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Abstract

Given two random hypergraphs, or two random tournaments of
order n, how much (or little) can we make them overlap by placing
them on the same vertex set? We give asymptotic answers to this
question.

1 Introduction

Let G and H be two random hypergraphs or two random tournaments of
order n. If we place G and H on the same vertex set, how much can we make
the two graphs of tournaments agree (or disagree)? The aim of this paper is
to give asymptotic answers to this question.

1.1 Tournaments

Let T and T ′ be two tournaments of order n. If we place T, T ′ randomly on
the same vertex set then the expected number of common edges (i.e. edges
with the same orientation) is (1/2)

(
n
2

)
. The positive discrepancy disc+(T, T ′)

measures how much more we can get the two tournaments to agree, and the
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negative discrepancy disc−(T, T ′) measures how much more we can get them
to disagree. Formally, we define:

disc+(T, T ′) := max
φ
|E(φ(T )) ∩ E(T ′)| − 1

2

(
n

2

)
,

disc−(T, T ′) :=
1

2

(
n

2

)
−min

φ
|E(φ(T )) ∩ E(T ′)|,

where the maximum is taken over all bijections φ from the vertex set of T to
the vertex set of T ′. We also define the (unsigned) discrepancy disc(T, T ′) =
max{disc+(T, T ′), disc−(T, T ′)}.

The transitive tournament TTn of order n is the tournament with vertex
set [n] and directed edges {ij : i < j}. Note that positive and negative
discrepancy are the same when one tournament is transitive: disc+(T, TTn) =
disc−(T, TTn), as we can reverse all edges of TTn by reversing the order of the
vertices. The random tournament of order n is the tournament with vertex
set [n], where independently for each pair {i, j} the tournament contains the
edges ij or ji with probability 1/2 each.

The minimal value of disc+(T, TTn) has been extensively studied. Let

f(n) = min
|T |=n

disc+(T, TTn),

where the minimum is taken over all tournaments of order n. After being
studied by several authors (see Erdős and Moon [11], Reid [18] and Jung
[14]), the order of magnitude of f(n) was determined by Spencer ([20], [21];
see also Fernandez de la Vega [13]), who showed that

f(n) = Θ(n3/2).

In fact, Spencer showed that with high probability a random tournament T
satisfies

disc+(T, TTn) = Θ(n3/2).

Here, we will consider the discrepancy disc(T, T ′) when both tournaments
T and T ′ are random. We will show in Section 3 that for a pair of ran-
dom tournaments the discrepancy is much larger than Θ(n3/2): in fact, with
exponentially small failure probability, we have

disc(T, T ′) = Θ(n3/2
√

log n).
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We note that the discrepancy of tournaments has been considered by a
number of authors (see, for instance, Rödl and Spencer [17], Berger and Shor
[1] and Czygrinow Poljak and Rödl [9] for algorithmic results). Discrepancy
has also been studied in social choice theory, and is equivalent to determining
the Slater index (see Slater [19], Bermond [2], Laslier [15], Charon and Hudry
[8]).

1.2 Hypergraphs

Let G and H be two k-uniform hypergraphs of order n, with densities p and
q respectively. If we place G and H randomly on the same vertex set then
the expected number of common edges is pq

(
n
k

)
. The positive discrepancy

disc+(G,H) measures the extent to which we can get the two graphs to
overlap, and the negative discrepancy disc−(G,H) measures the extent to
which we can get them to be disjoint. Formally, we define:

disc+(G,H) := max
φ
|φ(E(G)) ∩ E(H)| − pq

(
n

k

)
disc−(G,H) := pq

(
n

k

)
−min

φ
|φ(E(G)) ∩ E(H)|,

where the maximum is taken over all bijections φ from V (G) to V (H). We
also define the discrepancy disc(G,H) = max{disc+(G,H), disc−(G,H)}.
We note that a related measure for the discrepancy of a single hypergraph
was introduced by Erdős and Spencer [12], and further investigated by Erdős,
Goldberg, Pach and Spencer [10] and Bollobás and Scott [5] (who introduced
the signed versions of discrepancy).

The random k-uniform hypergraph G(k)(n, p) is the k-uniform hypergraph
with vertex set [n], where each of the possible

(
n
k

)
edges is present indepen-

dently with probability p. It follows easily from the results of [5] (see also [6])
that if G is (for instance) a complete k-uniform hypergraph on n/2 vertices,
together with n/2 isolated vertices, and H is a random k-uniform hypergraph
with density p, then (for a large range of p) with high probability

disc(G,H) = Θ(
√
p(1− p)n(k+1)/2). (1)

In the case k = 2, a bound of form Ω(n(k+1)/2 holds much more generally:
it was shown in [6] that if G and H are graphs of order n, with densities p
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and q respectively, then

disc+(G,H)disc−(G,H) ≥ c(p, q)n3. (2)

In particular, if p and q are bounded away from 1 then disc(G,H) = Ω(n3/2).
In light of the results above, it seems plausible that a version of (2)

should extend to k-uniform hypergraphs along the lines of (1) (indeed, we
conjectured this in [6]). However we showed in [7] that such a straightfor-
ward extension does not hold even for k=3, as there is a pair of nontrivial
3-uniform hypergraphs G, H with disc(G,H) = 0. More generally, if we
allow edge weights, then for every k ≥ 2 we construct a collection of k non-
trivial weighted hypergraphs such that every pair has discrepancy 0 (here,
a hypergraph is nontrivial if its weight function is not constant). On the
other hand, if we take on additional hypergraph we do get a version of (2):
every set of k + 1 nontrivial weighted hypergraphs has some pair that has
discrepancy at least Ω(n(k+1)/2), up to normalization. Further discusssion, as
well as more detailed positive results, can be found in [7].

In this paper, we will consider the discrepancy disc(G,H) when both G
and H are random k-uniform hypergraphs. We will show in Section 4, for a
large range of p and q, that if G ∈ G(k)(n, p) and H ∈ G(k)(n, q) then with
failure probability exp(−n1−ε) both positive and negative discrepancies have
order

Θ(n(k+1)/2
√
p(1− p)q(1− q) log n).

Note that this beats (1) by a factor
√

log n, similarly to the tournament
case. In Section 4, we also investigate the behaviour of positive and negative
discrepancies for p and q in the range where this does not happen.

2 Tools

We shall need some standard bounds on the binomial distribution. For sim-
plicity we gather these together in this section.

We use standard Chernoff bounds: if X is a sum of Bernoulli random
variables and µ = EX then

P[X > EX + t] ≤ exp

(
−t2

2µ+ 2t/3

)
(3)

and

P[X < EX − t] ≤ exp

(
−t2

2µ

)
(4)
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It follows from (3) and (4) that

P[|X − EX| > t] ≤ 2 exp(−min{t2/4µ, 3t/4}). (5)

We will use the elementary fact that if X ∼ B(n, p), where np(1 − p) =
Ω(1), then P[X = bnpc] = Ω(1/

√
np(1− p)) uniformly in n and p. This

follows immediately from the facts: (1) P[X = t] is maximized at t = bnpc or
t = dnpe; (2) P[|X − np| ≤ 2

√
np(1− p)] ≥ 3/4, by Chebyshev’s Inequality;

and (3) if np is not an integer then, with t = bnpc, P[X = t+ 1]/P[X = t] =
p(n− t)/(1− p)(t+ 1) = Θ(1), as np = Ω(1).

The following version of De Moivre-Laplace (see [3]) will also be useful.

Lemma 1. Suppose p = p(n) and h = h(n) satisfy p(1 − p)n → ∞ and
|h| = o((p(1− p)n)2/3). Suppose that X ∼ B(n, p). Then

P[X ≥ np+ h] ∼ 1− Φ(h/
√
p(1− p)n).

In particular, if x = x(n) is bounded away from 0 and ∞, and p(1 −
p)n/(log n)3 →∞, then

P[X ≥ np+ x
√
p(1− p)n log n] ∼ 1

x
√

2π log n
n−x

2/2.

Proof. The first assertion is a version of de Moivre-Laplace given in [3]. For
the second, we have x

√
p(1− p)n log n = o((p(1− p)n)2/3) and so

P[X ≥ EX + x
√
p(1− p)n log n] ∼ 1− Φ(t) ∼ e−t

2/2/t
√

2π,

where t = x
√
p(1− p)n log n/(

√
p(1− p)n) = x

√
log n.

We also note the following simple bound.

Lemma 2. Suppose n ≥ 1 and p = p(n) are such that p(1 − p)n ≥ 10, and
suppose

|K| ≤ p(1− p)n/2.

Then, for X ∼ B(n, p),

P[X = dnp+Ke] = Ω(e−K
2/p(1−p)n/

√
np(1− p)),

uniformly in n, p,K.
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Proof. Suppose that X ∼ B(n, p) and p(1− p)n ≥ 10. Then as noted above
P[X = dnpe] = Ω(1/

√
np(1− p)), uniformly in n, p. Now if np + k is an

integer then

P[X = np+ k + 1]

P[X = np+ k]
=

p

1− p
n− (np+ k)

np+ k + 1
=

1− k/(1− p)n
1 + (k + 1)/pn

.

If 0 ≤ k ≤ p(1− p)n/2 then k/(1− p)n ≤ 1/2 and so

1− k/(1− p)n
1 + (k + 1)/pn

≥ e−2k/(1−p)n−(k+1)/pn ≥ e−2(k+1)/p(1−p)n,

where we have used the fact that 1− t ≥ exp(−2t) for t ∈ [0, 3/4]. Similarly,
if 0 ≥ k ≥ −p(1− p)n/2− 1 then

1− k/(1− p)n
1 + (k + 1)/pn

=
1 + |k|/(1− p)n
1− (|k| − 1)/pn

≤ e|k|/(1−p)n+2(|k|−1)/pn ≤ e2|k|/p(1−p)n,

It follows that, for |K| ≤ p(1− p)n/2,

P[X = dnp+Ke] ≥ P[X = dnpe] ·
∏

0≤k≤|K|+1

e−2(k+1)/p(1−p)n

≥ Ω(1/
√
np(1− p)) · e−(K+3)2/p(1−p)n

= Ω(e−K
2/p(1−p)n/

√
np(1− p)),

uniformly in n, p,K.

Lemma 2 transfers straightforwardly to a bound on intersections of ran-
dom subsets of [n] with fixed size.

Lemma 3. There is a constant c such that the following holds. Suppose n ≥ 1
and n1, n2 ≤ n, and define p = n1/n, q = n2/n, σ =

√
p(1− p)q(1− q)n.

Let A and B be random subsets of [n] chosen independently and uniformly
at random, with |A| = n1 and |B| = n2. If σ2 ≥ c, and L is a real number
such that pqn+ L is an integer and

|L| ≤ σ2/5, (6)

then
P[|A ∩B| = pqn+ L] = Ω(e−3L2/σ2

/σ), (7)

uniformly in p, q, n.
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Proof. We will take c to be sufficiently large for our estimates below to hold.
We may assume thatA is fixed, andB is chosen at random. So the probability
that |A ∩B| = pqn+ L is equal to(

pn

pqn+ L

)(
(1− p)n

q(1− p)n− L

)
/

(
n

qn

)
.

From Lemma 2 we know

qqpn+L(1− q)(1−q)pn−L
(

pn

pqn+ L

)
= Ω(e−L

2/q(1−q)pn/
√
pnq(1− q))

and

qq(1−p)n−L(1− q)(1−q)(1−p)n+L

(
(1− p)n

q(1− p)n− L

)
= Ω(e−L

2/q(1−q)(1−p)n/
√

(1− p)nq(1− q)).

Taking the product of the previous two equations, and dividing through by
qqn(1− q)(1−q)n( n

qn

)
= Θ(1/

√
q(1− q)n), the result follows.

Note that, for suitable L and σ, the bound in Lemma 3 can be summed
over an interval of length σ to obtain an inequality of form

P[|A ∩B| ≥ pqn+ L] = Ω(e−4L2/σ2

). (8)

3 Random tournaments

The aim of this section is to prove that, for a pair of random tournaments
T1, T2, we have with high probability

disc+(T1, T2) = Θ(n3/2
√

log n).

It follows immediately that (with high probability) disc−(T1, T2) has the same
order of magnitude: if we let T 1 be the tournament obtained from T1 by
reversing all edges, it is clear that T1 and T 1 have the same distribution,
while disc−(T1, T2) = disc+(T 1, T2).

Theorem 4. For every ε > 0 there are constants α, β > 0 such that the
following holds. Let T1, T2 be random tournaments of order n. Then, with
failure probability exp(−Ω(n1−ε)),

αn3/2
√

log n ≤ disc+(T1, T2) ≤ βn3/2
√

log n.
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Proof. The upper bound is straightforward. For any bijection φ : V (T1) →
V (T2), the number of common edges is distributed as B(

(
n
2

)
, 1/2). By (3),

for fixed β > 0, the probability that the number of common edges exceeds
its expectation by βn3/2

√
log n is at most exp(−β2n3 log n/(2 + o(1))1

2

(
n
2

)
) <

exp(−(2 + o(1))β2n log n) = o(e−n/n!), provided β > 1/
√

2. Since there
are n! possible mappings φ, we then have disc+(T1, T2) < βn3/2

√
log n with

failure probability exp(−Ω(n)).
For the lower bound, we will construct a bijection φ : V (T1)→ V (T2) in

three rounds.
We begin by setting V = V (T1) = {v1, . . . , vn} and W = V (T2) =

{w1, . . . , wn}. We set r = bn/2c and write V0 = {v1, . . . , vr}, V1 = V \ V0,
W0 = {w1, . . . , wr}, W1 = W \ W0. We also define the induced tourna-
ments T ′1 = T1[V0] and T ′2 = T2[W0]. We write Γ±1 (·) and Γ±2 (·) for the
in-neighbourhood/out-neighbourhood of vertices in T1 and T2 respectively.

In the first round, we take an arbitrary bijection between V0 and W0:
define φ : V0 → W0 by setting φ(vi) = wi for i = 1, . . . , r. Let X1 =
|φ(E(T ′1))∩E(T ′2)| be the number of edges on which the two orientations (of
edges in W0) agree. Then X1 ∼ B(

(
r
2

)
, 1/2), and so by (4) we have

X1 ≥
1

2

(
r

2

)
− n3/2, (9)

with failure probability e−Ω(n).
Let V2 ⊂ V1 be an arbitrary set of s = bn/6c vertices. In the second

round, we construct an injection φ : V2 → W1, so that we gain significantly
more than the expected number of common edges in the bipartite digraph
between φ(V2) and W0 (we do not examine the edges inside φ(V2) at this
point).

For each v ∈ V2 and w ∈ W1, we let Xvw be the number of edges between
v and V0 that would have the same orientation as their image if we mapped
v to w:

Xvw = |φ(Γ+
1 (v) ∩ V0) ∩ Γ+

2 (w) ∩W0|+ |φ(Γ−1 (v) ∩ V0) ∩ Γ−2 (w) ∩W0|.

Then Xvw ∼ B(r, 1/2), so by Lemma 1 we can pick a constant η > 0 such
that, for all sufficiently large n,

P[Xvw ≥ n/4 + η
√
n log n] = n−α

for some α = α(η, n) < ε/2.
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We define a bipartite graph B with vertex classes V2 and W1, with v ∈ V2

joined to w ∈ W1 if Xvw ≥ n/4 + η
√
n log n. We shall show that with high

probability this graph contains a matching, and then use this to construct
our mapping from V2 to W1. Note that the edges of B are not independent.
However, for each v ∈ V2, the random variables {Xvw : w ∈ W1} are inde-
pendent, and for each w ∈ W1, the random variables {Xvw : v ∈ V2} are
independent; this will be enough for us to bound the degrees of vertices in B,
which will in turn be enough to prove the existence of the required matching.

For fixed v ∈ V2, let Nv = dB(v) = |{w ∈ W1 : Xvw ≥ n/4 + η
√
n log n}|.

The random variables {Xvw : w ∈ W1} are independent, so Nv ∼ B(n −
r, n−α). Since ENv = n−α(n− r) ∼ n1−α/2, it follows from (5) that P[Nv <
n1−α/3] < exp(−Ω(n1−α)). Thus, with failure probability exp(−Ω(n1−α)) we
have

Nv ≥ n1−α/3 (10)

for all v ∈ V0.
Similarly, for w ∈ W1, we let Nw = |{v ∈ V2 : Xvw ≥ n/4 + η

√
n log n}|.

The random variables {Xvw : v ∈ V2} are independent, so Nw ∼ B(s, n−α).
Now ENw = n−αs ∼ n1−α/6, so by (5), P[Nw > n1−α/3] < exp(−Ω(n1−α)).
Thus, with failure probability exp(−Ω(n1−α)) we have

Nw ≤ n1−α/3 (11)

for all w ∈ W1.
If (10) and (11) hold, then every vertex in V2 has degree at least n1−α/3

in B, while every vertex in W1 has degree at most n1−α/3 in B. It follows
that |ΓB(S)| ≥ |S| for every subset S of V2, and so by Hall’s Theorem there
is a matching M in B from V2 to W1. Let us define φ : V2 → W1 by mapping
each vertex of V2 to its partner in M . The number of edges between W0 and
φ(V2) that are oriented in the same direction in both T2 and the image of T1

is then at least

(n/4 + η
√
n log n)s =

1

2
rs+ Ω(n3/2

√
log n). (12)

Finally, in the third round, we extend φ to a bijection between V and W
by choosing a random bijection between the remaining vertices in each set.
Let X2 be the number of edges in common between φ(T1) and T2 that lie
either inside W1 or between W1 \ φ(V2) and W0. Then X2 is binomial with

9



mean 1
2
(
(
n−r

2

)
+ r(n− r − s)), and so by (4) we have

X2 ≥
1

2

(
n− r

2

)
+

1

2
r(n− r − s)− n3/2 (13)

with failure probability e−Ω(n) (note that we have not looked at these edges
in T1 before this step of the argument).

Finally, we note that with failure probability exp(−Ω(n1−α)) all of (9),
(12) and (13) hold. Summing these, we see that the number of common edges
between φ(T1) and T2 is at least 1

2

(
n
2

)
+ Ω(n3/2

√
log n).

4 Random hypergraphs

We now turn to the discrepancy of pairs of random hypergraphs.
We note first that there are trivial upper bounds on the positive and

negative discrepancies. Let G1, G2 be k-uniform hypergraphs of order n with
densities p and q respectively. The maximum possible positive discrepancy
over such pairs occurs when we can nest one inside the other, so that G1 and
G2 have min{p, q}

(
n
k

)
common edges. Subtracting the expected intersection

of pq
(
n
k

)
, we get

disc+(G1, G2) ≤ min{p(1− q)
(
n

k

)
, (1− p)q

(
n

k

)
}. (14)

Similarly, the maximum negative discrepancy occurs when G1 and G2 have
maximum possible overlap, and so are nested; in this case G1 and G2 share
min{q, 1−p}

(
n
k

)
edges and so G1 and G2 share q

(
n
k

)
−min{q, 1−p}

(
n
k

)
edges.

Subtracting this from pq
(
n
k

)
gives

disc−(G1, G2) ≤ min{(1− p)(1− q)
(
n

k

)
, pq

(
n

k

)
}. (15)

We can also deduce (15) from (14), as replacing one of the hypergraphs G1,
G2 by its complement exchanges disc+(G1, G2) and disc−(G1, G2).

Our aim here is to show that, if G1 and G2 are random hypergraphs with
densities p and q, we get a similar phenomenon to the tournament case. In
particular, we will first show that for a wide range of densities the positive
and negative discrepancies are both (with high probability) of order

Θ(n(k+1)/2
√
p(1− p)q(1− q) log n). (16)
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We will then turn, in the final part of this section, to the sparse case, where
the behaviour is rather different.

We will need a little notation. For a k-uniform hypergraph G, a vertex
v ∈ V (G) and a set S ⊂ V (G) we define

Γ(v, S) = {T ⊂ S : |T | = k − 1, T ∪ {v} ∈ E(G)}.

Note that if G is a graph then Γ(v, S) = Γ(v) ∩ S; more generally, if G is
a k-uniform hypergraph then Γ(v, S) is the edge set of a (k − 1)-uniform
hypergraph on S.

For sets S and T of vertices in a k-uniform hypergraph G, we also define
e(i,k−i)(S, T ) to be the number of edges that have i vertices in S and k − i
vertices in T .

4.1 Dense hypergraphs

The trivial bounds (14) and (15) imply that

min{disc+(G1, G2), disc−(G1, G2)}

≤
(
n

k

)
min{p(1− q), (1− p)q, pq, (1− p)(1− q)}

=

(
n

k

)
min{p, 1− p} ·min{q, 1− q}

= O(p(1− p)q(1− q)nk).

If positive and negative discrepancies both behave as in (16), we must have

n(k+1)/2
√
p(1− p)q(1− q) log n = O(p(1− p)q(1− q)nk),

and so p(1 − p)q(1 − q) = Ω(log n/nk−1). We will show that if p and q
satisfy this constraint then, with high probability, the positive and negative
discrepancies do indeed both have order Θ(n(k+1)/2

√
p(1− p)q(1− q) log n).

Theorem 5. Fix k ≥ 2 and ε > 0. Let p = p(n) and q = q(n) satisfy
p, q ∈ (0, 1) and p(1 − p)q(1 − q) = Ω(log n/nk−1). Let G1 ∈ G(k)(n, p)
and G2 ∈ G(k)(n, q) be random k-uniform hypergraphs. Then, with failure
probability exp(−Ω(n1−ε)),

disc+(G1, G2) = Θ(n(k+1)/2
√
p(1− p)q(1− q) log n) (17)

and
disc−(G1, G2) = Θ(n(k+1)/2

√
p(1− p)q(1− q) log n). (18)
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Proof. The proof will follow a similar strategy to that of Theorem 4; however,
there are some additional complications.

We may assume that p, q ≤ 1/2, or else replace one or both of G1, G2 by
its complement (recall that replacing one of the graphs by its complement
exchanges positive and negative discrepancies). We may also assume p ≤
q, or else exchange G1 and G2. So q(n) = Ω(

√
log n/nk−1) and p(n) =

Ω(log n/nk−1).
The upper bounds in (17) and (18) are straightforward. For a fixed

bijection φ : V (G1)→ V (G2), the number Xφ of common edges is distributed
as B(

(
n
k

)
, pq). Let α ≥ 1 and set t = αn(k+1)/2

√
pq log n and µ = pq

(
n
k

)
≤

pqnk. We use (5): since t2/µ = Ω(α2n log n) and t = α
√
pqnk+1 log n =

Ω(αn log n), we have P[|Xφ−EXφ| > t] = n−Ω(αn). There are n! choices for φ,
so for sufficiently large α it follows that, with failure probability exp(−Ω(n)),

max{disc+(G1, G2), disc−(G1, G2)}
≤ disc+(G1, G2) + disc−(G1, G2)

= max
φ
|φ(E(G1)) ∩ E(G2)| −min

φ
|φ(E(G1)) ∩ E(G2)|

= O(n(k+1)/2
√
pq log n).

As p, q ≤ 1/2, this is O(n(k+1)/2
√
p(1− p)q(1− q) log n).

For the lower bounds, we will as before construct a bijection φ : V (G1)→
V (G2) in three rounds. We will prove (17), and then note that (18) follows
with straightforward changes to the argument.

We begin as before by setting V = V (G1) = {v1, . . . , vn} and W =
V (G2) = {w1, . . . , wn}. We set r = bn/2c and write V0 = {v1, . . . , vr},
V1 = V \ V0, W0 = {w1, . . . , wr}, W1 = W \W0. We write Γ1(·, ·) and Γ2(·, ·)
for neighbourhoods in G1 and G2 respectively.

For convenience, we will refer to edges in G1 that have i vertices in V1

and edges in G2 that have i vertices in W1 as i-crossedges (so for instance
edges inside V0 or W0 are 0-crossedges).

In the first round, we define φ : V0 → W0 by setting φ(vi) = wi for
i = 1, . . . , r. The number of common edges in W0 (i.e. |φ(E(G′1)) ∩ E(G′2)|)
has distribution B(

(
r
k

)
, pq), which has expectation µ = Θ(pqnk). For α >

0, and t = αn(k+1)/2
√
p(1− p)q(1− q), we have t2/µ = Ω(α2n) and t =

αn
√
pqnk−1 = Ω(αn

√
log n), as p, q ≤ 1/2 and pqnk−1 = Ω(log n). So by (5),
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we have

pq

(
r

k

)
+O(n(k+1)/2

√
p(1− p)q(1− q)) (19)

common edges, with failure probability exp(−Ω(n)). Note that (19) depends
only on the edges inside V0 and W0.

We now concentrate on 1-crossedges: we show that we can get many
common crossedges, and examine other types of crossedge later. We choose
a subset V2 of V1 and construct an injection φ : V2 → W1, so that we gain
significantly more than the expected number of common 1-crossedges in the
bipartite graph between φ(V2) and W0. However, we have to be a little careful
here. As in the tournament case, it is natural to map v to w if the image of
Γ1(v, V0) has a large overlap with Γ2(w,W0). But this could happen because
we have picked vertices in W1 that have many crossedges: the remaining
vertices of W1 will have fewer 1-crossedges (on average), and so we would
expect to lose when we pair them with vertices from V1. We must also be
careful to preserve sufficient independence between edges, and to ensure that
we can control the degree sequence in the bipartite graph B (of pairs (v, w)
with large common neighbourhood) so as to guarantee Hall’s condition.

We therefore proceed as follows (we will give an informal sketch, and
then a formal algorithm). We start by choosing subsets V2 ⊂ V1 and W2 ⊂
W1, putting aside the remaining vertices to use later. We examine the 1-
crossedges from V2 and from W2, and drop to subsets V3 and W3 such that
|W3| ∼ 2|V3| and all vertices in V3 and W3 have roughly the expected number
of 1-crossedges. We next adjust the neighbourhoods of vertices in V3 and W3

by randomly removing edges so that every vertex in V3 has a neighbourhood
of size exactly bp

(
r

k−1

)
c in V0 and every vertex in W3 has a neighbourhood

of size exactly bq
(

r
k−1

)
c in W0 (this is not essential for the algorithm, but

simplifies the analysis). We then argue, as is the tournament case, that
with high probability there is a matching from V3 to W3 such that every
pair creates many additional common 1-crossedges. Finally we clean up:
we pair off the unused vertices of V2 and W2 at random with vertices that
were put aside earlier (we have not previously examined 1-crossedges from
these), and pair off any leftover vertices at random. As we shall show, with
high probability the gain in the matching step outweighs any loss from the
unexamined 1-crossedges and the crossedges of other types.

More formally, let R =
(

r
k−1

)
. We choose a small constant η > 0, and

apply the following algorithm.
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1. Let V2 ⊂ V1 be an arbitrary set of bn/8c vertices, and let W2 ⊂ W1 be
an arbitrary subset of bn/4c vertices.

2. Let V3 ⊂ V2 be a set of bn/40c vertices v such that |Γ1(v, V0)| ∈
(pR, pR +

√
p(1− p)R) and let W3 ⊂ W2 be a set of bn/20c vertices

w such that |Γ2(w,W0)| ∈ (qR, qR+
√
q(1− q)R). [If these cannot be

found, the algorithm fails.]

3. For each v ∈ V3, choose uniformly at random a set Av ⊂ Γ1(v, V0) such
that |Av| = bRpc. For each w ∈ W3, choose uniformly at random a set
Bw ⊂ Γ2(w,W0) such that |Bw| = bRqc.

4. Define a bipartite graph B with vertex classes V3 and W3 such that
v ∈ V3 is adjacent to w ∈ W3 if

|φ(Av) ∩Bw| ≥ pqR + η
√
p(1− p)q(1− q)R log n. (20)

5. Find a perfect matching M in B from V3 to W3, and use this to define
φ on V3. [If this is cannot be done, the algorithm fails.]

6. Extend the domain of φ to include the rest of V2 by taking a random
injection from V2 \ V3 to W1 \W2.

7. Extend the range of φ to include the rest of W2 by taking a random
injection from W2 \ φ(V3) to V1 \ V2 (and let this be φ−1 on W2 \W3).

8. Finally, extend the domain to the whole of V1 by picking a random
bijection from the remaining vertices of V1 to the remaining vertices of
W1.

We will show that with high probability the algorithm succeeds, and gives
a mapping demonstrating (17). Note that the algorithm can only fail at Step
2 and Step 5.

In Step 2, we know that pR→∞, so Lemma 1 implies that |Γ1(v, V0)| ∈
(pR, pR +

√
p(1− p)R) with asymptotic probability Φ(1) − Φ(0) ≈ 0.341.

Thus, provided n is sufficently large, we have P[|Γ(v) ∩ V0| ∈ (pR, pR +√
p(1− p)R)] > 1/3, independently for each v ∈ V2. The number of vertices

in V2 that satisfy this is therefore (stochastically) bounded below by a ran-
dom variable with distribution B(bn/8c, 1/3). It follows by (5) that, with
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exponentially small failure probability, there are more than n/40 vertices
available for V3. A similar argument applies to W3.

In Step 3, note that the collection of all sets Av and Bw is independent,
as is the collection of sets given by Γ1(v, V0), v ∈ V1, and Γ2(w,W0), w ∈ W1.

In Step 4, let Evw be the event that the edge vw is in B. We bound P[Evw]
from below using Lemma 3: note that we are applying the lemma with param-
eters p̃ = bRpc/R = (1 +O(1/nk−1))p and q̃ = bRqc/R = (1 +O(1/nk−1))q;

and then L ∼ η
√
p̃(1− p̃)q̃(1− q̃)R log n = Θ(η

√
pqnk−1 log n). Now since

pqnk−1 = Ω(log n), we have L = O(ηpqnk−1), which satisfies (6) if η is suffi-
ciently small; we also have σ2 ∼ p̃(1− p̃)q̃(1− q̃)R, so L2/σ2 ∼ Θ(η2 log n).
It follows from Lemma 3 as in (8) that, provided η is sufficiently small,
P[Evw] = α for some α = α(p, q, n) ≥ n−ε.

For each v ∈ V3, the sets Bw, w ∈ W3, are independent from each other
and from Av, and so the events {Evw : w ∈ W3} are independent. Thus
dB(v) ∼ B(bn/20c, α), and so EdB(v) ∼ αn/20 = Ω(n1−ε). It follows from
(5) that P[dB(v) < αn/30] < exp(−Ω(n1−ε)). Thus, with failure probability
exp(−Ω(n1−ε)) we have

dB(v) ≥ αn/30 (21)

for all v ∈ V3.
Similarly, for each w ∈ W3, the events {Evw : v ∈ V3} are indepen-

dent, so dB(w) ∼ B(bn/40c, α). By (5), we have P[dB(w) > αn/30] <
exp(−Ω(n1−ε)). Thus, with failure probability exp(−Ω(n1−ε)) we have

dB(w) ≤ αn/30 (22)

for all w ∈ W3.
If (21) and (22) hold, then every vertex in V3 has degree at least αn/30 in

B, while every vertex in W3 has degree at most αn/30. As before, it follows
by Hall’s Theorem there is a matching M in B from V3 to W3. We define
φ : V3 → W3 by mapping each vertex of V3 to its partner in M .

We have shown that the algorithm succeeds in running with high prob-
ability. We now examine the number of common edges between φ(G1) and
G2. We have already controlled the number of edges inside W0 by (19); we
next consider edges between W0 and W1.

For each v ∈ V3, it follows from (20) that we obtain at least

pqR + η
√
p(1− p)q(1− q)R log n
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common 1-crossedges (note that we may obtain more than |φ(Av) ∩ Bφ(v)|
edges, as we deleted some edges in Step 3). Summing over V3, this gives a
total of at least

pqR|V3|+ Ω(n(k+1)/2
√
p(1− p)q(1− q) log n) (23)

common crossedges.
The next three steps are very similar. In Step 6, we take a random

mapping from V2\V3 to W1\W2. We have already examined the 1-crossedges
between V3 and V0: let

m1 = e
(1,k−1)
1 (V2 \ V3, V0) = e

(1,k−1)
1 (V2, V0)− e(1,k−1)

1 (V3, V0).

Now e
(1,k−1)
1 (V2, V0) ∼ B(R|V2|, p). Applying (5) with µ = pR|V2| = Θ(pnk)

and t = αn(k+1)/2
√
p(1− p) = Ω(n log n), for a suitable constant α, we see

that with failure probability exp(−Ω(n)) we have e
(1,k−1)
1 (V2, V0) = pR|V2|+

O(n(k+1)/2
√
p(1− p)). On the other hand, by our choice of V3, we have

e
(1,k−1)
1 (V3, V0) = pR|V3|+O(|V3|

√
p(1− p)R) = pR|V3|+O(n(k+1)/2

√
p(1− p)).

So with failure probability exp(−Ω(n)),

m1 = pR(|V2| − |V3|) +O(n(k+1)/2
√
p(1− p)) = Θ(pnk),

as pnk−1 → ∞. Since we have not yet examined the 1-crossedges in G2

between φ(V1\V3) andW0, the number of common crossedges has distribution
B(m1, q). By (5) again, with µ = m1q = Θ(pqnk) and t = αn(k+1)/2√pq =
Ω(log n), we see that with failure probability exp(−Ω(n)) the number of
common crossedges is qm1 +O(n(k+1)/2√pq), which equals

pqR(|V2| − |V3|) +O(n(k+1)/2
√
p(1− p)q(1− q)). (24)

Applying the same argument (with p and q reversed) in Step 7 to W2 \
φ(V3), with failure probability exp(−Ω(n)), the number of common 1-crossedges
between W0 and W2 \ φ(V3) is

pqR(|W2| − |V3|) +O(n(k+1)/2
√
p(1− p)q(1− q)). (25)

Moving to Step 8, we argue as in (19): the number of common 1-crossedges
we gain in this step has distribution B(N, pq), where N = R(|V1| − |V2| −
|W2|+ |V3|), and so by (5) is

pqR(|V1| − |V2| − |W2|+ |V3|) +O(n(k+1)/2
√
p(1− p)q(1− q)), (26)
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with failure probability exp(−Ω(n)).
Adding (23), (24), (25) and (26) together, we get that the total number

of common 1-crossedges is, with failure probability exp(−Ω(n1−ε)), at least

pqR|V1|+ Ω(n(k+1)/2
√
p(1− p)q(1− q) log n). (27)

Note that the event (27), and the preceding algorithm, depend on 1-crossedges.
Finally, we count the number of common edges inside φ(V1) = W1 and

the number of common i-crossedges for i = 2, . . . , k− 1. As we have not pre-
viously looked at these edges, the number of common edges has distribution
B(
(
n
k

)
−
(
r
k

)
− (n− r)

(
r

k−1

)
, pq), and so as in (19) is within

O(n(k+1)/2
√
p(1− p)q(1− q)) (28)

of its expectation, with failure probability exp(−Ω(n)).
Finally, we note that (19), (27) and (28) all hold with failure probability

exp(−Ω(n1−ε)), and so with failure probability exp(−Ω(n1−ε)) the number of
common edges between φ(G1) and G2 is at least

pq

(
n

k

)
+ Ω(n(k+1)/2

√
p(1− p)q(1− q) log n).

The argument for negative discrepancy is the same, except that we look
for degrees in the intervals (pR−

√
p(1− p)R, pR) and (qR−

√
q(1− q)R, qR)

in Step 2, choose supersets in Step 3, and adjust (20) to: |φ(Av) ∩ Bw| ≤
pqR− η

√
p(1− p)q(1− q)R log n.

4.2 Sparse hypergraphs

The bounds in Theorem 5 hold as long as p(1−p)q(1−q) = Ω(log n/nk−1). As
noted above, these bounds can no longer hold for very sparse or dense pairs
of graphs: for instance, if pq = o(log n/nk−1), we expect disc−(G1, G2) =
O(pq

(
n
k

)
) = O(pqnk) = o(n(k+1)/2

√
pq log n), so the bound (18) on the nega-

tive discrepancy cannot hold. On the other hand, there is no such constraint
on the positive discrepancy. In this section, we investigate this regime.

As usual, we may assume that p, q ≤ 1/2 (as we can always complement
either graph and exchange positive and negative discrepancies). Thus the
negative discrepancy must be at most pqnk, while the positive discrepancy
can be much larger.
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Theorem 6. Fix k ≥ 2. Suppose p, q ≤ 1/2, pnk → ∞ and qnk → ∞.
Suppose that pqnk−1 = log n/β, where β = β(n) → ∞. Then, with high
probability, for G1 ∈ G(k)(n, p) and G2 ∈ G(k)(n, q), we have

disc−(G1, G2) = Θ(pqnk) (29)

and
disc+(G1, G2) = Θ(min{pnk, qnk, n log n/ log β}). (30)

Proof. We begin with the positive discrepancy. We first prove the lower
bound. Define K = K(n, p, q) by

K = min{pnk−1, qnk−1, log n/ log β}/(8 · k!).

Thus our aim is to show that disc+(G1, G2) = Ω(Kn).
Note that, since min{p, q}nk →∞, it follows from (3) and (4) that with

high probability e(G1) = (1 + o(1))p
(
n
k

)
and e(G2) = (1 + o(1))q

(
n
k

)
. Thus

if we write p∗, q∗ for the density of G1, G2 respectively, we have with high
probability pq

(
n
k

)
− p∗q∗

(
n
k

)
= o(pqnk) = o(Kn).

Suppose first that min{p, q} ≤ 10/nk−1 and max{p, q} ≤ 1/(2000 · k!).
With high probability there are matchings of size at least min{p, q}

(
n
k

)
/100

in both G1 and G2 (this is easly shown by choosing the edges of G1 one at a
time, and taking a greedy matching). Picking a mapping φ : V (G1)→ V (G2)
for which two such matchings coincide, we may ensure that G1 and G2 have at
least min{p, q}

(
n
k

)
/100 common edges. On the other hand, e(G1)e(G2)/

(
n
k

)
=

(1 + o(1))pq
(
n
k

)
≤ (1 + o(1)) min{p, q}

(
n
k

)
/200, so we get disc+(G1, G2) =

Ω(min{p, q}nk) = Ω(Kn), as required.
Next, suppose that min{p, q} ≥ 10/nk−1 and max{p, q} ≤ 1/(2000 · k!).

We have pqnk = n log n/β = o(n log n/ log β) and pq
(
n
k

)
≤ min{p, q}nk/(2000·

k!); so, for sufficiently large n, pq
(
n
k

)
≤ Kn/200, and in order to show that

disc+(G1, G2) = Ω(Kn) it is therefore enough to find a placement of G1 and
G2 so that they have at least Kn/100 common edges.

Let r = bn/2c and R =
(

r
k−1

)
. We follow a slightly simplified version

of the algorithm in the proof of Theorem 5. The first round is as before:
we select the partitions V (G1) = V0 ∪ V1 and V (G2) = W0 ∪ W1, with
|V0| = |W0| = r, and a random bijection φ : V0 → W0. In the second
round, we follow as far as Step 5 of the algorithm in Theorem 5, with some
adjustments as follows.
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1. Let V3 ⊂ V1 be a set of bn/20c vertices v such that |Γ1(v, V0)| ≥ pR and
let W3 ⊂ W1 be a set of bn/10c vertices w such that |Γ2(w,W0)| ≥ qR.
[If this is cannot be done, the algorithm fails.]

2. For each v ∈ V3, choose uniformly at random a set Av ⊂ Γ1(v, V0) such
that |Av| = bRpc. For each w ∈ W3, choose uniformly at random a set
Bw ⊂ Γ2(w,W0) such that |Bw| = bRqc.

3. Define a bipartite graph B∗ with vertex classes V3 and W3 such that
v ∈ V3 is adjacent to w ∈ W3 if

|φ(Av) ∩Bw| ≥ K.

4. Find a perfect matching M in B∗ from V3 to W3, and use this to define
φ on V3. [If this is cannot be done, the algorithm fails.]

5. Extend the domain of φ to include the rest of V by taking a random
injection between V \ V3 and W \W3.

If the algorithm succeeds then we have found a suitable placement.
It is easily seen that Step 1 fails with exponentially small probability (by

Lemma 1, each vertex in V1 or W1 is available for V3 or W3 independently
with probability at least 1/3). Using φ, we may identify V0 = W0 = [r]. Let
us bound from below the probability that an edge vw is present in B. Let
A be a fixed pR-set in [r](k−1), and let B be a random qR-set (we shall omit
floors and ceilings from now on). We select elements for B from [r](k−1) one at
a time, without replacement. We shall say initially that a choice is successful
if it belongs to A; after we have had K successful choices, we say that each
subsequent choice is successful with probability p/2 (regardless of whether it
belongs to A). Thus we have |A ∩B| ≥ K if and only if we have K or more
successful choices. Note that if we have had fewer than K successes, then
a choice is successful with probability at least (pR − K)/R ≥ p/2. So the
number of successes stochastically dominates a binomial distribution with
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parameters qR and p/2. Since
(
qR
K

)
≥ (qR)K/K

K ≥ (qR/2K)K , we have

P[|A ∩B| ≥ K] ≥
(
qR

K

)
(p/2)K(1− p/2)qR−K

≥
(
qR

2K

)K
(p/2)Ke−pqR

≥
(

pqnk−1

10K · (k − 1)!

)K
n−o(1)

=

(
log n

10βK · (k − 1)!

)K
n−o(1)

≥
(

log β

10β

)logn/8 log β

n−o(1)

≥ n−1/4,

for sufficiently large n and β. It follows, as in the proof of Theorem 5, that
with high probability there is a matching in B from V3 to W3, as required.

Finally, suppose that max{p, q} ≥ 1/(2000 · k!), say p ≥ 1/(2000 · k!). As
pqnk−1 = log n/β, we have q = O(log n/βnk−1) and hence K = Ω(qnk−1/(8 ·
k!)). We therefore want to show that disc+(G1, G2) = Ω(qnk).

Let H1 be a random subgraph of G1 where we keep each edge with prob-
ability 1/(2000 · k!). Then, by the arguments above, with high probability
we have disc+(H1, G2) = Ω(Kn). Choose a placement of H1 and G2 onto the
same vertex set such that this discrepancy is achieved. We now add back the
other edges of G1: the expected intersection is now pq

(
n
k

)
+ Ω(qnk); but as

qnk → ∞, it follows from (5) that with high probability the same holds for
disc+(G1, G2).

We have proved the lower bound. We now turn to the upper bound on
disc+(G1, G2). As noted already, with high probability we have e(G1) =
Θ(pnk) and e(G2) = Θ(qnk), and so (14) implies that disc+(G1, G2) =
O(min{pnk, qnk}). So we only need to show that disc+(G1, G2) = O(n log n/ log β).
Let N =

(
n
k

)
and L = 4n log n/ log β. The probability that (for a fixed place-

ment) G1 and G2 have at least L common edges is at most(
N

L

)
(pq)L ≤ (eNpq/L)L ≤

(
enk−1pq log β

2 log n

)L
=

(
e log β

2β

)L
,

which is at most β−L/2 = e−2n logn, provided β is sufficiently large. The
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same holds for all n! placements of G2, so with high probability we have
disc+(G,H) ≤ L, as required.

We now turn to the negative discrepancy (since this is a relatively weak
result, we sketch the argument here). The upper bound follows from (15),
so we need only prove the lower bound. Note that with high probability we
have e(G1) = (1 + o(1))p

(
n
k

)
and e(G2) = (1 + o(1))

(
n
k

)
.

Suppose first that pqnk = O(1), so max{p, q} → 0. Choose λ = λ(n) →
∞ such that max{p, q} = o(1/λ). Placing G1 and G2 at random on the
same vertex set, the expected number of common edges is O(1) and so with
high probability we have at most λ common edges, say e1, . . . , et. With high
probability, the ei are vertex-disjoint. So we can pick vertices vi ∈ ei, for
i = 1, . . . , t; and vertices w1, . . . , wt that do not lie in any of the edges. Now,
for each i, exchange the vertices vi and wi in G1: the expected number of
common edges is then at most λ(p + q) + O(pqλnk−1) = o(1), and so with
high probability there are no common edges, and we have found a suitable
placement.

Next suppose that pqnk → ∞, but min{p, q}
(
n
k

)
≤ n, say p

(
n
k

)
≤ n.

We first choose G1: with high probability this contains a set of at least
p
(
n
k

)
/(10 · k!) vertex-disjoint edges. We now generate G2, initially picking

non-edges without replacement until we have a matching of size at least
p
(
n
k

)
/(10·k!) . This succeeds with high probability, so we can choose a random

mapping for which the two matchings coincide: with high probability, adding
the edges of G2 will now give negative discrepancy Ω(pqnk).

Finally, suppose that pqnk → ∞ and min{p, q}nk = Ω(n). Choose λ =
λ(n) so that λ2pqnk−1 = o(log n). We follow the algorithm above with some
changes. In Step 1, we greedily choose V3 to be the first bn/20c vertices v ∈ V2

with |Γ1(v, V0)| ≤ λpR; and W3 to be the first bn/10c vertices w ∈ W2 with
|Γ1(w,W0)| ≤ λqR. It follows that, with high probability, e(1,k−1)(V3, V0) =
(1 + o(1))|V3|R and e(1,k−1)(W3,W0) = (1 + o(1))|W3|R. In Step 2, we simply
take Av = Γ1(v, V0) and Bv = Γ2(w,W0). In Step 3, we join v to w if
φ(Av) ∩ Bw = ∅. Note that E[|Av ∩ Bw|] = o(log n), so writing α = |Av|/R
and β = |Bw|/R (and considering the effects of fixing Bw and choosing the
elements of Av one at a time) we have P[Av ∩ Bw = ∅] ≥ (1 − 2β)αR ≥
exp(−3αβR) = n−o(1). The argument can now be completed as in Theorem
5.

In the diagonal case (p = q), Theorem 5 and Theorem 6 give the following
corollary.
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Corollary 7. Fix k ≥ 2 and ε > 0. Suppose p = p(n) ≤ 1/2 satisfies
pnk →∞, and let G1, G2 be random hypergraphs chosen independently from
G(k)(n, p). If p = Ω(

√
log n/nk−1) then, with failure probability exp(−n1−ε),

disc+(G1, G2) = Θ(n(k+1)/2p(1− p)
√

log n)

and
disc−(G1, G2) = Θ(n(k+1)/2p(1− p)

√
log n).

If p =
√

log n/βnk−1, where β = β(n)→∞, then with high probability

disc+(G1, G2) = Θ

(
min

{
pnk,

n log n

log β

})
and

disc−(G1, G2) = Θ(p2nk).

5 Conclusion

We have determined to within a constant factor the positive and negative
discrepancies of a pair of random hypergraphs or tournaments. A number of
interesting questions still remain, and we mention a few here.

• As noted in the introduction, Spencer has shown that with high prob-
ability a random tournament T of order n satisfies disc(T, TTn) =
Θ(n3/2). Can more be said about the distribution of disc(T, TTn)?
What is the behaviour of the upper tail?

• The Slater index i(T ) of a tournament T is the minimum number of
arcs that must be reversed to make T transitive. If T has order n,
then i(T ) = 1

2

(|T |
2

)
− disc(T, TTn). What is the maximum value of the

Slater index, or equivalently the minimum value of disc(T, TTn), over
tournaments T of order n? It was conjectured by Bermond [2] that
perhaps a regular tournament is extremal (see Charon and Hudry [8]
for further results and discussion).

• Following the results of [6], we should expect that for any pair T , T ′ of
tournaments of order n we have disc(T, T ′) ≥ cn3/2. Is this true? And
what pair of tournaments minimizes this quantity?
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• What can we say about disc(G,H), and about signed discrepancies, if
G and H are pseudorandom graphs?

• What is the threshold p = p(n) for the property that, for G1, G2 ∈
G(n, p), there is almost surely a packing of G1 and G2 into Kn? More
generally, what is the range of p and q for which this holds almost
surely for G1 ∈ G(n, p) and G2 ∈ G(n, q)? The same questions arise for
hypergraphs. We will return to this in another paper [4].

Note. As we were completing this paper, we discovered that Ma, Naves
and Sudakov [16] had independently and simultaneously proved results very
similar to our Theorems 5 and 6.
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