# Max $k$-cut and judicious $k$-partitions 

Béla Bollobás ${ }^{*} \ddagger \ddagger$ Alex Scott ${ }^{\text {§ }}$


#### Abstract

Alon, Bollobás, Krivelevich and Sudakov [1] proved that every graph with a large cut has a bipartition in which each vertex class contains correspondingly few edges. We prove an analogous result for partitions into $k \geq 3$ classes; along the way we prove a result for biased bipartitions.


## 1 Introduction

Let $G$ be a graph with $m$ edges. It is easy to show that $G$ has a cut (or, equivalently, a bipartite subgraph) of size least $m / 2$. It is much less obvious (but nevertheless true) that there is a cut of this size such that the remaining edges are roughly evenly distributed between the two sides of the cut: in other words, each vertex class contains no more than (roughly) $m / 4$ edges. Now suppose that $G$ has a cut that is much larger than $m / 2$. In this case we might hope for more: if $G$ has a cut of size $m / 2+\alpha$, then a near-optimal cut that divides the remaining edges roughly equally between the two vertex classes would have roughly $m / 4-\alpha / 2$ edges in each class. Alon, Bollobás, Krivelevich and Sudakov [1] showed that, for $\alpha$ not too large, this is indeed possible (for $\alpha$ large, they proved a complementary result: if $\alpha \geq m / 30$, there is a bipartition in which each class contains at most $m / 4-m / 100$ edges).

[^0]The aim of this paper is to generalize these results in two directions: we first give results on "biased" cuts, in which edges in the two vertex classes are counted with different weights; we then continue by giving results in partitions into more than two parts. In each case, as with Alon, Bollobás, Krivelevich and Sudakov [1], we obtain matching results for the cases $\alpha$ small and $\alpha$ large.

The remainder of this introduction is divided into two parts. In the first part, we discuss some background to the problem; the second part describes our results and gives a little notation.

### 1.1 Previous work

For a graph $G$, let us define

$$
f(G)=\max _{V(G)=V_{1} \cup V_{2}} e\left(V_{1}, V_{2}\right)=\max _{V(G)=V_{1} \cup V_{2}}\left(m-e\left(V_{1}\right)-e\left(V_{2}\right)\right)
$$

to be the maximum size of a cut in $G$. Then, for $m \geq 1$, we set

$$
f(m)=\min _{e(G)=m} f(G) .
$$

The extremal Max Cut problem asks for the value of $f(m)$, and has been extensively studied. It is easy to see that $f(m) \geq m / 2$, for instance by considering random partitions or a suitable greedy algorithm. Edwards [10, 11] showed that

$$
\begin{equation*}
f(m) \geq \frac{m}{2}+\sqrt{\frac{m}{8}+\frac{1}{64}}-\frac{1}{8}, \tag{1}
\end{equation*}
$$

which is sharp for complete graphs of odd order. More precise bounds for other values of $m$ were given by Alon [2], Alon and Halperin [3], and in [5]. From the other side, it is easily seen by considering random graphs $G \in \mathcal{G}(n, 1 / 2)$ that $f(m)=m / 2+o(m)$.

The Max Cut problem asks for a bipartition in which $e\left(V_{1}, V_{2}\right)$ is large, and hence $e\left(V_{1}\right)+e\left(V_{2}\right)$ is small. However, it does not place strong constraints on the number of edges in each vertex class separately. Problems in which constraints are placed on all vertex classes simultaneously are known as judicious partitioning problems (see [16] and [4] for an overview). In this case, we define a judicious partitioning problem as follows. For a graph $G$, let

$$
g(G)=\min _{V(G)=V_{1} \cup V_{2}} \max \left\{e\left(V_{1}\right), e\left(V_{2}\right)\right\},
$$

and, for $m \geq 1$, set

$$
g(m)=\max _{e(G)=m} g(G) .
$$

Determining the behaviour of $g(m)$ seems significantly harder than analyzing $f(m)$. For instance, proving that $f(m) \sim m / 2$ is trivial, but there does not seem to be any simple way to prove that $g(m) \sim m / 4$ (which turns out to be true). Bounds on $g(m)$ were proved by several authors, including Porter [12, 13, 14], Porter and Bin Yang [15], and Bollobás and Scott [9]. An analogue of the Edwards bound was finally proved in [7], where it was shown that every graph $G$ with $m$ edges has a bipartition $V(G)=V_{1} \cup V_{2}$ such that

$$
\begin{equation*}
\max \left\{e\left(V_{1}\right), e\left(V_{2}\right)\right\} \leq \frac{m}{4}+\sqrt{\frac{m}{32}+\frac{1}{256}}-\frac{1}{16} \tag{2}
\end{equation*}
$$

and in addition $e\left(V_{1}, V_{2}\right)$ satisfies (1). More generally, there is a vertex partition into $k$ classes, each of which contains at most

$$
\begin{equation*}
\frac{m}{k^{2}}+\frac{k-1}{2 k^{2}}\left(\sqrt{2 m+\frac{1}{4}}-\frac{1}{2}\right) \tag{3}
\end{equation*}
$$

edges.
The bounds (2) and (1) are closely related, and it is natural to ask whether graphs with a very large cut (i.e. much larger than that guaranteed by (1)) also have a correspondingly good judicious partition. If $G$ is a graph with $m$ edges, and $f(G)=m / 2+\alpha$, then it is clear that $g(G) \geq m / 4-\alpha / 2$, since we cannot do better than a maximum cut with the remaining edges divided equally between the two vertex classes. Alon, Bollobás, Krivelevich and Sudakov [1] showed that it is possible to get pretty close to this bound: if $\alpha \leq m / 30$ then

$$
\begin{equation*}
g(G) \leq \frac{m}{4}-\frac{\alpha}{2}+3 \sqrt{m}+\frac{10 \alpha^{2}}{m} \tag{4}
\end{equation*}
$$

For large $\alpha$, this bound is less useful. However, they also showed the complementary result that if $\alpha \geq m / 30$ (and $m$ is sufficiently large) then

$$
\begin{equation*}
g(G) \leq \frac{m}{4}-\frac{m}{100} . \tag{5}
\end{equation*}
$$

### 1.2 Our results

The aim of this paper is to extend the results of Alon, Bollobás, Krivelevich and Sudakov [1] in two directions: to biased partitions, and to partitions into $k \geq 3$ parts.

In Section 2, we give results on biased partitions. For $p \in[0,1]$ and $q=1-p$, define

$$
m_{p}(G)=\min _{V(G)=V_{1} \cup V_{2}} q e\left(V_{1}\right)+p e\left(V_{2}\right)
$$

Note that this is a 'biased' generalization of Max Cut: if we take $p=1 / 2$ then we get $\left.m_{1 / 2}(G)=\frac{1}{2}(m-f(G))\right)$.

Considering a random bipartion where each vertex independently has probability $p$ of being in $V_{1}$, we get $\mathbb{E} e\left(V_{1}\right)=p^{2} m$ and $\mathbb{E} e\left(V_{2}\right)=q^{2} m$. It follows that every graph $G$ with $m$ edges has $m_{p}(G) \leq p q m$, while complete graphs or not too sparse random graphs show that we can have $m_{p}(G)=$ $(1+o(1)) p q m$. A corresponding judicious result was proved in [7], where it was shown that there is in fact a bipartition such that there are no more than about $p^{2} m$ edges in $V_{1}$ and $q^{2} m$ edges in $V_{2}$. More precisely, there is a bipartition in which

$$
\begin{equation*}
e\left(V_{1}\right) \leq p^{2} m+h(p, m) \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
e\left(V_{2}\right) \leq q^{2} m+h(p, m) \tag{7}
\end{equation*}
$$

where

$$
h(p, m)=p q(\sqrt{m / 2+1 / 16}-1 / 4) .
$$

Note that when $p=1 / 2$, we recover (2).
Our aim in section 2 is to prove bounds similar to (4) and (5) in this context. Suppose that $m_{p}(G)=p q m-\alpha$. If $\alpha \leq c(p) m$, we will show in Theorem 1 that there is a bipartition $V(G)=V_{1} \cup V_{2}$ such that $V_{1}$ and $V_{2}$ satisfy inequalities of form

$$
\begin{equation*}
e\left(V_{1}\right) \leq p^{2} m-\alpha+O\left(\sqrt{m}+\frac{\alpha^{2}}{m}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
e\left(V_{2}\right) \leq q^{2} m-\alpha+O\left(\left(\sqrt{m}+\frac{\alpha^{2}}{m}\right)\right. \tag{9}
\end{equation*}
$$

Note that we get $\alpha$ rather than $\alpha / 2$ here: this reflects the definition of $m_{p}(G)$ : for example, compare $m_{1 / 2}(G)$ with $f(G)$.

If $\alpha \geq c(p) m$ then (8) and (9) are no longer useful: we show in Theorem 3 that there is a bipartition $V(G)=V_{1} \cup V_{2}$ such that

$$
e\left(V_{1}\right) \leq p^{2} m-c^{*}(p) m
$$

and

$$
e\left(V_{2}\right) \leq q^{2} m-c^{*}(p) m
$$

More precise statements of these results can be found at Theorems 1 and 3 below.

In Section 3, we turn to partitions into more than 2 pieces. For $k \geq 2$, let us define $\operatorname{mc}_{k}(G)$ to be the maximum size of a $k$-cut of $G$. It is easily seen by considering a random partition that every graph $G$ with $m$ edges has

$$
\operatorname{mc}_{k}(G) \geq \frac{k-1}{k} m .
$$

We show (Theorem 5) that if there is a significantly larger cut then we get a very good judicious partition. If

$$
\operatorname{mc}_{k}(G)=\frac{k-1}{k} m+\alpha
$$

then the following holds: if $\alpha \leq c(k) m$ then there is a $k$-cut in which each class has at most

$$
\begin{equation*}
\frac{m}{k^{2}}-\frac{\alpha}{k}+O\left(\sqrt{m}+\frac{\alpha^{2}}{m}\right) \tag{10}
\end{equation*}
$$

edges (once again, a more precise statement is given below). For $\alpha>c(k) m$ there is (Theorem 8) a $k$-cut in which each class has at most $m / k^{2}-c^{*}(k) m$ edges. Note that if $\alpha$ is not too large, then (10) is similar to (3), except for the constant in the error term.

In both sections, our proof strategy is to start with a good biased partition or $k$-cut and then move vertices one at a time out of a 'bad' vertex class while tracking their effect on the distribution of edges. This was used in [7] and refined in [1]. Our strategy is similar to the approach used in [1]. However, there are some additional obstacles that need to be overcome.

Throughout the paper, we use the following notation. Let $G$ be a graph. For $W \subset V(G)$, we write $e(W)$ for the number of edges spanned by $W$; for disjoint $X, Y \subset V(G)$ we write $e(X, Y)$ for the number of edges $x y \in E(G)$ with $x \in X$ and $y \in Y$.

## 2 Biased partitions

Let $G$ be a graph with $m$ edges and $p \in[0,1], q=1-p$. In this section, we consider partitions $V(G)=V_{1} \cup V_{2}$ that minimize $q e\left(V_{1}\right)+p e\left(V_{2}\right)$. Recall that

$$
m_{p}(G)=\min _{V(G)=V_{1} \dot{\cup} V_{2}} q e\left(V_{1}\right)+p e\left(V_{2}\right) .
$$

For a random partition in which each vertex independently is placed in $V_{1}$ with probability $p$ or in $V_{2}$ with probability $q$, we have $\mathbb{E}\left(q e\left(V_{1}\right)+p e\left(V_{2}\right)\right)=$ $p q m$. We shall show that if $m_{p}(G)=p q e(G)-\alpha$, with $\alpha \gg \sqrt{m}$, then we get a very good judicious partition.

Note that in a partition with $q e\left(V_{1}\right)+p e\left(V_{2}\right)$ minimal, every $v \in V_{1}$ must satisfy

$$
\begin{equation*}
q\left|\Gamma(v) \cap V_{1}\right| \leq p\left|\Gamma(v) \cap V_{2}\right|, \tag{11}
\end{equation*}
$$

or else we would have moved $v$ to $V_{2}$, and a similar inequality holds for vertices in $V_{2}$. We shall refer to (11) as the local inequality.

For any partition $V(G)=V_{1} \cup V_{2}$ that satisfies the local inequality, summing over $V_{1}$ implies that

$$
e\left(V_{1}, V_{2}\right) \geq \frac{2 q}{p} e\left(V_{1}\right)
$$

and so

$$
\begin{aligned}
e\left(V_{2}\right) & =m-e\left(V_{1}\right)-e\left(V_{1}, V_{2}\right) \\
& \leq m-e\left(V_{1}\right)-\frac{2 q}{p} e\left(V_{1}\right) \\
& =m-\frac{1+q}{p} e\left(V_{1}\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
q e\left(V_{1}\right)+p e\left(V_{2}\right) & \leq q e\left(V_{1}\right)+p m-(1+q) e\left(V_{1}\right) \\
& =p m-e\left(V_{1}\right) .
\end{aligned}
$$

Thus if $m_{p}(G)=p q m-\alpha$, and $V_{1}$ and $V_{2}$ satisfy the local inequality, we have

$$
\begin{equation*}
e\left(V_{1}\right) \leq p^{2} m+\alpha \tag{12}
\end{equation*}
$$

We begin with a result for $\alpha$ of moderate size, and prove a result for large $\alpha$ later (Theorem 3).

Theorem 1. Let $0<p<1, q=1-p$, and let $c(p)=\frac{1}{2} \min \left\{p^{2}, q^{2}\right\}$. Suppose $G$ is a graph with $m$ edges such that

$$
\begin{equation*}
m_{p}(G)=p q m-\alpha, \tag{13}
\end{equation*}
$$

where $\alpha \leq c(p) m$. Then there is a partition $V(G)=V_{1}^{\prime} \cup V_{2}^{\prime}$ such that

$$
\begin{equation*}
e\left(V_{1}^{\prime}\right) \leq p^{2} m-\alpha+\sqrt{32 m p^{2}}+\frac{16 \alpha^{2}}{q^{3} m} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
e\left(V_{2}^{\prime}\right) \leq q^{2} m-\alpha+\sqrt{32 m q^{2}}+\frac{16 \alpha^{2}}{p^{3} m} . \tag{15}
\end{equation*}
$$

Note that this improves on (6) and (7) only in the range $\alpha=O\left(\min \left\{p^{3}, q^{3}\right\}\right) m$. Our main tool in the proof of Theorem 1 is the following.
Lemma 2. Suppose $G$ has $m$ edges and satisfies (13), where $\alpha \leq p^{2} m / 2$. Suppose $W \subset V=V(G)$ and, for all $v \in W$,

$$
\begin{equation*}
|\Gamma(v) \cap V \backslash W| \geq \frac{q}{p}|\Gamma(v) \cap W| . \tag{16}
\end{equation*}
$$

If $e(W)>p^{2} m-\alpha$ then there is $v \in W$ with

$$
\begin{equation*}
|\Gamma(v) \cap W| \leq \sqrt{32 m p^{2}} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
|\Gamma(v) \cap V \backslash W| \leq\left(\frac{q}{p}+\frac{8 \alpha}{p^{3} m}\right)|\Gamma(v) \cap W| . \tag{18}
\end{equation*}
$$

As above, we will refer to inequality (16) as the local inequality.
Proof. Define

$$
\begin{equation*}
T_{1}=\left\{v \in W:|\Gamma(v) \cap W|>\sqrt{32 m p^{2}}\right\} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{2}=\left\{v \in W:|\Gamma(v) \cap V \backslash W|>\left(\frac{q}{p}+\frac{8 \alpha}{p^{3} m}\right)|\Gamma(v) \cap W|\right\} . \tag{20}
\end{equation*}
$$

Summing the inequality satisfied by vertices in (20) over $T_{2}$, and summing (16) over the rest of $W$, we see that

$$
\begin{aligned}
e(W, V \backslash W) & \geq \frac{q}{p} \sum_{v \in W}|\Gamma(v) \cap W|+\frac{8 \alpha}{p^{3} m} \sum_{v \in T_{2}}|\Gamma(v) \cap W| \\
& =\frac{2 q}{p} e(W)+\frac{8 \alpha}{p^{3} m} \sum_{v \in T_{2}}|\Gamma(v) \cap W| .
\end{aligned}
$$

Thus

$$
\begin{aligned}
q e(W)+p e(V \backslash W) & =q e(W)+p(m-e(W)-e(W, V \backslash W)) \\
& \leq q e(W)+p\left(m-e(W)-\frac{2 q}{p} e(W)-\frac{8 \alpha}{p^{3} m} \sum_{v \in T_{2}}|\Gamma(v) \cap W|\right) \\
& =p m-e(W)-\frac{8 \alpha}{p^{2} m} \sum_{v \in T_{2}}|\Gamma(v) \cap W| \\
& <p q m+\alpha-\frac{8 \alpha}{p^{2} m} \sum_{v \in T_{2}}|\Gamma(v) \cap W| .
\end{aligned}
$$

Thus, by (13),

$$
\frac{8 \alpha}{p^{2} m} \sum_{v \in T_{2}}|\Gamma(v) \cap W|<2 \alpha
$$

and so

$$
\begin{equation*}
\sum_{v \in T_{2}}|\Gamma(v) \cap W|<\frac{p^{2} m}{4} \tag{21}
\end{equation*}
$$

On the other hand, since $W$ and $V \backslash W$ satisfy the local inequality, by (12) we have

$$
e(W) \leq p^{2} m+\alpha \leq 2 p^{2} m
$$

and so

$$
\sum_{v \in T_{1}}|\Gamma(v) \cap W| \leq 2 e(W) \leq 4 p^{2} m
$$

which, by the definition of $T_{1}$, implies

$$
\left|T_{1}\right| \leq \frac{4 p^{2} m}{\sqrt{32 m p^{2}}}=\sqrt{\frac{m p^{2}}{2}}
$$

Thus

$$
\begin{equation*}
\sum_{v \in T_{1}}|\Gamma(v) \cap W| \leq e\left(T_{1}\right)+e(W) \leq\binom{\left|T_{1}\right|}{2}+e(W) \leq \frac{m p^{2}}{4}+e(W) \tag{22}
\end{equation*}
$$

Since $e(W)>p^{2} m-\alpha \geq p^{2} m / 2$, (22) and (21) give

$$
\sum_{v \in T_{1} \cup T_{2}}|\Gamma(v) \cap W|<\frac{p^{2} m}{2}+e(W) \leq 2 e(W)
$$

and so $T_{1} \cup T_{2} \neq W$. The lemma follows immediately.

We can now turn to the proof of Theorem 1.
Proof of Theorem 1. Let $V_{1} \cup V_{2}$ be a partition with

$$
q e\left(V_{1}\right)+p e\left(V_{2}\right)=p q m-\alpha .
$$

If (14) and (15) are satisfied for $V_{1}$ and $V_{2}$, we are done. Otherwise, exchanging $p$ and $q$ if necessary (and noting that this also exchanges (14) and (15)), we may assume that

$$
e\left(V_{1}\right)>p^{2} m-\alpha
$$

If

$$
e\left(V_{1}\right)=p^{2} m-\alpha+\lambda
$$

then

$$
\begin{aligned}
p e\left(V_{2}\right) & =p q m-\alpha-q e\left(V_{1}\right) \\
& =p q m-\alpha-q p^{2} m+q \alpha-q \lambda \\
& =p q^{2} m-p \alpha-q \lambda
\end{aligned}
$$

and so

$$
\begin{equation*}
e\left(V_{2}\right)=q^{2} m-\alpha-\frac{q}{p} \lambda . \tag{23}
\end{equation*}
$$

Note that $\left(V_{1}, V_{2}\right)$ satisfies the local inequality (16) (with $W=V_{1}$ ).
We now successively move vertices from $V_{1}$ to $V_{2}$, at each step choosing a vertex satisfying (17) and (18). We can find such a vertex, as the local inequality (16) remains true if we remove vertices from $V_{1}$ and so we can apply Lemma 2. We continue until we obtain $V_{1}^{\prime}$ such that $p^{2} m-\alpha \leq$ $e\left(V_{1}^{\prime}\right) \leq p^{2} m-\alpha+\sqrt{32 m p^{2}}$ (note that (17) guarantees that our steps are sufficiently small that we don't overshoot). Since we have decreased $e\left(V_{1}\right)$ by at most $\lambda,(18)$ implies that we have increased $e\left(V_{2}\right)$ by at most

$$
\left(\frac{q}{p}+\frac{8 \alpha}{p^{3} m}\right) \lambda
$$

and so, by (23), we end up with $V_{2}^{\prime}$ satisfying

$$
\begin{align*}
e\left(V_{2}^{\prime}\right) & \leq e\left(V_{2}\right)+\left(\frac{q}{p}+\frac{8 \alpha}{p^{3} m}\right) \lambda \\
& \leq q^{2} m-\alpha+\frac{8 \alpha}{p^{3} m} \lambda \tag{24}
\end{align*}
$$

By (12) we have $\lambda \leq 2 \alpha$, and so the result follows from (24) by taking the partition ( $V_{1}^{\prime}, V_{2}^{\prime}$ ).

We now deal with the case when $\alpha$ is large.
Theorem 3. Let $0<p<1$ and $q=1-p$. Let $0<c<\min \left\{p^{2}, q^{2}\right\}$ and $c^{*}(p)=\min \{c p / 12, c q / 12\}$. Suppose that $G$ is a graph with $m$ edges and

$$
\begin{equation*}
m_{p}(G)=p q m-\alpha, \tag{25}
\end{equation*}
$$

where $\alpha \geq \mathrm{cm}$. Then, provided that $m$ is sufficiently large (in terms of $c$ and $p$ ), there is a partition $V(G)=V_{1} \cup V_{2}$ such that

$$
\begin{align*}
& e\left(V_{1}\right) \leq p^{2} m-c^{*} m  \tag{26}\\
& e\left(V_{2}\right) \leq q^{2} m-c^{*} m . \tag{27}
\end{align*}
$$

The best fit with Theorem 1 is obtained by specializing to a particular value of $c$. However, it will be useful in the next section to allow any $c>0$.

The proof of Theorem 3 is based on the following lemma.
Lemma 4. Let $0<p<1, q=1-p$, and suppose that $0<c^{*}<p^{3} / 9$. Suppose that $G$ is a graph with $m$ edges. Suppose $W \subset V=V(G)$ satisfies

$$
e(W)>p^{2} m-c^{*} m
$$

and, for every $w \in W$,

$$
q|\Gamma(w) \cap W| \leq p|\Gamma(w) \cap V \backslash W|
$$

Then, provided $m$ is sufficiently large (in terms of $p$ and $c^{*}$ ), either there is $w \in W$ such that

$$
\begin{equation*}
|\Gamma(w) \cap W|<c^{*} m \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
|\Gamma(w) \cap V \backslash W| \leq\left(\frac{q}{p}+\frac{1}{2}\right)|\Gamma(v) \cap W| \tag{29}
\end{equation*}
$$

or there is $W^{\prime} \subset W$ such that $\left(V_{1}, V_{2}\right)=\left(W^{\prime}, V \backslash W^{\prime}\right)$ satisfies

$$
\begin{align*}
& e\left(V_{1}\right) \leq p^{2} m-c^{*} m  \tag{30}\\
& e\left(V_{2}\right) \leq q^{2} m-c^{*} m . \tag{31}
\end{align*}
$$

Proof. Let

$$
T_{1}=\left\{v \in W:|\Gamma(v) \cap W|>c^{*} m\right\}
$$

and

$$
T_{2}=\left\{v \in W:|\Gamma(v) \cap V \backslash W| \geq\left(\frac{q}{p}+\frac{1}{2}\right)|\Gamma(v) \cap W|\right\} .
$$

Let $T=T_{1} \cup T_{2}$. We consider two cases.
Case 1. $e(T) \geq p^{2} m-c^{*} m$.
Since every graph with $m$ edges has a vertex of degree at most $\sqrt{2 m}$, we can delete vertices from $T \subset W$ one at a time until we obtain $V_{1} \subset T$ with

$$
\begin{equation*}
p^{2} m-c^{*} m-\sqrt{2 m}<e\left(V_{1}\right) \leq p^{2} m-c^{*} m \tag{32}
\end{equation*}
$$

Then, writing $V_{2}=V \backslash V_{1}$, and using the local inequality and the fact that $V_{1} \subseteq T$, we have

$$
\begin{align*}
e\left(V_{1}, V_{2}\right) & =\sum_{v \in V_{1}}\left|\Gamma(v) \cap V_{2}\right| \\
& \geq \sum_{v \in V_{1}}|\Gamma(v) \cap V \backslash T| \\
& \geq \frac{q}{p} \sum_{v \in V_{1}}|\Gamma(v) \cap T|+\frac{1}{2} \sum_{v \in V_{1} \cap T_{2}}|\Gamma(v) \cap T| \\
& \geq \frac{2 q}{p} e\left(V_{1}\right)+\frac{1}{2} \sum_{v \in V_{1} \cap T_{2}}\left|\Gamma(v) \cap V_{1}\right| . \tag{33}
\end{align*}
$$

Now, since $T \subseteq W, \sum_{v \in T_{1}}|\Gamma(v) \cap W| \leq 2 e(W) \leq 2 m$, and so $\left|T_{1}\right|<2 / c^{*}$. Thus $e\left(T_{1}\right)<2 /\left(c^{*}\right)^{2}$, and so

$$
\begin{aligned}
\sum_{v \in V_{1} \cap T_{1}}\left|\Gamma(v) \cap V_{1}\right| & \leq e\left(V_{1} \cap T_{1}\right)+e\left(V_{1}\right) \\
& \leq e\left(T_{1}\right)+e\left(V_{1}\right) \\
& <\frac{2}{\left(c^{*}\right)^{2}}+e\left(V_{1}\right) .
\end{aligned}
$$

Since $V_{1} \subseteq T$, it follows that

$$
\begin{aligned}
\sum_{v \in V_{1} \cap T_{2}}\left|\Gamma(v) \cap V_{1}\right| & \geq 2 e\left(V_{1}\right)-\sum_{v \in V_{1} \cap T_{1}}\left|\Gamma(v) \cap V_{1}\right| \\
& >e\left(V_{1}\right)-\frac{2}{\left(c^{*}\right)^{2}} \\
& \geq e\left(V_{1}\right) / 2
\end{aligned}
$$

provided $m$ is sufficiently large. Thus, by (33),

$$
e\left(V_{1}, V_{2}\right)>\left(\frac{2 q}{p}+\frac{1}{4}\right) e\left(V_{1}\right)
$$

and so, using (32),

$$
\begin{aligned}
e\left(V_{2}\right) & =m-e\left(V_{1}\right)-e\left(V_{1}, V_{2}\right) \\
& <m-\left(1+\frac{2 q}{p}+\frac{1}{4}\right) e\left(V_{1}\right) \\
& \leq m-\left(1+\frac{2 q}{p}+\frac{1}{4}\right)\left(p^{2} m-c^{*} m-\sqrt{2 m}\right) \\
& =q^{2} m-\frac{1}{4} p^{2} m+\left(1+\frac{2 q}{p}+\frac{1}{4}\right)\left(c^{*} m+\sqrt{2 m}\right) \\
& <q^{2} m-c^{*} m,
\end{aligned}
$$

provided $m$ is sufficiently large. Thus $\left(V_{1}, V_{2}\right)$ satisfies (30) and (31), as required.

Case 2. $e(T)<p^{2} m-c^{*} m$.
In this case, there is some vertex $w \in W \backslash T$; this vertex will satisfy the required inequalities.

Proof of Theorem 3. Let $V(G)=V_{1} \cup V_{2}$ be a partition such that

$$
\begin{equation*}
q e\left(V_{1}\right)+p e\left(V_{2}\right)=p q m-\alpha . \tag{34}
\end{equation*}
$$

If $V_{1}$ and $V_{2}$ satisfy (26) and (27) then we are done. Otherwise (exchanging $V_{1}$ and $V_{2}$ and $p$ and $q$ if necessary, and noting that $c^{*}$ is unchanged) we may assume $V_{1}$ fails (26). Suppose that

$$
\begin{equation*}
e\left(V_{1}\right)=p^{2} m-c^{*} m+\lambda, \tag{35}
\end{equation*}
$$

so that, by (34),

$$
\begin{aligned}
e\left(V_{2}\right) & =\frac{1}{p}\left(p q m-\alpha-q e\left(V_{1}\right)\right) \\
& =\frac{1}{p}\left(p q^{2} m-\alpha-q \lambda+q c^{*} m\right) \\
& =q^{2} m-\frac{q \lambda+\alpha}{p}+\frac{q c^{*} m}{p}
\end{aligned}
$$

Provided $m$ is sufficiently large, we can move vertices from $V_{1}$ to $V_{2}$ using Lemma 4. At each stage, we either obtain the partition required by the theorem, or by (29) move a vertex that decreases $e\left(V_{1}\right)$ by some integer $d$ and increases $e\left(V_{2}\right)$ by at most $\left(\frac{q}{p}+\frac{1}{2}\right) d$. We halt when we reach $V_{1}^{\prime} \subset V_{1}$ with

$$
p^{2} m-2 c^{*} m \leq e\left(V_{1}^{\prime}\right) \leq p^{2} m-c^{*} m ;
$$

here, (28) guarantees that we do stop. We have decreased $e\left(V_{1}\right)$ by

$$
e\left(V_{1}\right)-e\left(V_{1}^{\prime}\right) \leq \lambda+c^{*} m
$$

and so, writing $V_{2}^{\prime}=V \backslash V_{1}^{\prime}$,

$$
\begin{aligned}
e\left(V_{2}^{\prime}\right) & \leq e\left(V_{2}\right)+\left(\frac{q}{p}+\frac{1}{2}\right)\left(\lambda+c^{*} m\right) \\
& =q^{2} m-\frac{q \lambda+\alpha}{p}+\frac{q c^{*} m}{p}+\left(\frac{q}{p}+\frac{1}{2}\right)\left(\lambda+c^{*} m\right) \\
& =q^{2} m-\frac{1}{p} \alpha+\frac{1}{2} \lambda+\left(\frac{2 q}{p}+\frac{1}{2}\right) c^{*} m .
\end{aligned}
$$

By (12), (35) and (34), we have $\lambda \leq \alpha+c^{*} m$, so

$$
\begin{aligned}
e\left(V_{2}^{\prime}\right) & \leq q^{2} m-\left(\frac{1}{p}-\frac{1}{2}\right) \alpha+2\left(\frac{q}{p}+\frac{1}{2}\right) c^{*} m \\
& \leq q^{2} m-\frac{1}{2} \alpha+\frac{4}{p} c^{*} m \\
& <q^{2} m-c^{*} m .
\end{aligned}
$$

Thus ( $V_{1}^{\prime}, V_{2}^{\prime}$ ) will do for our partition.

## 3 Partitions into $k$ vertex classes

In this section, we show that graphs with a large $k$-cut have a good judicious partition into $k$ vertex classes. As in the previous section, we begin with a result for moderate values of $\alpha$, and then prove a result (Theorem 8) for large $\alpha$.

Our first result is the following.

Theorem 5. Let $k \geq 2$. Suppose that $G$ is a graph with $m$ edges such that

$$
\begin{equation*}
\operatorname{mc}_{k}(G)=\left(1-\frac{1}{k}\right) m+\alpha \tag{36}
\end{equation*}
$$

where $\alpha \leq m / k^{6}$. Then there is a $k$-cut in which each class has at most

$$
\begin{equation*}
\frac{m}{k^{2}}-\frac{\alpha}{k}+\frac{k^{5} \alpha^{2}}{m}+4 \sqrt{m} \tag{37}
\end{equation*}
$$

edges.
Before we prove this result, let us make a few simple observations. Note first that if $\bigcup_{i=1}^{k} V_{i}$ is a maximum $k$-cut of $G$ then, for $i \neq j$ and $v \in V_{i}$, we have

$$
\begin{equation*}
\left|\Gamma(v) \cap V_{j}\right| \geq\left|\Gamma(v) \cap V_{i}\right|, \tag{38}
\end{equation*}
$$

or else we could move $v$ from $V_{i}$ to $V_{j}$ to obtain a larger cut. Thus every vertex class $V_{i}$ satisfies, for all $v \in V_{i}$, the inequality

$$
\begin{equation*}
\left|\Gamma(v) \cap V \backslash V_{i}\right| \geq(k-1)\left|\Gamma(v) \cap V_{i}\right| . \tag{39}
\end{equation*}
$$

Once again, we shall refer to this as the local inequality.
Summing (38) over vertices in $V_{i}$, we find that

$$
\begin{equation*}
e\left(V_{i}, V_{j}\right) \geq 2 e\left(V_{i}\right) \tag{40}
\end{equation*}
$$

It is easily seen (for instance, by considering a random $k$-cut, or partitioning greedily one vertex at a time) that

$$
\begin{equation*}
\operatorname{mc}_{k}(G) \geq \frac{k-1}{k} e(G) \tag{41}
\end{equation*}
$$

Given a partition of some subset $W \subset V(G)$ into $k$ sets, we can extend greedily to a $k$-cut of $G$ by adding vertices one at a time to whichever class maximizes the partial cut at each step. We see that, if $H=G[W]$, then

$$
\begin{equation*}
\operatorname{mc}_{k}(G) \geq \operatorname{mc}_{k}(H)+\frac{k-1}{k}(e(G)-e(H)) . \tag{42}
\end{equation*}
$$

We can also obtain a $k$-cut by choosing one vertex class and then taking a ( $k-1$ )-cut of the remainder of the graph. In particular, for any $W \subset V=$ $V(G)$,

$$
\begin{equation*}
\operatorname{mc}_{k}(G) \geq e(W, V \backslash W)+\operatorname{mc}_{k-1}(G \backslash W) \tag{43}
\end{equation*}
$$

In addition to these observations, our proof of Theorem 5 will be based on the following two lemmas.

Lemma 6. Suppose that $G$ is a graph with $m$ edges such that

$$
\begin{equation*}
\operatorname{mc}_{k}(G)=\frac{k-1}{k} m+\alpha \tag{44}
\end{equation*}
$$

and $W \subset V$ satisfies the local inequality

$$
\begin{equation*}
|\Gamma(v) \cap(V \backslash W)| \geq(k-1)|\Gamma(v) \cap W| \tag{45}
\end{equation*}
$$

for all $v \in W$. Then

$$
\begin{equation*}
e(W) \leq \frac{m}{k^{2}}+\frac{k-1}{k} \alpha . \tag{46}
\end{equation*}
$$

Proof. Let $V=V(G)$. Using (43) and (41), we see that

$$
\begin{aligned}
\mathrm{mc}_{k}(G) & \geq e(W, V \backslash W)+\mathrm{mc}_{k-1}(G \backslash W) \\
& \geq e(W, V \backslash W)+\frac{k-2}{k-1}(m-e(W)-e(W, V \backslash W)) \\
& =\frac{k-2}{k-1} m+\frac{1}{k-1} e(W, V \backslash W)-\frac{k-2}{k-1} e(W) .
\end{aligned}
$$

Summing (45) over vertices in $W$, we see $e(W, V \backslash W) \geq 2(k-1) e(W)$. So

$$
\begin{aligned}
\operatorname{mc}_{k}(G) & \geq \frac{k-2}{k-1} m+2 e(W)-\frac{k-2}{k-1} e(W) \\
& =\frac{k-2}{k-1} m+\frac{k}{k-1} e(W)
\end{aligned}
$$

The result now follows by a simple calculation.
The proof of Theorem 5 involves moving certain vertices between the vertex classes of a partition. The fact that we can find suitable vertices is guaranteed by the following lemma.

Lemma 7. Suppose that $\alpha<m / 2 k$ and

$$
\begin{equation*}
\operatorname{mc}_{k}(G)=\frac{k-1}{k} m+\alpha \tag{47}
\end{equation*}
$$

Suppose that $W \subset V$ and the local inequality (45) holds for every $v \in W$. If

$$
\begin{equation*}
e(W) \geq \frac{m}{k^{2}}-\frac{\alpha}{k} \tag{48}
\end{equation*}
$$

then there is a vertex $v \in W$ with

$$
\begin{equation*}
|\Gamma(v) \cap W| \leq 4 \sqrt{m} \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
|\Gamma(v) \cap(V \backslash W)| \leq\left(k-1+4 k^{3} \frac{\alpha}{m}\right)|\Gamma(v) \cap W| \tag{50}
\end{equation*}
$$

Proof. Let

$$
\begin{aligned}
& T_{1}=\{v \in W:|\Gamma(v) \cap W|>4 \sqrt{m}\} \\
& T_{2}=\left\{v \in W:|\Gamma(v) \cap(V \backslash W)|>\left(k-1+4 k^{3} \frac{\alpha}{m}\right)|\Gamma(v) \cap W|\right\}
\end{aligned}
$$

It is enough to show that $W \backslash\left(T_{1} \cup T_{2}\right)$ is nonempty.
By (45), we have $e(W, V \backslash W) \geq 2(k-1) e(W)$ and as $e(W)+e(W, V \backslash$ $W) \leq m$, we get $e(W) \leq m /(2 k-1)$. Since $\sum_{v \in T_{1}}|\Gamma(v) \cap W| \leq 2 e(W) \leq$ $2 m /(2 k-1)$, we have

$$
\left|T_{1}\right| \leq \frac{2 e(W)}{4 \sqrt{m}} \leq \frac{\sqrt{m}}{2(2 k-1)}
$$

and so

$$
e\left(T_{1}\right) \leq\binom{\left|T_{1}\right|}{2} \leq \frac{m}{8(2 k-1)^{2}}
$$

It follows that

$$
\begin{equation*}
\sum_{v \in T_{1}}|\Gamma(v) \cap W| \leq e(W)+e\left(T_{1}\right) \leq e(W)+\frac{m}{8(2 k-1)^{2}} \tag{51}
\end{equation*}
$$

We now concentrate on bounding $\sum_{v \in T_{2}}|\Gamma(v) \cap W|$. Calculating as in the proof of Lemma 6, we have

$$
\begin{equation*}
\operatorname{mc}_{k}(G) \geq \frac{k-2}{k-1} m-\frac{k-2}{k-1} e(W)+\frac{1}{k-1} e(W, V \backslash W) \tag{52}
\end{equation*}
$$

Now (45) and the definition of $T_{2}$ imply that

$$
\begin{align*}
e(W, V \backslash W) & =\sum_{v \in W}|\Gamma(v) \cap(V \backslash W)| \\
& \geq(k-1) \sum_{v \in W}|\Gamma(v) \cap W|+\frac{4 k^{3} \alpha}{m} \sum_{v \in T_{2}}|\Gamma(v) \cap W| \\
& =2(k-1) e(W)+\frac{4 k^{3} \alpha}{m} \sum_{v \in T_{2}}|\Gamma(v) \cap W| . \tag{53}
\end{align*}
$$

It therefore follows from (52) that

$$
\begin{equation*}
\operatorname{mc}_{k}(G) \geq \frac{k-2}{k-1} m+\frac{k}{k-1} e(W)+\frac{4 k^{3} \alpha}{m(k-1)} \sum_{v \in T_{2}}|\Gamma(v) \cap W| . \tag{54}
\end{equation*}
$$

By (48) the right hand side is at least

$$
\frac{k-1}{k} m-\frac{\alpha}{k-1}+\frac{4 k^{3} \alpha}{m(k-1)} \sum_{v \in T_{2}}|\Gamma(v) \cap W| .
$$

But then (47) implies that

$$
\frac{4 k^{3} \alpha}{m(k-1)} \sum_{v \in T_{2}}|\Gamma(v) \cap W| \leq \alpha+\frac{\alpha}{k-1}=\frac{k}{k-1} \alpha
$$

and so

$$
\sum_{v \in T_{2}}|\Gamma(v) \cap W| \leq \frac{m}{4 k^{2}}
$$

It therefore follows from (51) that

$$
\sum_{v \in T_{1} \cup T_{2}}|\Gamma(v) \cap W| \leq e(W)+\left(\frac{1}{4 k^{2}}+\frac{1}{8(2 k-1)^{2}}\right) m .
$$

Since $\alpha<m / 2 k$, we have $e(W)>m / 2 k^{2}$. Since

$$
\frac{1}{4 k^{2}}+\frac{1}{8(2 k-1)^{2}}<\frac{1}{2 k^{2}}
$$

we have

$$
\sum_{v \in T_{1} \cup T_{2}}|\Gamma(v) \cap W| \leq e(W)+\frac{m}{2 k^{2}}<2 e(W),
$$

and so $T_{1} \cup T_{2} \neq W$, as claimed.
After this, we are ready to prove Theorem 5.
Proof of Theorem 5. We argue by induction on $k$. Let $\left(V_{1}, \ldots, V_{k}\right)$ be a maximum cut, and suppose that $e\left(V_{1}\right) \geq \cdots \geq e\left(V_{k}\right)$. If $e\left(V_{1}\right)$ satisfies (37) we are done. Otherwise,

$$
\begin{equation*}
e\left(V_{1}\right)=\frac{m}{k^{2}}-\frac{\alpha}{k}+\lambda, \tag{55}
\end{equation*}
$$

where Lemma 6 implies that $\lambda \leq \alpha$.
We proceed by moving vertices one at a time from $V_{1}$ to other vertex classes. Suppose we have reached a stage with vertex classes $V_{1}^{\prime}, \ldots, V_{k}^{\prime}$ (where $V_{1}^{\prime} \subseteq V_{1}$ ). Applying Lemma 7, we find a vertex $v$ satisfying (49) and (50), and move $v$ to whichever class $V_{i}^{\prime}, i>1$, contains fewest neighbours of $v$. This decreases $e\left(V_{1}^{\prime}\right)$ by $\left|\Gamma(v) \cap V_{1}^{\prime}\right| \leq 4 \sqrt{m}$ and, by (50), decreases the size of the $k$-cut by at most

$$
\begin{align*}
\min _{i>1}\left\{\left|\Gamma(v) \cap V_{i}^{\prime}\right|-\left|\Gamma(v) \cap V_{1}^{\prime}\right|\right\} & \leq \frac{1}{k-1}\left|\Gamma(v) \cap\left(V \backslash V_{1}^{\prime}\right)\right|-\left|\Gamma(v) \cap V_{1}^{\prime}\right| \\
& \leq \frac{4 k^{3} \alpha}{m(k-1)}\left|\Gamma(v) \cap V_{1}^{\prime}\right| \tag{56}
\end{align*}
$$

Since moving $v$ does not affect the local inequality (45), we can continue to move vertices until $V_{1}$ is reduced to $W_{1}$ with

$$
\begin{equation*}
\frac{m}{k^{2}}-\frac{\alpha}{k} \leq e\left(W_{1}\right) \leq \frac{m}{k^{2}}-\frac{\alpha}{k}+4 \sqrt{m} \tag{57}
\end{equation*}
$$

Note that inequality (49) implies that we do eventually obtain $W_{1}$ with $e\left(W_{1}\right)$ in this range.

We end up with a set $W_{1} \subseteq V_{1}$ that satisfies (37), and sets $W_{2}, \ldots, W_{k}$ with $W_{i} \supseteq V_{i}$ for each $i$. Since (55) and (57) imply that $e\left(V_{1}\right)-e\left(W_{1}\right) \leq \lambda \leq$ $\alpha$, it follows from (56) that the size of the $k$-cut we end up with is at least

$$
\begin{equation*}
\frac{k-1}{k} m+\alpha-\alpha \cdot \frac{4 k^{3} \alpha}{m(k-1)} . \tag{58}
\end{equation*}
$$

Since ( $W_{1}, \ldots, W_{k}$ ) satisfies (57), by (58) we have

$$
\begin{align*}
\sum_{i \geq 2} e\left(W_{i}\right) & \leq m-\left(\frac{k-1}{k} m+\alpha-\frac{4 k^{3} \alpha^{2}}{m(k-1)}\right)-e\left(W_{1}\right) \\
& =\frac{m}{k}-\alpha+\frac{4 k^{3} \alpha^{2}}{m(k-1)}-e\left(W_{1}\right) \\
& \leq \frac{k-1}{k^{2}} m-\frac{k-1}{k} \alpha+\frac{4 k^{3} \alpha^{2}}{m(k-1)} \tag{59}
\end{align*}
$$

If $k=2$, this implies (37) immediately. Otherwise, we consider the subgraph $H=G\left[V \backslash W_{1}\right]$, and partition it into $k-1$ classes.

Suppose first that $e(H) \leq\left(\frac{k-1}{k}\right)^{2} m-\frac{(k-1)^{2}}{k} \alpha$. We can find a judicious partition of $H$ into $k-1$ classes, each of which satisfies (3). Extending to a $k$-partition of $G$ by taking $W_{1}$ as the $k$ th vertex class gives a partition satisfying (37).

Otherwise, $e(H)>\left(\frac{k-1}{k}\right)^{2} m-\frac{(k-1)^{2}}{k} \alpha$. Note that since $V_{1}$ satisfies the local inequality (39), so does $W_{1}$, and so $e\left(W_{1}, V \backslash W_{1}\right) \geq 2(k-1) e\left(W_{1}\right)$. Now

$$
\begin{equation*}
\operatorname{mc}_{k-1}(H) \leq \frac{k-2}{k-1} e(H)+\frac{k}{k-1} \alpha, \tag{60}
\end{equation*}
$$

or else, using (57), (43) and the local inequality,

$$
\begin{aligned}
\mathrm{mc}_{k}(G) & \geq \mathrm{mc}_{k-1}(H)+e\left(W_{1}, V \backslash W_{1}\right) \\
& >\frac{k-2}{k-1}\left(m-e\left(W_{1}\right)-e\left(W_{1}, V \backslash W_{1}\right)\right)+\frac{k}{k-1} \alpha+e\left(W_{1}, V \backslash W_{1}\right) \\
& =\frac{k-2}{k-1} m+\frac{1}{k-1} e\left(W_{1}, V \backslash W_{1}\right)-\frac{k-2}{k-1} e\left(W_{1}\right)+\frac{k}{k-1} \alpha \\
& \geq \frac{k-2}{k-1} m+2 e\left(W_{1}\right)-\frac{k-2}{k-1} e\left(W_{1}\right)+\frac{k}{k-1} \alpha \\
& =\frac{k-2}{k-1} m+\frac{k}{k-1} e\left(W_{1}\right)+\frac{k}{k-1} \alpha \\
& \geq \frac{k-2}{k-1} m+\frac{k}{k-1} \cdot \frac{m}{k^{2}}-\frac{k}{k-1} \frac{\alpha}{k}+\frac{k}{k-1} \alpha \\
& =\frac{k-1}{k} m+\alpha,
\end{aligned}
$$

which contradicts (36). Thus, writing

$$
\begin{equation*}
\mathrm{mc}_{k-1}(H)=\frac{k-2}{k-1} e(H)+\gamma, \tag{61}
\end{equation*}
$$

by (60) and our assumptions on the size of $e(H)$ and $\alpha$,

$$
\begin{aligned}
\gamma / e(H) & \leq \frac{k \alpha /(k-1)}{(k-1)^{2} m / k^{2}-(k-1)^{2} \alpha / k} \\
& \leq \frac{\left(m / k^{4}\right) \cdot k /(k-1)}{m(k-1)^{2} / k^{2}-(k-1)^{2} m / k^{5}} \\
& \leq 1 /(k-1)^{4}
\end{aligned}
$$

Applying the inductive hypothesis to $H$, we obtain a partition $W_{2}^{\prime}, \ldots, W_{k}^{\prime}$ with

$$
\begin{equation*}
\max _{i>1} e\left(W_{i}^{\prime}\right) \leq \frac{e(H)}{(k-1)^{2}}-\frac{\gamma}{k-1}+(k-1)^{5} \frac{\gamma^{2}}{e(H)}+4 \sqrt{e(H)} \tag{62}
\end{equation*}
$$

Now, by (61),

$$
\begin{align*}
\frac{e(H)}{(k-1)^{2}}-\frac{\gamma}{k-1} & =\frac{1}{k-1}\left(e(H)-\operatorname{mc}_{k-1}(H)\right) \\
& \leq \frac{1}{k-1} \sum_{i \geq 2} e\left(W_{i}\right) \tag{63}
\end{align*}
$$

and, since $\gamma \leq \frac{k}{k-1} \alpha$ (by (60)) and $e(H) \geq\left(\frac{k-1}{k}\right)^{2} m-(k-1)^{2} \alpha / k \geq$ $\left(\frac{k-1}{k}\right)^{2} m-(k-1)^{2} m / k^{5}$,

$$
\begin{aligned}
\frac{\gamma^{2}}{e(H)} & \leq\left(\frac{k}{k-1}\right)^{2} \frac{\alpha^{2}}{m} \frac{1}{(k-1)^{2} / k^{2}-(k-1)^{2} / k^{5}} \\
& =\frac{\alpha^{2}}{m} \cdot \frac{k^{7}}{(k-1)^{4}\left(k^{3}-1\right)}
\end{aligned}
$$

It follows from (62), (63) and (59) that

$$
\begin{aligned}
\max _{i \geq 1} e\left(W_{i}^{\prime}\right) & \leq \frac{1}{k-1} \sum_{i \geq 2} e\left(W_{i}\right)+(k-1)^{5} \frac{\gamma^{2}}{e(H)}+4 \sqrt{e(H)} \\
& \leq \frac{m}{k^{2}}-\frac{\alpha}{k}+\frac{4 k^{3}}{(k-1)^{2}} \frac{\alpha^{2}}{m}+\frac{(k-1)^{5} k^{7}}{(k-1)^{4}\left(k^{3}-1\right)} \frac{\alpha^{2}}{m}+4 \sqrt{m} \\
& \leq \frac{m}{k^{2}}-\frac{\alpha}{k}+k^{5} \frac{\alpha^{2}}{m}+4 \sqrt{m}
\end{aligned}
$$

for $k \geq 3$. The result now follows immediately by taking the partition $W_{1}, W_{2}^{\prime}, \ldots, W_{k}^{\prime}$.

Finally, we turn to the case when the maximum $k$-cut is very large. As in Alon, Bollobás, Krivelevich and Sudakov [1], we use a rather cruder argument.

Theorem 8. Let $k \geq 2$. Suppose that $G$ is a graph with $m$ edges such that

$$
\mathrm{mc}_{k}(G)=\frac{k-1}{k} m+\alpha
$$

where $\alpha>m / k^{6}$. Then, provided that $m$ is sufficently large (in terms of $k$ ), there is a partition of $V(G)$ into $k$ sets, each of which contains at most

$$
\begin{equation*}
\frac{m}{k^{2}}-\frac{m}{12 k^{10}} \tag{64}
\end{equation*}
$$

edges.
Proof. Let $\left(V_{1}, \ldots, V_{k}\right)$ be a cut of size $(k-1) m / k+\alpha$. Let $i \in\{1, \ldots, k\}$ be chosen uniformly at random, and consider the partition $\left(V_{i}, V \backslash V_{i}\right)$. Then, writing $m^{\prime}=\sum_{j=1}^{k} e\left(V_{j}\right)=m / k-\alpha$ and $p=1-q=1 / k$, we have

$$
\begin{aligned}
\mathbb{E}\left(q e\left(V_{i}\right)+p e\left(V \backslash V_{i}\right)\right) & =q \frac{1}{k} m^{\prime}+p\left(\frac{k-1}{k} m^{\prime}+\frac{\binom{k-1}{2}}{\binom{k}{2}}\left(m-m^{\prime}\right)\right) \\
& =\frac{2 k-2}{k^{2}} m^{\prime}+\frac{k-2}{k^{2}}\left(m-m^{\prime}\right) \\
& =\frac{k-2}{k^{2}} m+\frac{1}{k} m^{\prime} \\
& =\frac{k-1}{k^{2}} m-\frac{\alpha}{k} \\
& =p q m-\frac{\alpha}{k} .
\end{aligned}
$$

Suppose that $m_{1 / k}(G)=p q m-\alpha^{\prime}$. Since $\alpha^{\prime}>m / k^{7}$, we can apply Theorem 3 with $p=1 / k$ and $c=1 / k^{7}$ to get a bipartition $V(G)=V_{1}^{\prime} \cup V_{2}^{\prime}$ with $e\left(V_{1}\right) \leq m / k^{2}-m / 12 k^{8}$ and $e\left(V_{2}^{\prime}\right) \leq(k-1)^{2} m / k^{2}-m / 12 k^{8}$. We refine the partition by splitting $V_{2}$ into $k-1$ pieces satisfying (3) (for the ( $k-1$ )-partite case). Providing $m$ is sufficiently large (in terms of $k$ ), we obtain a partition of $V(G)$ satisfying (64).

## 4 Conclusion

It seems likely that our constants could be improved significantly. It would be interesting to have sharper constants both when $\delta$ is small (for instance, in (37)), and when $\delta$ is large (for instance, in (64)). Particularly when $\delta=\Omega(m)$, all the bounds are rather crude, and it would be very interesting to know the correct dependence of the error term on $\delta$, and to have some idea of the extremal graphs.

It would be very interesting to prove analogous results for hypergraphs (see, for instance, [6] and [8] for results on judicious partitions of hypergraphs).

Finally, it would also be of interest to consider bisections instead of cuts. More specifically, for a graph $G$, let

$$
b(G)=\max \left\{e\left(V_{1}, V_{2}\right): V(G)=V_{1} \sqcup V_{2},\left|\left|V_{1}\right|-\left|V_{2}\right|\right| \leq 1\right\}
$$

be the maximum size of a bisection of $G$, and let $g_{b}(G)$ be the minimum of $\max \left\{e\left(V_{1}\right), e\left(V_{2}\right)\right\}$ over bisections of $G$. What can be said about the relationship between $b(G)$ and $g_{b}(G)$ ? Note that the star $K_{1, n-1}$ has $b\left(K_{1, n-1}\right)=$ $\lceil n / 2\rceil \sim e\left(K_{1, n-1}\right) / 2$, while $g_{b}\left(K_{1, n-1}\right)=\lfloor n / 2\rfloor-1 \sim e\left(K_{1, n-1}\right) / 2$, which is about as bad as it could be. But what about graphs with bisections much larger than $m / 2$ ?

Acknowledgement. We would like to thank the referees for their careful reading of the paper.

## References

[1] N. Alon, B. Bollobás, M. Krivelevich and B. Sudakov, Maximum cuts and judicious partitions in graphs without short cycles, J. Combin. Theory Ser. B 88 (2003), 329-346
[2] N. Alon, Bipartite subgraphs, Combinatorica 16 (1996), 301-311
[3] N. Alon and E. Halperin, Bipartite subgraphs of integer weighted graphs, Discrete Math. 181 (1998), 19-29
[4] B. Bollobás and A.D. Scott, Problems and results on judicious partitions, Random Structures and Algorithms 21 (2002), 414-430
[5] B. Bollobás and A.D. Scott, Better bounds for Max Cut, in Contemporary combinatorics, Bolyai Soc. Math. Stud. 10 (2002), 185-246
[6] B. Bollobás and A.D. Scott, Judicious partitions of 3-uniform hypergraphs, European Journal of Combinatorics 21 (2000), 289-300
[7] B. Bollobás and A.D. Scott, Exact bounds for judicious partitions of graphs, Combinatorica 19 (1999), 473-486
[8] B. Bollobás and A.D. Scott, Judicious partitions of hypergraphs, J. Comb. Theory Ser. A 78 (1997), 15-31
[9] B. Bollobás and A.D. Scott, Judicious partitions of graphs, Period. Math. Hungar. 26 (1993), 125-137
[10] C.S. Edwards, An improved lower bound for the number of edges in a largest bipartite subgraph, in Recent advances in graph theory (Proc. Second Czechoslovak Sympos., Prague, 1974), pp. 167-181. Academia, Prague, 1975
[11] C.S. Edwards, Some extremal properties of bipartite subgraphs, Canad. J. Math. 25 (1973), 475-485
[12] T.D. Porter, Minimal partitions of a graph, Ars Combin. 53 (1999), 181-186
[13] T. D. Porter, Graph partitions, J. Combin. Math. Combin. Comput. 15 (1994), 111-118
[14] T. D. Porter, On a bottleneck bipartition conjecture of Erdős, Combinatorica 12 (1992), 317-321
[15] T.D. Porter and Bing Yang, Graph partitions II, J. Combin. Math. Combin. Comput. 37 (2001), 149-158
[16] A.D. Scott, Judicious partitions and related problems, in Surveys in Combinatorics 2005, B.S. Webb ed, London Mathematical Society Lecture Note Series 327, Cambridge University Press 2005


[^0]:    *Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge CB3 0WB, UK and
    ${ }^{\dagger}$ Department of Mathematical Sciences, University of Memphis, Memphis TN 38152, USA
    ${ }^{\ddagger}$ Research supported in part by NSF grants DMS-0505550, CNS-0721983 and CCF0728928 , and ARO grant W911NF-06-1-0076
    ${ }^{\S}$ Mathematical Institute, 24-29 St Giles', Oxford, OX1 3LB, UK; email: scott@maths.ox.ac.uk

