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Abstract

Alon, Bollobás, Krivelevich and Sudakov [1] proved that every graph
with a large cut has a bipartition in which each vertex class contains
correspondingly few edges. We prove an analogous result for parti-
tions into k ≥ 3 classes; along the way we prove a result for biased
bipartitions.

1 Introduction

Let G be a graph with m edges. It is easy to show that G has a cut (or,
equivalently, a bipartite subgraph) of size least m/2. It is much less obvious
(but nevertheless true) that there is a cut of this size such that the remaining
edges are roughly evenly distributed between the two sides of the cut: in other
words, each vertex class contains no more than (roughly) m/4 edges. Now
suppose that G has a cut that is much larger than m/2. In this case we
might hope for more: if G has a cut of size m/2 + α, then a near-optimal
cut that divides the remaining edges roughly equally between the two vertex
classes would have roughly m/4 − α/2 edges in each class. Alon, Bollobás,
Krivelevich and Sudakov [1] showed that, for α not too large, this is indeed
possible (for α large, they proved a complementary result: if α ≥ m/30, there
is a bipartition in which each class contains at most m/4−m/100 edges).
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The aim of this paper is to generalize these results in two directions: we
first give results on “biased” cuts, in which edges in the two vertex classes
are counted with different weights; we then continue by giving results in
partitions into more than two parts. In each case, as with Alon, Bollobás,
Krivelevich and Sudakov [1], we obtain matching results for the cases α small
and α large.

The remainder of this introduction is divided into two parts. In the first
part, we discuss some background to the problem; the second part describes
our results and gives a little notation.

1.1 Previous work

For a graph G, let us define

f(G) = max
V (G)=V1

.
∪V2

e(V1, V2) = max
V (G)=V1

.
∪V2

(
m− e(V1)− e(V2)

)
to be the maximum size of a cut in G. Then, for m ≥ 1, we set

f(m) = min
e(G)=m

f(G).

The extremal Max Cut problem asks for the value of f(m), and has been
extensively studied. It is easy to see that f(m) ≥ m/2, for instance by
considering random partitions or a suitable greedy algorithm. Edwards [10,
11] showed that

f(m) ≥ m

2
+

√
m

8
+

1

64
− 1

8
, (1)

which is sharp for complete graphs of odd order. More precise bounds for
other values of m were given by Alon [2], Alon and Halperin [3], and in
[5]. From the other side, it is easily seen by considering random graphs
G ∈ G(n, 1/2) that f(m) = m/2 + o(m).

The Max Cut problem asks for a bipartition in which e(V1, V2) is large,
and hence e(V1) + e(V2) is small. However, it does not place strong con-
straints on the number of edges in each vertex class separately. Problems in
which constraints are placed on all vertex classes simultaneously are known
as judicious partitioning problems (see [16] and [4] for an overview). In this
case, we define a judicious partitioning problem as follows. For a graph G,
let

g(G) = min
V (G)=V1

.
∪V2

max{e(V1), e(V2)},
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and, for m ≥ 1, set
g(m) = max

e(G)=m
g(G).

Determining the behaviour of g(m) seems significantly harder than analyzing
f(m). For instance, proving that f(m) ∼ m/2 is trivial, but there does not
seem to be any simple way to prove that g(m) ∼ m/4 (which turns out to
be true). Bounds on g(m) were proved by several authors, including Porter
[12, 13, 14], Porter and Bin Yang [15], and Bollobás and Scott [9]. An
analogue of the Edwards bound was finally proved in [7], where it was shown
that every graph G with m edges has a bipartition V (G) = V1∪V2 such that

max{e(V1), e(V2)} ≤
m

4
+

√
m

32
+

1

256
− 1

16
(2)

and in addition e(V1, V2) satisfies (1). More generally, there is a vertex par-
tition into k classes, each of which contains at most

m

k2
+
k − 1

2k2

(√
2m+

1

4
− 1

2

)
(3)

edges.
The bounds (2) and (1) are closely related, and it is natural to ask whether

graphs with a very large cut (i.e. much larger than that guaranteed by (1))
also have a correspondingly good judicious partition. If G is a graph with
m edges, and f(G) = m/2 + α, then it is clear that g(G) ≥ m/4 − α/2,
since we cannot do better than a maximum cut with the remaining edges
divided equally between the two vertex classes. Alon, Bollobás, Krivelevich
and Sudakov [1] showed that it is possible to get pretty close to this bound:
if α ≤ m/30 then

g(G) ≤ m

4
− α

2
+ 3
√
m+

10α2

m
. (4)

For large α, this bound is less useful. However, they also showed the com-
plementary result that if α ≥ m/30 (and m is sufficiently large) then

g(G) ≤ m

4
− m

100
. (5)

3



1.2 Our results

The aim of this paper is to extend the results of Alon, Bollobás, Krivelevich
and Sudakov [1] in two directions: to biased partitions, and to partitions into
k ≥ 3 parts.

In Section 2, we give results on biased partitions. For p ∈ [0, 1] and
q = 1− p, define

mp(G) = min
V (G)=V1

.
∪V2

qe(V1) + pe(V2)

Note that this is a ‘biased’ generalization of Max Cut: if we take p = 1/2
then we get m1/2(G) = 1

2
(m− f(G))).

Considering a random bipartion where each vertex independently has
probability p of being in V1, we get Ee(V1) = p2m and Ee(V2) = q2m. It
follows that every graph G with m edges has mp(G) ≤ pqm, while complete
graphs or not too sparse random graphs show that we can have mp(G) =
(1 + o(1))pqm. A corresponding judicious result was proved in [7], where it
was shown that there is in fact a bipartition such that there are no more
than about p2m edges in V1 and q2m edges in V2. More precisely, there is a
bipartition in which

e(V1) ≤ p2m+ h(p,m) (6)

and
e(V2) ≤ q2m+ h(p,m), (7)

where
h(p,m) = pq(

√
m/2 + 1/16− 1/4).

Note that when p = 1/2, we recover (2).
Our aim in section 2 is to prove bounds similar to (4) and (5) in this

context. Suppose that mp(G) = pqm − α. If α ≤ c(p)m, we will show in
Theorem 1 that there is a bipartition V (G) = V1 ∪ V2 such that V1 and V2
satisfy inequalities of form

e(V1) ≤ p2m− α +O
(√

m+
α2

m

)
(8)

and

e(V2) ≤ q2m− α +O(
(√

m+
α2

m

)
. (9)
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Note that we get α rather than α/2 here: this reflects the definition of mp(G):
for example, compare m1/2(G) with f(G).

If α ≥ c(p)m then (8) and (9) are no longer useful: we show in Theorem
3 that there is a bipartition V (G) = V1 ∪ V2 such that

e(V1) ≤ p2m− c∗(p)m

and
e(V2) ≤ q2m− c∗(p)m.

More precise statements of these results can be found at Theorems 1 and 3
below.

In Section 3, we turn to partitions into more than 2 pieces. For k ≥ 2, let
us define mck(G) to be the maximum size of a k-cut of G. It is easily seen
by considering a random partition that every graph G with m edges has

mck(G) ≥ k − 1

k
m.

We show (Theorem 5) that if there is a significantly larger cut then we get a
very good judicious partition. If

mck(G) =
k − 1

k
m+ α

then the following holds: if α ≤ c(k)m then there is a k-cut in which each
class has at most

m

k2
− α

k
+O

(√
m+

α2

m

)
(10)

edges (once again, a more precise statement is given below). For α > c(k)m
there is (Theorem 8) a k-cut in which each class has at most m/k2− c∗(k)m
edges. Note that if α is not too large, then (10) is similar to (3), except for
the constant in the error term.

In both sections, our proof strategy is to start with a good biased partition
or k-cut and then move vertices one at a time out of a ‘bad’ vertex class while
tracking their effect on the distribution of edges. This was used in [7] and
refined in [1]. Our strategy is similar to the approach used in [1]. However,
there are some additional obstacles that need to be overcome.

Throughout the paper, we use the following notation. Let G be a graph.
For W ⊂ V (G), we write e(W ) for the number of edges spanned by W ; for
disjoint X, Y ⊂ V (G) we write e(X, Y ) for the number of edges xy ∈ E(G)
with x ∈ X and y ∈ Y .
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2 Biased partitions

Let G be a graph with m edges and p ∈ [0, 1], q = 1 − p. In this section,
we consider partitions V (G) = V1 ∪V2 that minimize qe(V1) + pe(V2). Recall
that

mp(G) = min
V (G)=V1

.
∪V2

qe(V1) + pe(V2).

For a random partition in which each vertex independently is placed in V1
with probability p or in V2 with probability q, we have E(qe(V1) + pe(V2)) =
pqm. We shall show that if mp(G) = pqe(G) − α, with α �

√
m, then we

get a very good judicious partition.
Note that in a partition with qe(V1) + pe(V2) minimal, every v ∈ V1 must

satisfy
q|Γ(v) ∩ V1| ≤ p|Γ(v) ∩ V2|, (11)

or else we would have moved v to V2, and a similar inequality holds for
vertices in V2. We shall refer to (11) as the local inequality.

For any partition V (G) = V1 ∪ V2 that satisfies the local inequality, sum-
ming over V1 implies that

e(V1, V2) ≥
2q

p
e(V1)

and so

e(V2) = m− e(V1)− e(V1, V2)

≤ m− e(V1)−
2q

p
e(V1)

= m− 1 + q

p
e(V1).

Therefore

qe(V1) + pe(V2) ≤ qe(V1) + pm− (1 + q)e(V1)

= pm− e(V1).

Thus if mp(G) = pqm−α, and V1 and V2 satisfy the local inequality, we have

e(V1) ≤ p2m+ α. (12)

We begin with a result for α of moderate size, and prove a result for large
α later (Theorem 3).
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Theorem 1. Let 0 < p < 1, q = 1−p, and let c(p) = 1
2

min{p2, q2}. Suppose
G is a graph with m edges such that

mp(G) = pqm− α, (13)

where α ≤ c(p)m. Then there is a partition V (G) = V ′1 ∪ V ′2 such that

e(V ′1) ≤ p2m− α +
√

32mp2 +
16α2

q3m
(14)

and

e(V ′2) ≤ q2m− α +
√

32mq2 +
16α2

p3m
. (15)

Note that this improves on (6) and (7) only in the range α = O(min{p3, q3})m.
Our main tool in the proof of Theorem 1 is the following.

Lemma 2. Suppose G has m edges and satisfies (13), where α ≤ p2m/2.
Suppose W ⊂ V = V (G) and, for all v ∈ W ,

|Γ(v) ∩ V \W | ≥ q

p
|Γ(v) ∩W |. (16)

If e(W ) > p2m− α then there is v ∈ W with

|Γ(v) ∩W | ≤
√

32mp2 (17)

and

|Γ(v) ∩ V \W | ≤
(
q

p
+

8α

p3m

)
|Γ(v) ∩W |. (18)

As above, we will refer to inequality (16) as the local inequality.

Proof. Define
T1 = {v ∈ W : |Γ(v) ∩W | >

√
32mp2} (19)

and

T2 = {v ∈ W : |Γ(v) ∩ V \W | >
(q
p

+
8α

p3m

)
|Γ(v) ∩W |}. (20)

Summing the inequality satisfied by vertices in (20) over T2, and summing
(16) over the rest of W , we see that

e(W,V \W ) ≥ q

p

∑
v∈W

|Γ(v) ∩W |+ 8α

p3m

∑
v∈T2

|Γ(v) ∩W |

=
2q

p
e(W ) +

8α

p3m

∑
v∈T2

|Γ(v) ∩W |.
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Thus

qe(W ) + pe(V \W ) = qe(W ) + p
(
m− e(W )− e(W,V \W )

)
≤ qe(W ) + p

(
m− e(W )− 2q

p
e(W )− 8α

p3m

∑
v∈T2

|Γ(v) ∩W |

)

= pm− e(W )− 8α

p2m

∑
v∈T2

|Γ(v) ∩W |

< pqm+ α− 8α

p2m

∑
v∈T2

|Γ(v) ∩W |.

Thus, by (13),
8α

p2m

∑
v∈T2

|Γ(v) ∩W | < 2α

and so ∑
v∈T2

|Γ(v) ∩W | < p2m

4
. (21)

On the other hand, since W and V \W satisfy the local inequality, by (12)
we have

e(W ) ≤ p2m+ α ≤ 2p2m

and so ∑
v∈T1

|Γ(v) ∩W | ≤ 2e(W ) ≤ 4p2m,

which, by the definition of T1, implies

|T1| ≤
4p2m√
32mp2

=

√
mp2

2
.

Thus∑
v∈T1

|Γ(v) ∩W | ≤ e(T1) + e(W ) ≤
(
|T1|
2

)
+ e(W ) ≤ mp2

4
+ e(W ). (22)

Since e(W ) > p2m− α ≥ p2m/2, (22) and (21) give∑
v∈T1∪T2

|Γ(v) ∩W | < p2m

2
+ e(W ) ≤ 2e(W )

and so T1 ∪ T2 6= W . The lemma follows immediately.
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We can now turn to the proof of Theorem 1.

Proof of Theorem 1. Let V1 ∪ V2 be a partition with

qe(V1) + pe(V2) = pqm− α.

If (14) and (15) are satisfied for V1 and V2, we are done. Otherwise, exchang-
ing p and q if necessary (and noting that this also exchanges (14) and (15)),
we may assume that

e(V1) > p2m− α.
If

e(V1) = p2m− α + λ

then

pe(V2) = pqm− α− qe(V1)
= pqm− α− qp2m+ qα− qλ
= pq2m− pα− qλ

and so
e(V2) = q2m− α− q

p
λ. (23)

Note that (V1, V2) satisfies the local inequality (16) (with W = V1).
We now successively move vertices from V1 to V2, at each step choosing

a vertex satisfying (17) and (18). We can find such a vertex, as the local
inequality (16) remains true if we remove vertices from V1 and so we can
apply Lemma 2. We continue until we obtain V ′1 such that p2m − α ≤
e(V ′1) ≤ p2m − α +

√
32mp2 (note that (17) guarantees that our steps are

sufficiently small that we don’t overshoot). Since we have decreased e(V1) by
at most λ, (18) implies that we have increased e(V2) by at most(

q

p
+

8α

p3m

)
λ

and so, by (23), we end up with V ′2 satisfying

e(V ′2) ≤ e(V2) +

(
q

p
+

8α

p3m

)
λ

≤ q2m− α +
8α

p3m
λ. (24)

By (12) we have λ ≤ 2α, and so the result follows from (24) by taking the
partition (V ′1 , V

′
2).
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We now deal with the case when α is large.

Theorem 3. Let 0 < p < 1 and q = 1 − p. Let 0 < c < min{p2, q2} and
c∗(p) = min{cp/12, cq/12}. Suppose that G is a graph with m edges and

mp(G) = pqm− α, (25)

where α ≥ cm. Then, provided that m is sufficiently large (in terms of c and
p), there is a partition V (G) = V1 ∪ V2 such that

e(V1) ≤ p2m− c∗m (26)

e(V2) ≤ q2m− c∗m. (27)

The best fit with Theorem 1 is obtained by specializing to a particular
value of c. However, it will be useful in the next section to allow any c > 0.

The proof of Theorem 3 is based on the following lemma.

Lemma 4. Let 0 < p < 1, q = 1 − p, and suppose that 0 < c∗ < p3/9.
Suppose that G is a graph with m edges. Suppose W ⊂ V = V (G) satisfies

e(W ) > p2m− c∗m

and, for every w ∈ W ,

q|Γ(w) ∩W | ≤ p|Γ(w) ∩ V \W |.

Then, provided m is sufficiently large (in terms of p and c∗), either there is
w ∈ W such that

|Γ(w) ∩W | < c∗m (28)

and

|Γ(w) ∩ V \W | ≤
(q
p

+
1

2

)
|Γ(v) ∩W |, (29)

or there is W ′ ⊂ W such that (V1, V2) = (W ′, V \W ′) satisfies

e(V1) ≤ p2m− c∗m (30)

e(V2) ≤ q2m− c∗m. (31)

Proof. Let
T1 = {v ∈ W : |Γ(v) ∩W | > c∗m}
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and

T2 =
{
v ∈ W : |Γ(v) ∩ V \W | ≥

(
q

p
+

1

2

)
|Γ(v) ∩W |

}
.

Let T = T1 ∪ T2. We consider two cases.

Case 1. e(T ) ≥ p2m− c∗m.
Since every graph with m edges has a vertex of degree at most

√
2m, we

can delete vertices from T ⊂ W one at a time until we obtain V1 ⊂ T with

p2m− c∗m−
√

2m < e(V1) ≤ p2m− c∗m. (32)

Then, writing V2 = V \ V1, and using the local inequality and the fact that
V1 ⊆ T , we have

e(V1, V2) =
∑
v∈V1

|Γ(v) ∩ V2|

≥
∑
v∈V1

|Γ(v) ∩ V \ T |

≥ q

p

∑
v∈V1

|Γ(v) ∩ T |+ 1

2

∑
v∈V1∩T2

|Γ(v) ∩ T |

≥ 2q

p
e(V1) +

1

2

∑
v∈V1∩T2

|Γ(v) ∩ V1|. (33)

Now, since T ⊆ W ,
∑

v∈T1
|Γ(v) ∩W | ≤ 2e(W ) ≤ 2m, and so |T1| < 2/c∗.

Thus e(T1) < 2/(c∗)2, and so∑
v∈V1∩T1

|Γ(v) ∩ V1| ≤ e(V1 ∩ T1) + e(V1)

≤ e(T1) + e(V1)

<
2

(c∗)2
+ e(V1).

Since V1 ⊆ T , it follows that∑
v∈V1∩T2

|Γ(v) ∩ V1| ≥ 2e(V1)−
∑

v∈V1∩T1

|Γ(v) ∩ V1|

> e(V1)−
2

(c∗)2

≥ e(V1)/2,
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provided m is sufficiently large. Thus, by (33),

e(V1, V2) >

(
2q

p
+

1

4

)
e(V1)

and so, using (32),

e(V2) = m− e(V1)− e(V1, V2)

< m−
(
1 +

2q

p
+

1

4

)
e(V1)

≤ m−
(
1 +

2q

p
+

1

4

)(
p2m− c∗m−

√
2m
)

= q2m− 1

4
p2m+

(
1 +

2q

p
+

1

4

)(
c∗m+

√
2m
)

< q2m− c∗m,

provided m is sufficiently large. Thus (V1, V2) satisfies (30) and (31), as
required.

Case 2. e(T ) < p2m− c∗m.
In this case, there is some vertex w ∈ W \ T ; this vertex will satisfy the

required inequalities.

Proof of Theorem 3. Let V (G) = V1 ∪ V2 be a partition such that

qe(V1) + pe(V2) = pqm− α. (34)

If V1 and V2 satisfy (26) and (27) then we are done. Otherwise (exchanging
V1 and V2 and p and q if necessary, and noting that c∗ is unchanged) we may
assume V1 fails (26). Suppose that

e(V1) = p2m− c∗m+ λ, (35)

so that, by (34),

e(V2) =
1

p

(
pqm− α− qe(V1)

)
=

1

p

(
pq2m− α− qλ+ qc∗m

)
= q2m− qλ+ α

p
+
qc∗m

p
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Provided m is sufficiently large, we can move vertices from V1 to V2 using
Lemma 4. At each stage, we either obtain the partition required by the
theorem, or by (29) move a vertex that decreases e(V1) by some integer d
and increases e(V2) by at most ( q

p
+ 1

2
)d. We halt when we reach V ′1 ⊂ V1

with
p2m− 2c∗m ≤ e(V ′1) ≤ p2m− c∗m;

here, (28) guarantees that we do stop. We have decreased e(V1) by

e(V1)− e(V ′1) ≤ λ+ c∗m

and so, writing V ′2 = V \ V ′1 ,

e(V ′2) ≤ e(V2) +

(
q

p
+

1

2

)
(λ+ c∗m)

= q2m− qλ+ α

p
+
qc∗m

p
+

(
q

p
+

1

2

)
(λ+ c∗m)

= q2m− 1

p
α +

1

2
λ+

(
2q

p
+

1

2

)
c∗m.

By (12), (35) and (34), we have λ ≤ α + c∗m, so

e(V ′2) ≤ q2m−
(

1

p
− 1

2

)
α + 2

(
q

p
+

1

2

)
c∗m

≤ q2m− 1

2
α +

4

p
c∗m

< q2m− c∗m.

Thus (V ′1 , V
′
2) will do for our partition.

3 Partitions into k vertex classes

In this section, we show that graphs with a large k-cut have a good judicious
partition into k vertex classes. As in the previous section, we begin with a
result for moderate values of α, and then prove a result (Theorem 8) for large
α.

Our first result is the following.
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Theorem 5. Let k ≥ 2. Suppose that G is a graph with m edges such that

mck(G) =

(
1− 1

k

)
m+ α, (36)

where α ≤ m/k6. Then there is a k-cut in which each class has at most

m

k2
− α

k
+
k5α2

m
+ 4
√
m (37)

edges.

Before we prove this result, let us make a few simple observations. Note
first that if

⋃k
i=1 Vi is a maximum k-cut of G then, for i 6= j and v ∈ Vi, we

have
|Γ(v) ∩ Vj| ≥ |Γ(v) ∩ Vi|, (38)

or else we could move v from Vi to Vj to obtain a larger cut. Thus every
vertex class Vi satisfies, for all v ∈ Vi, the inequality

|Γ(v) ∩ V \ Vi| ≥ (k − 1)|Γ(v) ∩ Vi|. (39)

Once again, we shall refer to this as the local inequality.
Summing (38) over vertices in Vi, we find that

e(Vi, Vj) ≥ 2e(Vi). (40)

It is easily seen (for instance, by considering a random k-cut, or partitioning
greedily one vertex at a time) that

mck(G) ≥ k − 1

k
e(G). (41)

Given a partition of some subset W ⊂ V (G) into k sets, we can extend
greedily to a k-cut of G by adding vertices one at a time to whichever class
maximizes the partial cut at each step. We see that, if H = G[W ], then

mck(G) ≥ mck(H) +
k − 1

k
(e(G)− e(H)). (42)

We can also obtain a k-cut by choosing one vertex class and then taking a
(k − 1)-cut of the remainder of the graph. In particular, for any W ⊂ V =
V (G),

mck(G) ≥ e(W,V \W ) + mck−1(G \W ). (43)

In addition to these observations, our proof of Theorem 5 will be based
on the following two lemmas.
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Lemma 6. Suppose that G is a graph with m edges such that

mck(G) =
k − 1

k
m+ α (44)

and W ⊂ V satisfies the local inequality

|Γ(v) ∩ (V \W )| ≥ (k − 1)|Γ(v) ∩W | (45)

for all v ∈ W . Then

e(W ) ≤ m

k2
+
k − 1

k
α. (46)

Proof. Let V = V (G). Using (43) and (41), we see that

mck(G) ≥ e(W,V \W ) + mck−1(G \W )

≥ e(W,V \W ) +
k − 2

k − 1

(
m− e(W )− e(W,V \W )

)
=
k − 2

k − 1
m+

1

k − 1
e(W,V \W )− k − 2

k − 1
e(W ).

Summing (45) over vertices in W , we see e(W,V \W ) ≥ 2(k − 1)e(W ). So

mck(G) ≥ k − 2

k − 1
m+ 2e(W )− k − 2

k − 1
e(W )

=
k − 2

k − 1
m+

k

k − 1
e(W ).

The result now follows by a simple calculation.

The proof of Theorem 5 involves moving certain vertices between the
vertex classes of a partition. The fact that we can find suitable vertices is
guaranteed by the following lemma.

Lemma 7. Suppose that α < m/2k and

mck(G) =
k − 1

k
m+ α. (47)

Suppose that W ⊂ V and the local inequality (45) holds for every v ∈ W . If

e(W ) ≥ m

k2
− α

k
(48)

15



then there is a vertex v ∈ W with

|Γ(v) ∩W | ≤ 4
√
m (49)

and
|Γ(v) ∩ (V \W )| ≤

(
k − 1 + 4k3

α

m

)
|Γ(v) ∩W | (50)

Proof. Let

T1 = {v ∈ W : |Γ(v) ∩W | > 4
√
m}

T2 =
{
v ∈ W : |Γ(v) ∩ (V \W )| >

(
k − 1 + 4k3

α

m

)
|Γ(v) ∩W |

}
It is enough to show that W \ (T1 ∪ T2) is nonempty.

By (45), we have e(W,V \W ) ≥ 2(k − 1)e(W ) and as e(W ) + e(W,V \
W ) ≤ m, we get e(W ) ≤ m/(2k − 1). Since

∑
v∈T1
|Γ(v) ∩W | ≤ 2e(W ) ≤

2m/(2k − 1), we have

|T1| ≤
2e(W )

4
√
m
≤

√
m

2(2k − 1)

and so

e(T1) ≤
(
|T1|
2

)
≤ m

8(2k − 1)2
.

It follows that∑
v∈T1

|Γ(v) ∩W | ≤ e(W ) + e(T1) ≤ e(W ) +
m

8(2k − 1)2
. (51)

We now concentrate on bounding
∑

v∈T2
|Γ(v) ∩ W |. Calculating as in

the proof of Lemma 6, we have

mck(G) ≥ k − 2

k − 1
m− k − 2

k − 1
e(W ) +

1

k − 1
e(W,V \W ). (52)

Now (45) and the definition of T2 imply that

e(W,V \W ) =
∑
v∈W

|Γ(v) ∩ (V \W )|

≥ (k − 1)
∑
v∈W

|Γ(v) ∩W |+ 4k3α

m

∑
v∈T2

|Γ(v) ∩W |

= 2(k − 1)e(W ) +
4k3α

m

∑
v∈T2

|Γ(v) ∩W |. (53)

16



It therefore follows from (52) that

mck(G) ≥ k − 2

k − 1
m+

k

k − 1
e(W ) +

4k3α

m(k − 1)

∑
v∈T2

|Γ(v) ∩W |. (54)

By (48) the right hand side is at least

k − 1

k
m− α

k − 1
+

4k3α

m(k − 1)

∑
v∈T2

|Γ(v) ∩W |.

But then (47) implies that

4k3α

m(k − 1)

∑
v∈T2

|Γ(v) ∩W | ≤ α +
α

k − 1
=

k

k − 1
α,

and so ∑
v∈T2

|Γ(v) ∩W | ≤ m

4k2
.

It therefore follows from (51) that∑
v∈T1∪T2

|Γ(v) ∩W | ≤ e(W ) +

(
1

4k2
+

1

8(2k − 1)2

)
m.

Since α < m/2k, we have e(W ) > m/2k2. Since

1

4k2
+

1

8(2k − 1)2
<

1

2k2
,

we have ∑
v∈T1∪T2

|Γ(v) ∩W | ≤ e(W ) +
m

2k2
< 2e(W ),

and so T1 ∪ T2 6= W , as claimed.

After this, we are ready to prove Theorem 5.

Proof of Theorem 5. We argue by induction on k. Let (V1, . . . , Vk) be a max-
imum cut, and suppose that e(V1) ≥ · · · ≥ e(Vk). If e(V1) satisfies (37) we
are done. Otherwise,

e(V1) =
m

k2
− α

k
+ λ, (55)

17



where Lemma 6 implies that λ ≤ α.
We proceed by moving vertices one at a time from V1 to other vertex

classes. Suppose we have reached a stage with vertex classes V ′1 , . . . , V
′
k

(where V ′1 ⊆ V1). Applying Lemma 7, we find a vertex v satisfying (49)
and (50), and move v to whichever class V ′i , i > 1, contains fewest neigh-
bours of v. This decreases e(V ′1) by |Γ(v)∩V ′1 | ≤ 4

√
m and, by (50), decreases

the size of the k-cut by at most

min
i>1
{|Γ(v) ∩ V ′i | − |Γ(v) ∩ V ′1 |} ≤

1

k − 1
|Γ(v) ∩ (V \ V ′1)| − |Γ(v) ∩ V ′1 |

≤ 4k3α

m(k − 1)
|Γ(v) ∩ V ′1 |. (56)

Since moving v does not affect the local inequality (45), we can continue to
move vertices until V1 is reduced to W1 with

m

k2
− α

k
≤ e(W1) ≤

m

k2
− α

k
+ 4
√
m. (57)

Note that inequality (49) implies that we do eventually obtain W1 with e(W1)
in this range.

We end up with a set W1 ⊆ V1 that satisfies (37), and sets W2, . . . ,Wk

with Wi ⊇ Vi for each i. Since (55) and (57) imply that e(V1)− e(W1) ≤ λ ≤
α, it follows from (56) that the size of the k-cut we end up with is at least

k − 1

k
m+ α− α · 4k3α

m(k − 1)
. (58)

Since (W1, . . . ,Wk) satisfies (57), by (58) we have∑
i≥2

e(Wi) ≤ m−
(
k − 1

k
m+ α− 4k3α2

m(k − 1)

)
− e(W1)

=
m

k
− α +

4k3α2

m(k − 1)
− e(W1)

≤ k − 1

k2
m− k − 1

k
α +

4k3α2

m(k − 1)
. (59)

If k = 2, this implies (37) immediately. Otherwise, we consider the
subgraph H = G[V \W1], and partition it into k − 1 classes.
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Suppose first that e(H) ≤
(
k−1
k

)2
m − (k−1)2

k
α. We can find a judicious

partition of H into k − 1 classes, each of which satisfies (3). Extending to
a k-partition of G by taking W1 as the kth vertex class gives a partition
satisfying (37).

Otherwise, e(H) >
(
k−1
k

)2
m − (k−1)2

k
α. Note that since V1 satisfies the

local inequality (39), so does W1, and so e(W1, V \W1) ≥ 2(k − 1)e(W1).
Now

mck−1(H) ≤ k − 2

k − 1
e(H) +

k

k − 1
α, (60)

or else, using (57), (43) and the local inequality,

mck(G) ≥ mck−1(H) + e(W1, V \W1)

>
k − 2

k − 1

(
m− e(W1)− e(W1, V \W1)

)
+

k

k − 1
α + e(W1, V \W1)

=
k − 2

k − 1
m+

1

k − 1
e(W1, V \W1)−

k − 2

k − 1
e(W1) +

k

k − 1
α

≥ k − 2

k − 1
m+ 2e(W1)−

k − 2

k − 1
e(W1) +

k

k − 1
α

=
k − 2

k − 1
m+

k

k − 1
e(W1) +

k

k − 1
α

≥ k − 2

k − 1
m+

k

k − 1
· m
k2
− k

k − 1

α

k
+

k

k − 1
α

=
k − 1

k
m+ α,

which contradicts (36). Thus, writing

mck−1(H) =
k − 2

k − 1
e(H) + γ, (61)

by (60) and our assumptions on the size of e(H) and α,

γ/e(H) ≤ kα/(k − 1)

(k − 1)2m/k2 − (k − 1)2α/k

≤ (m/k4) · k/(k − 1)

m(k − 1)2/k2 − (k − 1)2m/k5

≤ 1/(k − 1)4.
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Applying the inductive hypothesis to H, we obtain a partition W ′
2, . . . ,W

′
k

with

max
i>1

e(W ′
i ) ≤

e(H)

(k − 1)2
− γ

k − 1
+ (k − 1)5

γ2

e(H)
+ 4
√
e(H) (62)

Now, by (61),

e(H)

(k − 1)2
− γ

k − 1
=

1

k − 1
(e(H)−mck−1(H))

≤ 1

k − 1

∑
i≥2

e(Wi) (63)

and, since γ ≤ k
k−1α (by (60)) and e(H) ≥

(
k−1
k

)2
m − (k − 1)2α/k ≥(

k−1
k

)2
m− (k − 1)2m/k5,

γ2

e(H)
≤
(

k

k − 1

)2
α2

m

1

(k − 1)2/k2 − (k − 1)2/k5

=
α2

m
· k7

(k − 1)4(k3 − 1)
.

It follows from (62), (63) and (59) that

max
i≥1

e(W ′
i ) ≤

1

k − 1

∑
i≥2

e(Wi) + (k − 1)5
γ2

e(H)
+ 4
√
e(H)

≤ m

k2
− α

k
+

4k3

(k − 1)2
α2

m
+

(k − 1)5k7

(k − 1)4(k3 − 1)

α2

m
+ 4
√
m

≤ m

k2
− α

k
+ k5

α2

m
+ 4
√
m,

for k ≥ 3. The result now follows immediately by taking the partition
W1,W

′
2, . . . ,W

′
k.

Finally, we turn to the case when the maximum k-cut is very large. As
in Alon, Bollobás, Krivelevich and Sudakov [1], we use a rather cruder argu-
ment.

Theorem 8. Let k ≥ 2. Suppose that G is a graph with m edges such that

mck(G) =
k − 1

k
m+ α,
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where α > m/k6. Then, provided that m is sufficently large (in terms of k),
there is a partition of V (G) into k sets, each of which contains at most

m

k2
− m

12k10
(64)

edges.

Proof. Let (V1, . . . , Vk) be a cut of size (k−1)m/k+α. Let i ∈ {1, . . . , k} be
chosen uniformly at random, and consider the partition (Vi, V \ Vi). Then,
writing m′ =

∑k
j=1 e(Vj) = m/k − α and p = 1− q = 1/k, we have

E(qe(Vi) + pe(V \ Vi)) = q
1

k
m′ + p

(
k − 1

k
m′ +

(
k−1
2

)(
k
2

) (m−m′)

)
=

2k − 2

k2
m′ +

k − 2

k2
(m−m′)

=
k − 2

k2
m+

1

k
m′

=
k − 1

k2
m− α

k

= pqm− α

k
.

Suppose that m1/k(G) = pqm − α′. Since α′ > m/k7, we can apply
Theorem 3 with p = 1/k and c = 1/k7 to get a bipartition V (G) = V ′1 ∪ V ′2
with e(V1) ≤ m/k2 − m/12k8 and e(V ′2) ≤ (k − 1)2m/k2 − m/12k8. We
refine the partition by splitting V2 into k − 1 pieces satisfying (3) (for the
(k − 1)-partite case). Providing m is sufficiently large (in terms of k), we
obtain a partition of V (G) satisfying (64).

4 Conclusion

It seems likely that our constants could be improved significantly. It would
be interesting to have sharper constants both when δ is small (for instance, in
(37)), and when δ is large (for instance, in (64)). Particularly when δ = Ω(m),
all the bounds are rather crude, and it would be very interesting to know
the correct dependence of the error term on δ, and to have some idea of the
extremal graphs.
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It would be very interesting to prove analogous results for hypergraphs
(see, for instance, [6] and [8] for results on judicious partitions of hyper-
graphs).

Finally, it would also be of interest to consider bisections instead of cuts.
More specifically, for a graph G, let

b(G) = max{e(V1, V2) : V (G) = V1 t V2, | |V1| − |V2| | ≤ 1}

be the maximum size of a bisection of G, and let gb(G) be the minimum of
max{e(V1), e(V2)} over bisections of G. What can be said about the rela-
tionship between b(G) and gb(G)? Note that the star K1,n−1 has b(K1,n−1) =
dn/2e ∼ e(K1,n−1)/2, while gb(K1,n−1) = bn/2c − 1 ∼ e(K1,n−1)/2, which is
about as bad as it could be. But what about graphs with bisections much
larger than m/2?

Acknowledgement. We would like to thank the referees for their careful
reading of the paper.
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