. We claim that this contradicts the definition of CA. Let CA
′ = CA\〈1, s1〉,

and suppose that ar does not reach B by time r + w under the call scheme CA
′.

Now if 〈1, s1〉 is not in CA(ar) then CA(ar) ⊂ CA
′, and ar reaches B by time r+w.

Otherwise, 〈1, s1〉 ∈ CA(ar) and so CA(ar) and CA(as) coincide in their first call.

Thus, as we have shown, CA(ar) = CA(as), and so ar reaches B at the same time

as as and at. However, since t1 > s1 we have CA(at) ⊂ CA
′, and so ar reaches B

in CA
′, by way of CA(at), at the same time as as and at, which is the same time

that ar reaches B in CA Therefore we must have j = 1 and so CA(as) = CA(at).

We have shown that the sets CA(at) partition CA into a collection of paths from

A to B. Now a given path from A to B takes time at least n − 1, so the time
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between two paths leaving A is at most w − n + 1. Let us define CB analogously

to CA: we get a collection of paths from B to A, with at most w − n + 1 time

units between the beginning of two consecutive paths. Consider a path P from

A to B in CA, say starting at time t + 1. Now P must finish, at the latest, at

time t+w. Therefore any path in CB that meets P must start no later than time

t−w+ 1 and end no later than time t+ 2w. Suppose P meets p paths Q1, . . . , Qp

from CB . Since these paths are pairwise disjoint, Q1, . . . , Qp must together use

p(n − 1) calls, all of which must occur between time t − w + 1 and time t + 2w.

At most 3wk calls can occur in this period, so 3wk ≥ p(n− 1) and hence

p ≤ 3wk

n− 1
.

Let p0 = 3wk/(n − 1). Since a path must leave each of A and B at least once

every w − n + 1 time units, and each path meets at most p0 paths in the other

direction, the average number of calls per time unit must be at least

2(n− 1)− p0
w − n + 1

.

This quantity must be at most k, and so

w ≥ n− 1 +
2(n− 1)

k
− p0

k

≥ n− 1 +
2(n− 1)

k
− 3w

n− 1
.

Thus

w

(
1 +

3

n− 1

)
≥ n− 1 +

2(n− 1)

k
,

and so

w

(
1−

(
3

n− 1

)2
)
≥
(

1− 3

n− 1

)(
n− 1 +

2(n− 1)

k

)
= n− 4 +

2(n− 4)

k
.

Hence

w ≥ n− 4 +

⌈
2(n− 4)

k

⌉
.
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The upper bound in (1), which Liestman and Richards obtained by specifying a

perpetual gossiping scheme, is probably best possible. This might follow from a

more careful version of the argument above.

§3. Cycles

It is easily seen that cycles satisfy Wk(Cn) ≤ bn/2c + 2 for k ≥ n/2, by taking a

similar construction to that used for paths. Liestman and Richards [4] prove that,

for n ≥ 3,

W1(Cn) = 2n− 3,

and for n ≥ 3 and 2 ≤ k ≤ bn2 c,⌊n
2

⌋
+

⌊
n− 1

2k

⌋
≤Wk(Cn) ≤

⌊n
2

⌋
+

⌊
n− 1

bk/2c

⌋
− 2 + f,

where f = 0 if n is even and f = 2 if n is odd. (Note that diam(Cn) = bn/2c). A

careful examination of their construction for the upper bound shows that, in fact,

Wk(Cn) ≤
⌊n

2

⌋
+

n

2bk/2c
+

n

2dk/2e
+ c, (3)

where c is a constant (c = 3 will do).

Our aim is to improve the lower bound. We begin with a result valid for all k.

Theorem 2. For n ≥ 6 and any k,

Wk(Cn) ≥
⌊n

2

⌋
+

n

k
+ O(1).

Proof. Let A and B be points on Cn, distance bn2 c apart, and let C be an optimal

gossiping scheme for Cn with gossip window of size w = Wk(Cn). We would like to

be able to identify the two paths between A and B, to get a single path of length

n/2, and then apply Theorem 1 to get the desired lower bound. However, this

approach involves some technical problems: the paths may be different lengths,

and (less trivially) a legitimate call scheme in the cycle may correspond to an

illegitimate scheme in the path, since we could end up with simultaneous calls on

adjacent edges.
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This being the case, we instead mimic the method of proof of Theorem 1. Once

again, let CA be a minimal subset of the calls C such that, for every t, at reaches

B by time t + w, and let CB be defined analogously. A similar argument to that

in the proof of Theorem 1 gives us a set of paths from A to B partitioning CA and

a set of paths from B to A partitioning CB , where each path has length at least

bn2 c. The same set of calculations as before, with bn/2c in place of n, yields

Wk(Cn) ≥
⌊n

2

⌋
+

⌈
2(bn/2c − 4)

k

⌉
− 4

≥
⌊n

2

⌋
+

n− 9

k
− 4.

For k ≥ 5 we can do rather better than this.

Theorem 3. For n ≥ 3 and k ≥ 5 we have

Wk(Cn) ≥
⌊n

2

⌋
+

3n

2k
+ O(1). (4)

Proof. We may assume that n ≥ n0, for any fixed n0, adjusting the O(1) term

if necessary. For k ≥ 5 it follows from (3) that Wk(Cn) ≤ 11n
12 + O(1). Let n0 be

large enough such that Wk(Cn) < 12n
13 for n ≥ n0; we shall assume n ≥ n0.

As before, let C be an optimal gossiping scheme for Cn with gossip window of

size w = Wk(Cn). Let A0, . . . , A12 be thirteen points spread as evenly as possible

around Cn, with Ai closest to Ai+1 and Ai−1 for each i (we take A0 ≡ A13). We

shall consider only the information generated by Ai, for each i. Let at be the

information generated at A1 at time t, and let C be an optimal call scheme for

Cn. Since Wk(Cn) < 12n
13 , at must first reach A0 and A2 along the shortest path

to each of these vertices (going round the other way would take too many time

units). Let P1 be the path from A0 to A2 containing A1 and let C1 be a minimal

set of calls from C such that, for every t, at reaches each of A0 and A2 no later

in C1 than in C. Let Ci be the analogous set of calls for Ai, for i = 1, . . . , 13. As

before, we see that Ci can be decomposed into a set of paths from Ai to Ai−1 or

from Ai to Ai+1.
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Now let us consider a particular piece of information at. Suppose the first path

in C1 from A1 to A0 starting at time t or later begins at time at+t1 and the first

path to A2 begins at time at+t2 . It is easily seen that at does not reach the whole

of Cn before time t + r, where

r =
n− 1 + t1 + t2

2
, (5)

since at time r the paths through A0 and A2 have reached at most r − t1 and

r − t2 vertices respectively. Now suppose that paths leave A1 (to A0 or A2) on

average every s time units (we may assume that this average exists, since we may

assume that C is periodic). We claim that there is some t such that, if t + t1

and t + t2 are the starting times of the earliest paths from A1 to A0 and from

A1 to A2 respectively, then t1 + t2 ≥ 3s − 2. Indeed, suppose paths leave A1 at

times s1 ≤ s2 ≤ · · ·,. For i ≥ 1, let ri = si+1 − si, so ri ≥ 0. The piece of

information ai+1 leaves A1 in one direction no earlier than si+1, and in the other

direction no earlier than si+2. Thus the sum of the two waiting times is at most

(si+1 − si − 1) + (si+2 − si − 1) = 2ri + ri+1 − 2. Since the average value of ri is

s, the average of 2ri + ri+1 − 2 is 3s− 2, as claimed.

It follows from (5) that

w ≥ n− 1 + 3s− 2

2
,

and so

s ≤ 2w − n + 3

3
. (6)

Let P be any path from A1 to A0 in C1, and let Q be a path from A0 to A1 in C0
that meets P . Now if P starts at time t then Q must start no earlier than time

t−w+ 1 and finish no later than time t+ 2w (since each path takes no more than

w time units). Since there are at most 3kw calls made in this time and each path

requires at least b n
13c calls, P can meet at most p paths, where

p ≤ 3kw
/ ⌊ n

13

⌋
(7)

(note that the paths met by P are pairwise disjoint). Now, summing the calls in⋃13
i=1 Ci, it follows from (6) that the average number of calls per time unit is at

least

13
(⌊ n

13

⌋
− p

2

)/(2w − n + 3

3

)
.
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Thus

k ≥
39b n

13c −
39p
2

2w − n + 3

and so

w ≥ n

2
+

3n

2k
+ O(1),

since it follows from (3) and (7) that p = O(k). The assertion of the theorem

follows immediately.

We conjecture that the upper bound given in (3), which follows from a perpetual

gossiping scheme given by Liestman and Richards [4], is best possible. In order to

prove this it seems necessary somehow to take account of the way that chains of

calls running round Cn in opposite directions are ‘staggered’.

§4. Hypercubes

Let Qd denote the d-dimensional hypercube, which has diameter diam(Qd) = d.

Liestman and Richards [4] prove that, for d ≥ 2 and 1 ≤ k ≤ 2d−1,

Wk(Qd) ≤ min

{
(d + 1)

⌈
2d−1

k

⌉
− 1, 2d−1 +

⌊
2d

bk/2c

⌋
− 2

}
.

and

Wk(Qd) ≥
⌊

2d−1 − 1

k

⌋
+ dlog2 ke+

⌈
2d − 2dlog2 ke

k

⌉
.

We determine the asymptotic value of Wk(Qd), provided that k = k(d) does not

grow too fast.

Theorem 4. Let k = k(d) satisfy k(d) = o(2d/d). Then

Wk(Qd) = (1 + o(1))
2d+1

k
.

Proof. We begin with the lower bound. Liestman and Richards [4] showed that

Wk(Kn) ≥
⌈
2n−4

k

⌉
. Since Qd can be identified with a subgraph of K2d , it is clear

that

Wk(Qd) ≥Wk(K2d) ≥
⌊

2d+1 − 4

k

⌋
= (1 + o(1))

2d+1

k
.
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For the upper bound, we construct a perpetual gossiping scheme. One approach

would be to split Qd into many subcubes of equal size and conduct simultaneous

Hamiltonian cycles in each of them. This would suffice for gossiping within each

subcube, but not for gossiping between subcubes. Our idea is then to insert fairly

frequent phases of gossiping between the subcubes such that different Hamiltonian

cycles regularly exchange information.

More precisely, suppose d ≥ 3 and let i = dlog2 ke. Pick h such that h = o(2d/kd)

and h → ∞ as n → ∞. Let hj = b2d−ij/hc, for j = 0, . . . , h. Fixing the first

i coordinates, we obtain a (d − i)-dimensional subcube: let R1, . . . , R2i be the

subcubes obtained in this way. Similarly, let S1, . . . , S2d−i be the i-dimensional

subcubes obtained by fixing all but the first i coordinates. (Thus we have split

Qd
∼= Qi ×Qd−i into subcubes in two ways.) Let v

(j)
1 , . . . , v

(j)

2d−i be a Hamiltonian

cycle in Rj , for j = 1, . . . , 2i; call this cycle Cj . Picking the Hamiltonian cycles

appropriately and relabelling if necessary, we may assume that V
(j)
i is the unique

vertex in Rj ∩Si. We split each Hamiltonian cycle into h paths by setting P
(j)
s to

be the portion of Cj from v
(j)
hs−1

to v
(j)
hs

, where we take h2i ≡ h0.

We construct a call scheme as follows. We begin with simultaneously tracing out

the paths P
(j)
1 , for j = 1, . . . , 2i. If k = 2i then we can do this easily. In the

general case, we ‘stagger’ the cycles as follows. Let e
(j)
1 . . . e

(j)
r be the edges of the

path chosen in Rj , where r = h1 − h0. The call scheme is obtained by moving

through the sequence e
(1)
1 , . . . , e

(2i)
1 , e

(1)
2 , . . . , e

(2i)
2 , . . . , e

(1)
r , . . . , e

(2i)
r , taking k calls

each time unit. This takes total time at most d(h1 − h0)2i/ke+ 1.

We now perform all-to-all gossiping on the i-dimensional cube Sh1 of endvertices

of the paths P
(j)
1 , in 2d time units (this can be done by making calls in Sh1

along

all edges in a given direction, which takes at most 2 time units, then repeating for

the other directions in Sh1
). We continue with the paths P

(j)
2 and then the cube

Sh2 , and so on.

A vertex can remain free from calls for at most

h∑
j=1

(⌈
(hj − hj−1)2i

k

⌉
+ 1

)
+ 2dh ≤ h

(2d−i/h)2i

k
+ 2h + 2dh

=
2d

k
+ 2h + 2dh
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time units. Once information has been transmitted from a vertex, it is transmitted

to every other cycle within

max
j

(⌈
(hj − hj−1)2i

k

⌉
+ 1

)
+ 2d ≤ (1 + o(1))

2d

hk
+ 2d

time units, and is then transmitted to every other vertex in at most another

2d

k
+ 2h + 2dh

time units. Thus the maximum time for a given piece of information to reach a

given vertex is at most

2d+1

k
+ 4h + 4dh + (1 + o(1))

2d

kh
+ 2d = (1 + o(1))

2d+1

k
.
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