
Problems and results on judicious partitions

B. Bollobás ∗† A.D. Scott ‡

Abstract

We present a few results and a larger number of questions con-
cerning partitions of graphs or hypergraphs, where the objective is to
maximize or minimize several quantities simultaneously. We consider
a variety of extremal problems; many of these also have algorithmic
counterparts.

1 Introduction

Many classical partitioning problems in combinatorics ask for a single quan-
tity to be maximized or minimized over a set of partitions of a combinatorial
object. For instance, Max Cut asks for the largest bipartite subgraph of
a graph G or, equivalently, the minimum of e(V1) + e(V2), over partitions
V (G) = V1 ∪ V2; Max Bisection asks for the maximum of e(V1, V2) over par-
titions with |V1| ≤ |V2| ≤ |V1| + 1. Note that there are two problems here:
the extremal problem of determining the largest or smallest subgraph we
can guarantee given certain graph parameters, such as the number of edges;
and the algorithmic problem of finding efficient procedures to produce such
a subgraph.

In this paper we shall be concerned with partitioning problems where we
seek to maximize or minimize several quantities simultaneously. We shall re-
fer to such problems as judicious partitioning problems. For instance, given
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a graph G, we can ask for the minimum of max{e(V1), . . . , e(Vk)} over par-
titions V (G) =

⋃k
i=1 Vi. (Note that this contrasts to Max k-Cut, where we

ask for the minimum of
∑k

i=1 e(Vi); we can therefore think of this judicious
partitioning problem as minimizing the l∞ norm rather than the l1 norm of
(e(Vi))

k
i=1.) This problem has been extensively investigated by Porter ([35],

[36], [37]), Porter and Bing Yang [38], Shahrokhi and Székely [40], Porter and
Székely [39], and in [11] and [17]; optimal bounds in terms of e(G) are given
in [13] (see also section 2 below). Another example of a judicious partitioning
problem is that of partitioning a set: given a set S of size n, find a partition
S =

⋃k
i=1 Si with max1≤i≤k |Si| as small as possible. Of course this is trivial,

but the weighted version of the problem is the NP-hard Bin Packing problem
(for extremal results see [46]). Both of these problems ask for partitions in
which each vertex class has “small weight”. One of the precursors of the
judicious partitioning problem is the conjecture of Bollobás and Thomason,
which asserts that every r-uniform hypergraph with m edges has a vertex
partition into r classes such that every class meets at least rm/(2r−1) edges
(see [10], [14]). We return to this below.

In previous papers ([11], [12], [14], [13], [17]) we have examined a variety
of problems concerning judicious partitions. Usually the arguments involve a
mixture of probabilistic and extremal methods. For instance, we often gen-
erate a partition by first partitioning a small number of “difficult” vertices
deterministically and then extending that to a full partition in a probabilis-
tic manner. A frequent feature of judicious partitioning problems is that
stronger results hold for large graphs or hypergraphs than for small ones.
For instance, every graph with m edges has a bipartition in which each ver-
tex class contains at most m/3 edges, and K3 shows that this is best possible.
However, K3 is the unique extremal graph: in fact, every graph with m edges
has a bipartition in which each vertex class contains (1 + o(1))m/4 edges.
It is therefore sometimes sensible to ask both for a simple extremal bound
that should hold for all graphs and for the asymptotic extremal behaviour
for large graphs.

The aim of this paper is to present a number of problems and conjectures
concerning judicious partitions. In section 2 we are concerned with judi-
cious partitioning problems for graphs; in section 3 we turn to hypergraph
problems.

Unless otherwise indicated, throughout the paper G will denote a graph
with n vertices, m edges and maximum degree ∆.
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2 Partitioning graphs

We begin by considering partitions of a graph such that no vertex class
contains too many edges. In a random partition of a graph G into k sets
V1, . . . , Vk, we expect e(G)/k2 edges in each set. This gives an immediate
bound for Max k-Cut: E

∑k
i=1 e(Vi) = e(G)/k, so there is a partition with∑k

i=1 e(Vi) ≤ e(G)/k. However, the quantities e(V1), . . . , e(Vk) are not inde-
pendent, and so this tells us nothing about max{e(V1), . . . , e(Vk)}. Indeed,
it is not at all obvious that, given a graph with m edges, there is a partition
into k sets, each of which contains at most (1+o(1))m/k2 edges (the sceptical
reader may like to try the exercise of proving that, for large enough m, every
graph with m edges has a bipartition in which each class contains at most
5m/16 edges).

It was proved in [13] that every graph with m edges has a bipartition in
which each vertex class contains at most

m

4
+

√
m

32
+

1

256
− 1

16
(1)

edges; more generally, there is a vertex partition into k vertex classes such
that every class contains at most

m

k2
+
k − 1

2k2

(√
2m+

1

4
− 1

2

)
(2)

edges. These bounds are sharp, as can be seen by considering complete
graphs on kn+ 1 vertices.

In fact, for bipartite graphs we can demand slightly more than (1). Ed-
wards ([20], [21]) proved that every graph G with m edges has a bipartition
V (G) = V1 ∪ V2 with

e(V1, V2) ≥

⌈
m

2
+

√
m

8
+

1

64
− 1

8

⌉
; (3)

this bound is sharp for complete graphs (though for extensions see [2], [4],
[15]). It was shown in [13] that every graph G has a bipartition such that
both vertex classes satisfy (1) and the bipartition also satisfies (3). It would
be interesting to know whether there is an equivalent result for the k-partite

3



case. The analogue of (3) for k-cuts is the assertion (proved in [15]) that
every graph with m edges has a k-cut of size at least(

1− 1

k

)
m+

k − 1

2k

√
2m+

1

4
+O(k2). (4)

We are led to the following problem.

Problem 1. Does every graph with m edges have a partition into k sets such
that every vertex class satisfies (2) and the k-cut they define has size at least
(4)?

As a possibly easier question, can we achieve a k-cut of at least average
size: in other words, can we demand that (2) is satisfied for each vertex class
and

∑k
i=1 e(Vi) ≤ m/k? As noted in [13], when k is a power of 2 this follows

from the existence of a partition satisfying (1) and (3).
The bound (3) of Edwards is sharp for complete graphs. However, Erdős

conjectured that (3) can be arbitrarily far from the correct value. Alon [2]
showed that (3) can be improved by cm1/4 when m is about halfway between(
n
2

)
and

(
n+1
2

)
, while considering unions of complete graphs shows that it

is never out by more than O(m1/4); in fact, the optimal bound in (3) is
known to within a constant for every m (see [4], [15]). It seems likely that
the optimal bound in (1) exhibits a similar behaviour. Perhaps it would
be possible to determine the optimal value for all sufficiently large m. For
m ≥ 1, let g(m) be the smallest integer such that every graph with m edges
has a bipartition in which each vertex class contains at most g(m) edges. A
first step in determining the behaviour of g(m) more precisely than (1) would
be the following.

Conjecture 2. m/4 +
√
m/32− g(m) is unbounded as m→∞.

A good starting point here might be graphs with m =
(
n
2

)
+
(
k
2

)
edges,

where 0 ≤
(
k
2

)
< n and n is large. Such graphs are known to contain a

bipartite subgraph with at least

min

{⌊
(n+ 1)2

4

⌋
,

⌊
n2

4

⌋
+

⌊
k2

4

⌋}
edges, which would be best possible, as can be seen by considering Kn ∪Kk,
and Kn+1 with

(
n+1
2

)
−
(
n
2

)
−
(
k
2

)
edges deleted. Can anything similar be said

for judicious partitions?
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In general, it is not possible to improve (1) beyond (1 + o(1))m/4, as can
be seen by considering complete graphs. However, for some classes of graphs
it is possible to do better. Alon, Bollobás, Krivelevich and Sudakov [3] have
shown that if G has a large cut then G also has a judicious partition that
is better than (1). In particular, suppose that G is a graph with m edges
and largest cut of size m/2 + δ. If δ ≤ m/30 then there is a bipartition
V (G) = V1 ∪ V2 with

max{e(V1), e(V2)} ≤
m

4
− δ

2
+

10δ2

m
+ 3
√
m,

while if δ ≥ m/30 then there is a bipartition with

max{e(V1), e(V2)} ≤
m

4
− m

100
.

They used this result to demonstrate the existence of good judicious par-
titions in graphs without short cycles. Large cuts in graphs without short
cycles had been investigated previously by various authors, including Erdős
[23], Erdős and Lovász (see [24], [22]), Shearer [41], Poljak and Tuza [33] and
Alon [2]. Alon, Bollobás, Krivelevich and Sudakov [3] showed that for every
integer r ≥ 4 there is cr > 0 such that every graph G with m > 0 edges and
girth at least r has a bipartition V (G) = V1 ∪ V2 with

max{e(V1), e(V2)} ≤
m

4
− crmr/(r+1).

We can improve on (1) when our graphs have bounded degree. For exam-
ple, it is shown in [17] that if G has m edges and maximum degree d, where
d is odd, then there is a bipartition V (G) = V1 ∪ V2 such that, for i = 1, 2,

e(Vi) ≤
d− 1

4d
m+

d− 1

4
(5)

and, in addition,

e(V1, V2) ≥
d+ 1

2d
m; (6)

the extremal graphs are (2s + 1)Kd ∪ tKd+1, for s, t ≥ 0. (Note that this
immediately implies a result for graphs with even maximal degree d, with
extremal graphs (2s+ 1)Kd+1.)

Stronger inequaltities than (6) hold for regular graphs. Staton [44] and
Locke [31] showed that every cubic graph G containing no K4 has a cut of size
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at least 7e(G)/9, with equality holding for infinitely many connected graphs.
Hopkins and Staton [29] showed that if G is cubic and triangle-free then G
has a cut of size at least 4e(G)/5. This was extended by Bondy and Locke
[18], who showed that every triangle-free graph G with maximal degree at
most 3 has a cut of size at least 4e(G)/5: the only triangle-free cubic graphs
for which equality holds are the Petersen graph and the dodecahedron.

For regular graphs, it is also possible to improve on (5). Locke [31] showed
that every cubic graph G that does not contain K4 has a partition V (G) =
V1∪V2 into two sets of equal size such that e(V1, V2) ≥ 11e(G)/15. Since such
a partition has e(V1) = e(V2), it follows that max{e(V1), e(V2)} ≤ 2e(G)/15.
By considering copies of K4 separately, it follows that any cubic graph G
has a cut in which each vertex class contains at most e(G)/6 edges. More
generally, it was shown in [17] that, for d odd, every d-regular graph G has a
bipartition in which each vertex class contains at most (d−1)e(G)/4d edges;
if d is even then there is a bipartition in which which each class contains at
most de(G)/4(d+ 1) edges is |G| is even or de(G)/4(d+ 1) + d/4 edges if |G|
is odd.

If G is cubic and has a maximum cut V (G) = V1∪V2 such that |V1| = |V2|,
then V1∪V2 is clearly an optimal judicious partition. However, any maximum
cut of the Petersen graph P (which has 15 edges and maximum cut size
4e(P )/5 = 12) has one vertex class of size 4 and one class of size 6. Thus
the smaller vertex class is an independent set and the larger class contains
three edges; so any maximum cut of the Petersen graph is some way from
being a good judicious partition. It would be interesting to know what other
graphs have a maximum cut that is a bad judicious partition. Note that if
G is cubic and V (G) = V1 ∪ V2 is a maximum cut then G[V2] has maximum
degree at most 1. If V1 is an independent set then e(G) = e(V1, V2) + e(V2)
and e(V1, V2) ≥ 2|V2| ≥ 4e(V2), and so e(V1, V2) ≥ 4e(G)/5. Therefore if
G has a maximum cut with one vertex class independent then it must have
maximum cut size at least 4e(G)/5.

Problem 3. What cubic graphs G have a maximum cut size 4e(G)/5 and
have a maximum cut such that one vertex class is an independent set?

Note that if V1∪V2 is a maximum cut such that e(V1) = 0 and e(V1, V2) =
4e(G)/5 then G[V2] consists of a matching. Replacing each v ∈ V2 with an
edge between its neighbours in V1 gives a cubic graph C on V1. We can
recover G from C by subdividing each edge once, and adding a suitable
matching between the subdividing vertices. For instance, starting with K4,
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if we subdivide each edge once and add a matching between the subdividing
vertices on pairs of nonincident edges then we obtain the Petersen graph!

We now turn to judicious partitions in which we consider more than one
vertex class at a time. It was shown in [11] that every graph G with m edges
has a partition V (G) =

⋃k
i=1 Vi with

max{e(V1), . . . , e(Vk)} ≤ e(G)/

(
k + 1

2

)
. (7)

The unique extremal graph is Kk+1, but we know from (2) that we can do
much better if m is large, when we can demand

max{e(V1), . . . , e(Vk)} ≤ (1 + o(1))m/k2.

However, perhaps we can add additional terms on the left hand side of (7).
For instance, with k = 2, consider a partition V (G) = V1 ∪ V2 with e(V1, V2)
maximal. Every vertex v ∈ V1 has |Γ(v) ∩ V2| ≥ |Γ(v) ∩ V1|, or else moving
v from V1 to V2 increases the size of the cut. Summing over V1 we obtain
2e(V1) ≤ e(V1, V2), and so

3e(V1) + e(V2) ≤ e(V1) + e(V1, V2) + e(V2) = m.

By a similar argument
e(V1) + 3e(V2) ≤ m.

Note that this gives an improvement on (7) (and that, in addition, we have
e(V1) + e(V2) ≤ m/2, and so e(V1, V2) ≥ m/2). It would be interesting to
prove results of this type for k > 2.

Problem 4. For k ≥ 3, what is the largest c(k) such that, for every graph
G with m edges there is a partition V (G) =

⋃k
i=1 Vi with(

k + 1

2

)
e(Vi) + c(k)

∑
j 6=i

e(Vj) ≤ m

for 1 ≤ i ≤ k?

By considering large complete graphs, it is clear that c(k) ≤ k/2. Can
this bound be achieved?

Another possible extension to (2) and (3) comes from considering unions
of more than one vertex class. For instance, given k > 2, what is the smallest
f(m) such that every graph G with m edges has a partition V (G) =

⋃k
i=1 Vi

such that e(Vi ∪ Vj) ≤ f(m) whenever i 6= j? Considering K1,n and Kk+2

leads to the following conjecture.
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Conjecture 5. For k ≥ 2, every graph G with m edges and n vertices has a
partition into k sets V1, . . . Vk, such that

max
1≤i<j≤k

e(Vi ∪ Vj) ≤ 6m/

(
k + 2

2

)
+O(n). (8)

Perhaps there is a constant ck such that if δ(G) ≥ ckn then (8) holds
without the O(n) term.

Similarly, considering Kkn+2 suggests that a possible analogue for (2)
when we take unions of two classes is

4

k2
m+

3(k − 2)

k2

√
2m+

1

4
+

(k − 2)(2k − 5)

10
+O(n). (9)

Note that we would expect (8), like (2), to be a good bound only for small
graphs; for larger graphs (9) would be a much better bound. Of course, the
same questions can be asked when we consider the union of t ≥ 3 classes.
Once again, natural conjectures are suggested by considering complete graphs
and complete bipartite graphs. More ambitiously, it would be interesting to
have simultaneous bounds on max1≤i≤k e(Vi) and max1≤i<j≤k e(Vi ∪ Vj). Is
it possible that (2) and (8) or (9) could be satisfied simultaneously? What
about bounds on unions of all different sizes?

So far we have been concerned only with upper bounds. We now consider
partitions V (G) =

⋃k
i=1 Vi in which e(Vi) is bounded above and below. For

instance, when can we demand a partition with

e(Vi) = (1 + o(1))
m

k2
(10)

for 1 ≤ i ≤ k? An easy bound comes from considering the vertex exposure
martingale. Colouring each vertex in turn, we see that Ee(Vi) = m/k2, while
a vertex v affects e(Vi) by at most d(v). The Azuma-Hoeffding inequality
(see [5], [28], [32], [8], [9]) implies

P(|e(Vi)−
m

k2
| > t) ≤ 2 exp(−t2/2

n∑
j=1

d2j). (11)

Now
∑
d2j ≤ 2∆m, so as long as t > (2∆m log 2k)1/2 we see that there is a

positive probability that every vertex class satisifies |e(Vi) −m/k2| ≤ t. So
if ∆ = o(m) then there is a partition satisfying (10).
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How far can the restriction ∆(G) = o(
√
n) be weakened? The star K1,n

has n edges while every bipartition has a vertex class with no edges. Similarly,
for ε > 0 and t > (1 + ε)3n/5, consider a star on t vertices together with
(n − t)/2 independent edges: every bipartition has a vertex class with at
most (n − t)/2 edges, which is at most (1 − 17ε/10)m/4 + O(1). Clearly,
δ(G) = ω(n) is enough for (10) to hold, but how close do we get when δ is
fixed? Perhaps (10) is true provided δ is sufficently large. For instance, does
(10) hold when δ = 2? Note that the graphs that cannot be dealt with by
the martingale argument above have O(n) edges and at least on vertex of
large degree.

A slightly different class of judicious partitioning problems arises when
we restrict the set of partitions we consider. We say that a partition V (G) =⋃k

i=1 Vi is balanced if |V1| ≤ · · · ≤ |Vk| ≤ |V1|+1. The classical Min k-Section
and Max k-Section problems ask for the minimum and maximum size respec-
tively of k-cuts generated by balanced partitions into k sets. The analogue of
this for judicious partitions asks for the minimum of max{e(V1), . . . , e(Vk)}
over balanced partitions V (G) =

⋃k
i=1 Vi. Considering K1,n, we see that we

cannot expect to do better than m/k+O(1), while considering random par-
titions shows that we can achieve a bound of this type. However, increasing
the minimal degree should improve the constant. For instance, the following
conjecture may not be too difficult.

Conjecture 6. Every graph with m edges and minimal degree at least 2 has
a balanced bipartition with at most m/3 edges in each vertex class.

More generally, under what conditions can we guarantee a balanced bi-
partition in which each class contains at most (1 + o(1))m/4 edges? Perhaps
δ(G)→∞ as n→∞ is enough, or else ∆(G) = o(n).

Problem 7. What is the smallest constant c(k) such that every graph G with
minimal degree at least k has a balanced bipartition with at most c(k)e(G)
edges in each class?

It is worth noting that extremal problems for balanced partitions have
been relatively little investigated. For instance, although there has been
significant work on algorithms for Max Bisection and Min Bisection, there are
no results analogous to that of Edwards for Max Cut. This is an interesting
problem in itself: for a graph G with n vertices and m edges, what are the
largest and smallest cuts that we can guarantee with balanced bipartitions?
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(Of course, Min Bisection would be trivial if we allowed any bipartition,
since we could then choose to have all vertices in the same class.) Note
that Max Bisection for G corresponds to Min Bisection for G. We remark
that, Max Bisection is very different from Max Cut, since a cut satisfying
the inequality (3) of Edwards can be found by a compression argument: we
repeatedly identify pairs of nonadjacent vertices until we obtain a complete
multigraph; then a random balanced bipartition of this multigraph gives a
bipartite graph of expected size at least (3). This can be derandomized, and
easily translates back into a bipartition of the original graph. However, this
approach does not work for balanced bipartitions, since a balanced partition
of the compressed graph need not correspond to a balanced partition of the
original graph.

One starting point both for the extremal Max k-Section and Min k-
Section problems and the judicious partitioning analogues may be to consider
balanced partitions which satisfy local conditions. (This has been a useful
approach for the Max Cut problem; see for instance [30], [45].) For instance,
every graph G has a partition V (G) = V1∪V2 in which |Γ(v)∩V1| ≤ |Γ(v)∩V2|
for all v ∈ V1 and |Γ(v) ∩ V2| ≤ |Γ(v) ∩ V1| for all v ∈ V2 (see for instance
[11], [19], and for infinite graphs see [1], [7], [42]). We cannot demand this
for balanced partitions, as shown by considering K2l+1,m, where m ≥ 2l + 3.
However, perhaps we can demand the following.

Conjecture 8. Every graph G has a balanced bipartition V (G) = V1 ∪ V2
with

|Γ(v) ∩ V1| ≤ |Γ(v) ∩ V2|+ 1 (12)

for v ∈ V1 and
|Γ(v) ∩ V2| ≤ |Γ(v) ∩ V1|+ 1 (13)

for v ∈ V2.

Even proving the bounds to within O(1) would imply the existence of a
balanced bipartition with at most m/3 + O(n) edges in each vertex class,
by summing (12) over V1 and (13) over V2. A similar question applies for
partitions into k parts.

A well-known result of Hajnal and Szemerédi [26] asserts that if ∆(G) ≤ r
and |G| = s(r + 1) then G has an (r + 1)-colouring with all vertex classes of
equal size. Can we control the distribution of edges as well? For instance,
is there a partition into r + 1 classes such that there is essentially the same
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number of edges between every pair of vertex classes? Perhaps we can also
demand that all vertex classes be the same size.

Finally in this section we mention the following problem.

Problem 9. Let G be a graph with n vertices and p
(
n
2

)
edges. What is the

smallest c(p, n) such that there is an ordering v1, . . . , vn of the vertices with

|e({v1, . . . , vt})− p
(
t

2

)
| < c(p, n)

for 1 ≤ t ≤ n?

We might think of this as a form of graded discrepancy (see the surveys by
Sós [43] and Beck and ós [6], and also [16]). Graphs consisting of a complete
graph plus some isolated vertices are probably close to extremal here.

3 Partitioning hypergraphs

While there are reasonable bounds for many judicious partitioning problems
for graphs, the analogous problems for r-uniform hypergraphs seem to be
much more difficult. There are some asymptotic results for 3-uniform hyper-
graphs ([12], [14]), but for r ≥ 4 virtually nothing is known.

A random bipartition of an r-uniform hypergraph into k sets has an
expected m/kr edges contained in each vertex class. As we have seen, for
r = 2 it is known that every graph with m edges has a partition into k sets
in which each class contains at most m/k2 + O(

√
m) edges. For r = 3 it

was proved in [12] that every 3-uniform hypergraph has a partition into k
sets, each of which contains at most m/k3 + o(m) edges; it would be very
interesting to determine the correct size of the o(m) term. For r ≥ 4, it is
conjectured in [12] that for fixed k and r, every r-uniform hypergraph with
m edges can be partitioned into k classes, each of which contains at most

m

kr
+ o(m) (14)

edges. The best upper bound that we have in general is the following.

Theorem 10. Let G be an r-uniform hypergraph with m edges and n vertices,
and let k ≥ 2 be an integer. Then there is a vertex-partition V (G) =

⋃k
i=1 Vi

such that, for i = 1, . . . , k,

e(Vi) ≤
a(r)

kr
m+ b(r)m

2r
2r+1 ,
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where

a(r) =
(r + 1)

2r+2
r−1

2
2r
r−1 (r + 1)

r+1
r−1 r

r
r−1 − r

2r
r−1 2

2r+2
r−1

and
b(r) = 2(2r2 log k)

r
2r+1/r!

1
2r+1 .

Proof. Let c = (r!22r2 log k)1/(2r+1)m−(2r−1)/(2r+1), and let V1 be the set of
bcmc vertices of highest degree (note that cm ≤ n if n ≥ 2r2 log k, since
m ≤

(
n
r

)
; if n < 2r2 log k then b(r)m2r/(2r+1) ≥ m, so any partition will do).

Note that

e(V1) ≤
(
|V1|
r

)
≤ (cm)r

r!
=
b(r)

2
m2r/(2r+1).

It suffices to find a partition V1 =
⋃k

i=1Wi and probabilities p1, . . . , pk such

that, extending the partition of V1 to a partition V (G) =
⋃k

i=1 Yi, where each
vertex from V (G)\V1 independently belongs to Yi with probability pi for each
i, and writing Xi for the number of edges in Yi that are not contained in V1,
we have

E(Xi) ≤
a(r)

kr
m. (15)

The result then follows by applying the Azuma-Hoeffding inequality as in
(11): writing (di)

n
i=1 for the degree sequence (in increasing order), we see

that

P(Xi < EXi + t) ≤ exp(−t2/2
n∑

i=cm+1

d2i ).

Now
n∑

i=bcmc+1

d2i ≤ dbcmc+1

n∑
i=cm+1

di ≤
rm

cm
rm = mr2/c,

so if t2 > (mr2/c) log k then Xi < EXi + t for all i with positive probability.
Thus we may take t = r

√
(m/c) log k = b(r)m2r/(2r+1)/2 and so e(Yi) ≤

Xi + e(Vi) ≤ a(r)m/kr + b(r)m2r/(2r+1).
We now show that there are p1, . . . , pk such that (15) is satisfied. For

S ⊂ V1, define
w(S) = |{e ∈ E(G) : e ∩ V1 = S}|

and, for 0 ≤ i ≤ r, define

wi(S) =
∑

T∈S(i)

w(T ).

12



(Here S(i) is the set of all subsets of S of size i.) Thus wi(V1) is the number of
edges meeting V1 in i vertices. Now let W1, . . . ,Wk be a random partition of
V1, where each vertex of V1 is assigned independently to each Wi with equal
probability. Then, for 0 ≤ j < r,

E
k∑

i=1

wj(Wi) = k1−jwj(V1).

(Note that this holds for j = 0, since w0(S) = w0(V1) = e(V \ V1) for every
S ⊂ V1.) Then

E
r−1∑
j=0

kj−1
k∑

i=1

wj(Wi) =
r−1∑
j=0

wj(V1) ≤ m.

Thus we can pick a partition such that

k∑
i=1

r−1∑
j=0

kj−1wj(Wi) ≤ m.

This will be our partition of V1. We now pick our probabilities p1, . . . , pk.
Let

mi =
r−1∑
j=0

kj−1wj(Wi). (16)

If mi = 0 for some i, then take pi = 1 and pj = 0 for j 6= i. Otherwise, define
qi by

r−1∑
j=0

qr−ji wj(Wi) =
a(r)

kr
m. (17)

Note that qi is the maximum value of pi consistent with (15) (since the
expected value of Xi is

∑r−1
j=0 p

r−j
i wj(Wi)). Now if

∑k
i=1 qi ≥ 1 then we are

done, since we may take pj = qj/
∑k

i=1 qi ≤ qj for j = 1, . . . , k. We show
that this is the case. Indeed, by (16),

r−1∑
j=0

qr−ji wj(Wi) =
1

kr−1

r−1∑
j=0

(kqi)
r−jkj−1wj(Wi)

≤ 1

kr−1
max

{
r−1∑
j=0

(kqi)
r−jtj : ti ≥ 0 ∀i,

r−1∑
j=0

tj = mi

}
=

mi

kr−1
max {kqi, (kqi)r} .

13



Thus, by (17),

max{kqi, (kqi)r} ≥
a(r)

k

m

mi

,

and so, writing ri = mi/m, we have

qi ≥ min

{
a(r)

k2ri
,

1

k

(
a(r)

kri

)1/r
}
.

Therefore
k∑

i=1

qi ≥
k∑

i=1

min

{
a(r)

k2ri
,

1

k

(
a(r)

kri

)1/r
}
,

where
∑k

i=1 ri ≤ 1. Now setting si = kri, we get

k∑
i=1

qi ≥
1

k

k∑
i=1

min

{
a(r)

si
,

(
a(r)

si

)1/r
}
, (18)

where (1/k)
∑k

i=1 si ≤ 1. Now the right hand side is just a convex combi-
nation of points on the curves y = a/x and y = (a/x)1/r. The tangent to
y = a/x at x0 is

y =
2a

x0
− ax

x20

and the tangent to y = (a/x)1/r at x1 is

y =
r + 1

r

(
a

x1

) 1
r

− 1

rx1

(
a

x1

) 1
r

x.

These coincide when
2a

x0
=
r + 1

r

(
a

x1

) 1
r

and
a

x20
=

1

rx1

(
a

x1

) 1
r

,

which gives

x0 =
ar

r
r−1 2

r+1
r−1

(r + 1)
r+1
r−1

.

14



Thus setting f(x) = (2a/x0)− x(a/x20), we see that from (18) we get

k∑
i=1

qi ≥
1

k

k∑
i=1

f(si)

= f(
1

k

k∑
i=1

si)

≥ f(1).

Thus we need only show that

2a

x0
− a

x20
≥ 1,

that is
(r + 1)

r+1
r−1

r
r

r−1 2
2

r−1

− (r + 1)
2r+2
r−1

ar
2r
r−1 2

2r+2
r−1

≥ 1.

Rearranging, we require

a ≥ (r + 1)
2r+2
r−1

(r + 1)
r+1
r−1 r

r
r−1 2

2r
r−1 − r

2r
r−1 2

2r+2
r−1

,

which holds by definition.

Note that the value for a(r) is quite good for small values of r: a(2) =
1.0355 · · · , a(3) = 1.098 · · · and a(4) = 1.167 · · · . Asymptotically, as r →∞,
we obtain

a(r)m

kr
= (1 + o(1))

r

4 log r

m

kr
.

Even proving a bound of form (1 + o(1))cm/kr would be a start!
A question concerning a different variety of judicious partition was raised

by Bollobás and Thomason, who conjectured that every r-uniform hyper-
graph with m edges has a vertex partition into r classes such that each class
meets at least rm/(2r − 1) edges. For r = 3, Bollobás, Reed and Thomason
[10] proved that every 3-uniform hypergraph has a tripartition, each class of
which meets at least (1− 1/e)m/3 ≈ 0.21m edges. It was shown in [14] that
there is a tripartition in which each class meets at least (5m − 1)/9 edges;
for r > 3, it was shown that every r-uniform hypergraph with m edges has a
vertex partition into r classes each of which meets at least 0.27m edges. Note

15



that for r = 2, the conjectured bound follows immediately from (7). It is
conjectured in [14] that every graph with m edges has a partition into k sets,
each of which meets at least 2m/(2k − 1) edges. It is also conjectured that,
for fixed r, k ≥ 2, every r-uniform hypergraph with m edges has a partition
into k sets, each of which meets at least

(1 + o(1))

(
1− (1− 1

k
)r
)
m

edges.
A possible approach to proving results about r-uniform hypergraphs is

through proving ‘mixed’ partitioning results, which are also interesting in
their own right. The idea is that after removing a vertex, or set of vertices,
the remaining graph can be considered as a hypergraph with edges of size
at most r. Thus if we remove v from H = (V,E), the new hypergraph is
(V \ v, {e \ v : e ∈ E}). It was proved in [14] that a hypergraph with mi

edges of size i for i = 1, . . . , k has a bipartition in which each vertex class
meets at least

m1 − 1

3
+

2m2

3
+

3m3

4
+ · · ·+ kmk

k + 1

edges. Perhaps this can be improved to

m1

2
+

3m2

4
+ · · ·+ (1− 1

2k
)mk + o(m), (19)

where m =
∑k

i=1mi. Indeed, it may be possible that we can take the o(m)
term to be O(

√
m2 + 1).

The first interesting case of (19) is when k = 2. It seems likely that every
hypergraph with all edges of size at most 2 (i.e., a graph together with some
chosen vertices) has a bipartition in which each set meets at least

m1 − 1

2
+

2m2

3

edges. The hypergraph consisting of all edges and vertices of K3 shows that
this would be sharp. It is also of interest to consider the weighted version,
which would ask for a bipartition in which each class meets edges of total
weight at least

w1 −∆1

2
+

2w2

3
,

16



where wi is the total weight of edges of size i, and ∆1 is the maximum weight
of an edge of size 1.

In the unweighted case, the following related question asks for an exten-
sion of (7).

Conjecture 11. For fixed k, every hypergraph with m = m1 + m2 edges, of
which m1 have size 1 and m2 have size 2, has a partition into k classes, each
of which contains at most

m1/k +m2/

(
k + 1

2

)
+O(1)

edges.

Perhaps as m→∞ we can demand m1/k +m2/k
2 +O(

√
m).

4 Conclusion

We have presented a variety of problems concerning judicious partitions of
graphs and hypergraphs. We have concentrated here on judicious partitions
from the perspective of extremal combinatorics. However, there is also a gen-
eral problem of finding efficient algorithms for obtaining judicious partitions.
We note that a polynomial time algorithm can be read out of [11] that, given
a graph G, finds a bipartition V (G) = V1 ∪ V2 which satisfies (1) and (3).

It would also be of interest to find good approximation algorithms for
the problems above. For instance, Goemans and Williamson [25] have found
an algorithm for Max Cut that approximates the optimum within a factor
1.1383. On the other hand, H̊astad [27] has shown that it is NP-hard to ap-
proximate within a factor smaller than 17/16. It follows that the problem of
minimizing max{e(V1), e(V2)} over bipartitions of a graph G is also NP-hard
to approximate, since finding a good judicious partition of 2G is equivalent
to finding a good cut of G. It would be very interesting to find a judicious
partitioning analogue for the results of Goemans and Williamson.
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