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Abstract

We prove for every graph H there exists ε > 0 such that, for every graph G with |G| ≥ 2, if no induced
subgraph of G is a subdivision of H, then either some vertex of G has at least ε|G| neighbours, or
there are two disjoint sets A,B ⊆ V (G) with |A|, |B| ≥ ε|G| such that no edge joins A and B. It
follows that for every graph H, there exists c > 0 such that for every graph G, if no induced subgraph
of G or its complement is a subdivision of H, then G has a clique or stable set of cardinality at least
|G|c. This is related to the Erdős-Hajnal conjecture.



1 Introduction

For a graph G, we write ω(G), α(G) for the cardinalities of the largest clique and largest stable set in
G respectively. The number of vertices of G is denoted by |G|, and G denotes the complement graph
of G. If v ∈ V (G), N(v) denotes the set of neighbours of v. Subsets A,B of V (G) are complete if
A ∩ B = ∅ and every vertex of A is adjacent to every vertex of B, and anticomplete if A ∩ B = ∅
and no vertex in A has a neighbour in B. A pair (A,B) of subsets of V (G) is pure if A is either
complete or anticomplete to B. For graphs G,H, we say G is H-free if no induced subgraph of G is
isomorphic to H. (All graphs in this paper are finite and have no loops or parallel edges.) An ideal
of graphs is a class of graphs closed under isomorphism and under taking induced subgraphs; and
an ideal is proper if it is not the class of all graphs.

It is well-known from Ramsey theory [14] that every graph G contains a clique or stable set of
size at least 1

2 log |G|. On the other hand, there are graphs G with no clique or stable set of size more
than 2 log |G| [11] (in fact, most graphs have this property). The celebrated Erdős-Hajnal conjecture
asserts that H-free graphs have much larger cliques or stable sets. Let us say that an ideal I has the
Erdős-Hajnal property if there is some ε > 0 such that every graph G ∈ I has a clique or stable set
of size at least |G|ε. The Erdős-Hajnal conjecture [12, 13] is the following:

1.1 Conjecture: For every graph H, the ideal of H-free graphs has the Erdős-Hajnal property.

A related but stronger property for an ideal is that every graph in the ideal contains a pure pair
of linear-sized sets. More formally, let us say that an ideal I has the strong Erdős-Hajnal property if
there is some ε > 0 such that every graph G ∈ I with at least two vertices contains a pure pair of
sets that both have size at least ε|G|. It is easy to show that if an ideal has the strong Erdős-Hajnal
property then it has the Erdős-Hajnal property (see [1, 16]; or section 3 below). But the reverse
implication does not hold. In fact, if the ideal of H-free graphs has the strong Erdős-Hajnal property
then both H and H are forests (to show that H must be a forest, suppose that H contains a cycle
of length k, take a random graph G ∈ G(n, p), where p is chosen so that np→∞ and (np)k = o(n),
and delete one vertex from each cycle of length k; for H, take complements). Thus the ideal of
H-free graphs does not have the strong Erdős-Hajnal property for any graph H with more than four
vertices. In this paper, we are interested in which ideals do have the strong Erdős-Hajnal property.

An ideal is characterized by the minimal induced subgraphs that it does not contain. If an ideal is
defined by a finite number of excluded induced subgraphs, then the random graph construction shows
that one of them must be a forest and one of them must be the complement of a forest. An important
result of this type is due to Bousquet, Lagoutte and Thomassé [3]. Improving on earlier work of
Chudnovsky and Zwols [10] and Chudnovsky and Seymour [9], they showed that for every path P ,
the ideal of graphs with no induced P or P has the strong Erdős-Hajnal property. More recently,
Liebenau, Pilipczuk, Seymour and Spirkl [18] (improving on an earlier result of Choromanski, Falik,
Patel and Pilipczuk [4]) showed that if T is a subdivision of a caterpillar then the ideal of graphs with
no induced T or T has the strong Erdős-Hajnal property. They further conjectured that the same
statement holds for any forest T . This conjecture is proved by the current authors in [8], completing
the classification for ideals defined by a finite number of excluded induced subgraphs.

What about ideals that are not defined by a finite number of excluded induced subgraphs? A
breakthrough result in this direction was proved by Bonamy, Bousquet and Thomassé [2], who showed
that for every k the ideal of graphs G such that neither G nor G contains an induced cycle of length
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at least k has the strong Erdős-Hajnal property. In other words, we exclude induced subdivisions of
the cycle Ck from both G and G. In this paper, we prove a very substantial extension of this result.

1.2 For every graph H, the ideal of graphs G such that neither G nor G contains an induced
subdivision of H has the strong Erdős-Hajnal property.

If instead we take the ideal of all graphs G that do not contain an induced subdivision of H, then in
general such ideals need not have the strong strong Erdős-Hajnal property. For instance, the ideal of
all graphs that do not contain an induced subdivision of a cycle of length six does not have the strong
Erdős-Hajnal property, because it includes the ideal of complements of all triangle-free graphs.

As an immediate corollary of 1.2 we obtain the following.

1.3 For every graph H, there exists c > 0 such that for every graph G, one of the following holds:

• G or its complement contains an induced subdivision of H;

• G contains a clique or stable set of size at least |G|c.

We can say a little more than 1.2. If an ideal satisfies the strong Erdős-Hajnal property then we
know that every graph in the ideal has a pair of large sets that are either complete or anticomplete,
but we may not be able to choose which (for instance, consider the ideal consisting of all vertex-
disjoint unions of cliques). However, a theorem of Rödl [20] (discussed in section 3) allows us to
assume that our graph is either quite sparse or quite dense. We can then deduce 1.2 from the
following significantly stronger “one-sided” result.

1.4 For every graph H, there exists c > 0 such that every graph G with at least two vertices and at
most c|G|2 edges satisfies one of the following:

• G contains an induced subdivision of H;

• there are two anticomplete subsets of V (G), both of size at least c|G|.

In fact, we will prove an even more general result: we will show it is enough to consider induced
subdivisions where the edges in a specified path are not subdivided; and we will prove a version of the
result (stated as 2.5) that works when the graph is weighted. We introduce the necessary definitions
and state results formally in the next section. We discuss Rödl’s theorem and its application in
section 3, and then give the proof of 2.5 over the next four sections. An important feature of the
proof is to divide the problem into two cases: in one case, we may assume that all small balls have
small mass; in the other, we may assume that a significant mass is always concentrated in a small ball.
After some initial work, these cases are handled separately in sections 6 and 7. We conclude, in the
final section, with some applications, and a discussion of the relationship between the Erdős-Hajnal
conjecture and questions about χ-boundedness.
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2 Statement of results

Every proper ideal is contained in the ideal ofH-free graphs for someH. Thus 1.1 can be reformulated
as:

2.1 Conjecture: For every proper ideal I, there exists c > 0 such that every graph G ∈ I satisfies
ω(G)α(G) ≥ |G|c.

For ε > 0, let us say a graph G is ε-coherent if

• |G| ≥ 2;

• |N(v)| < ε|G| for each v ∈ V (G); and

• min(|A|, |B|) < ε|G|, for every two anticomplete sets A,B ⊆ V (G).

As we explain in section 3, 2.1 is equivalent to the following:

2.2 Conjecture: For every proper ideal I there exist ε > 0 and c > 0 such that every ε-coherent
graph G ∈ I satisfies ω(G)α(G) ≥ |G|c.

Let us say an ideal is incoherent if for some ε > 0, no member of I is ε-coherent; and coherent if
there is no such ε.

Let H be a graph and let P be a subgraph of H. Let J be a graph obtained from H by subdividing
at least once every edge of H not in E(P ), and not subdividing the edges in E(P ). We call such a
graph J (and graphs isomorphic to it) a P -filleting of H. Our main result states:

2.3 Let H be a graph and let P be a path of H. Then every coherent ideal contains a P -filleting of
H.

Here are some consequences of 2.3.

• By setting H = Kt and |P | = 1, it follows that the ideal of graphs with no induced subgraph
a subdivision of Kt is incoherent.

• Let P be a path of H, let k ≥ 1 be an integer, and let Hk be obtained from H by subdividing
every edge not in E(P ) exactly k times. Since every coherent ideal contains a P -filleting of
Hk, it follows that every coherent ideal contains a P -filleting of H where every edge not in P
is subdivided at least k times.

• If T is a tree such that some path P of T contains all vertices of degree at least three (such a
tree is called a caterpillar subdivision), it follows that every coherent ideal contains T (this is
the main theorem of [18]). To see this, observe that since T is a caterpillar subdivision, every
P -filleting of T contains a copy of T as an induced subgraph.

It might be possible to strengthen 2.3, to the following:

2.4 Conjecture: Let H be a graph and let P be a forest of H. Then every coherent ideal contains
a P -filleting of H.
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If so, this would be best possible, in the sense that the same conclusion does not hold if P contains
a cycle of H (because there are coherent ideals in which every graph has girth at least any fixed
integer). It would imply the main theorem of [8] in the same way that 2.3 implies the main theorem
of [18].

For every subset X ⊆ V (G), let µ(X) be some real number, satisfying

• µ(∅) = 0 and µ(V (G)) = 1, and µ(X) ≤ µ(Y ) for all X,Y with X ⊆ Y ; and

• µ(X ∪ Y ) ≤ µ(X) + µ(Y ) for all disjoint sets X,Y .

We call such a function µ a mass on G, and we call the pair (G,µ) a massed graph. For instance,
we could take µ(X) = |X|/|G|, or µ(X) = χ(G[X])/χ(G), where χ denotes chromatic number. (It
is sometimes convenient to speak of the “mass” of a set X, meaning µ(X).) For ε > 0 let us say a
massed graph (G,µ) is ε-coherent if

• µ({v}) < ε for every vertex v;

• µ(N(v)) < ε for every vertex v; and

• min(µ(A), µ(B)) < ε for every two anticomplete sets of vertices A,B.

In [18] it was found that the main theorem of that paper could be extended to massed graphs:
that for every caterpillar subdivision T , there exists ε > 0 such that for every ε-coherent massed
graph (G,µ), some induced subgraph of G is isomorphic to T . We will show that 2.3 admits the
same extension to masses. We will prove:

2.5 For every graph H and path P of H, there exists ε > 0 such that for every ε-coherent massed
graph (G,µ), some induced subgraph of G is a P -filleting of H.

Proof of 2.3, assuming 2.5. Let H be a graph and let P be a path of H. Let I be a coherent
ideal; we must show that I contains a P -filleting of H. Choose ε > 0 satisfying 2.5. By reducing ε,
we may assume that ε < 1/2. Since I is coherent, some G ∈ I is ε-coherent. Define µ(X) = |X|/|G|
for every X ⊆ V (G). Then (G,µ) is a massed graph. We claim it is ε-coherent. To see this we must
check the three conditions in the definition of ε-coherence for massed graphs. The second and third
follow immediately from the second and third conditions in the definition of ε-coherence for graphs,
but the first is not so clear. For the first we must show that µ({v}) < ε for every vertex v; that
is, ε|G| > 1. To see this, there are two cases. If all vertices in G are pairwise adjacent, then since
|N(v)| < ε|G| for each v ∈ V (G), it follows that |G| − 1 < ε|G|, and so (1 − ε)|G| < 1, which is
impossible since |G| ≥ 2 and ε ≤ 1/2. If some two vertices u, v of G are nonadjacent, then {u}, {v}
are anticomplete sets, and so 1 < ε|G| since G is ε-coherent. This proves that (G,µ) is ε-coherent.
Consequently, from 2.5, some induced subgraph of G is a P -filleting of H. This proves 2.3.

3 Rödl’s theorem

Before we go on, let us prove the equivalence of 2.1 and 2.2. This is routine, and no doubt well-known
to those familiar with the field, but we give the proof anyway. Certainly 2.1 implies 2.2, and for the
converse we use an invaluable tool due to Rödl [20], the following.

4



3.1 For every graph H and all ε > 0 there exists δ > 0 such that for every H-free graph G, there
exists X ⊆ V (G) with |X| ≥ δ|G| such that in one of G[X], G[X], every vertex in X has degree less
than ε|X|.

3.1 implies:

3.2 If I is an ideal such that I and the ideal of complements of members of I are both incoherent,
then there exists c > 0 such that for all G ∈ I with |G| > 1, there is a pure pair (A,B) in G with
|A|, |B| ≥ c|G|.

Proof. Let I2 be the ideal of complements of members of I, and choose ε > 0 such that no member
of I ∪ I2 is ε-coherent. Choose a graph H not in I; and choose δ > 0 to satisfy 3.1, with H, ε as
given. Let c = δε. Now let G ∈ I with |G| > 1. We claim there is a pure pair (A,B) in G with
|A|, |B| ≥ c|G|. If c|G| ≤ 1, then we may take A,B to be disjoint singleton sets, and this is possible
since |G| > 1. Thus we may assume that c|G| > 1. Since G does not contain H, by the choice of δ
there exists X ⊆ V (G) with |X| ≥ δ|G| such that in one of G[X], G[X], say G′, every vertex in X
has degree less than ε|X|. Thus |X| ≥ δ|G| ≥ c|G| > 1. Since G′ ∈ I ∪ I2, it follows that G′ is not
ε-coherent; and so there exist A,B ⊆ X, anticomplete, with |A|, |B| ≥ ε|X| ≥ c|G|, as claimed. This
proves 3.2.

Another consequence of 3.1 is:

3.3 Let I be a proper ideal, let ε, c0 > 0, and suppose that for every G ∈ I, if one of G,G is
ε-coherent then ω(G)α(G) ≥ |G|c0. Then I satisfies 2.1.

Proof. Let I2 be the ideal of complements of members of I. Then every ε-coherent graph G ∈
I ∪ I2 satisfies ω(G)α(G) ≥ |G|c0 . Choose H /∈ I; choose δ such that 3.1 holds; and choose c with
0 < c ≤ c0/2 such that δ2c ≥ 1/2 and (εδ)c ≥ 1/2. We prove by induction on |G| that for every
graph G ∈ I ∪ I2, we have ω(G)α(G) ≥ |G|c. If |G| ≤ 1 the claim is trivial, and if 2 ≤ |G| ≤ δ−2

then the claim holds, since
ω(G)α(G) ≥ 2 ≥ δ−2c ≥ |G|c.

Thus we may assume that |G| > δ−2. By 3.1, since one of G,G is H-free, there exists X ⊆ V (G)
with |X| ≥ δ|G| such that in one of G[X], G[X], every vertex in X has degree at most ε|X|. By
replacing G by G if necessary, we may assume that every vertex in X has degree at most ε|X| in
G[X].

Now (δ|G|)c0 ≥ (δ|G|)2c ≥ |G|c, since c0 ≥ 2c and |G| > δ−2. Thus if G[X] is ε-coherent, then

ω(G[X])α(G[X]) ≥ |X|c0 ≥ (δ|G|)c0 ≥ |G|c

as required. If G[X] is not ε-coherent, there exist two anticomplete subsets A,B of X such that
|A|, |B| ≥ ε|X|. By the inductive hypothesis, ω(G[A])α(G[A]) ≥ |A|c, and the same for B, and since
α(G) ≥ α(G[A]) + α(G[B]) and ω(G) ≥ ω(G[A]), ω(G[B]), it follows that

ω(G)α(G) ≥ ω(G[A])α(G[A]) + ω(G[B])α(G[B]) ≥ |A|c + |B|c ≥ 2(ε|X|)c ≥ 2(εδ|G|)c ≥ |G|c.

This proves 3.3.
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Let us show that if 2.2 holds (for all proper ideals), then so does 2.1. Let I be a proper ideal,
and let I2 be the ideal of complements of members of I. By applying 2.2 to I and to I2, there exist
ε, c0 such that every ε-coherent graph G ∈ I satisfies ω(G)α(G) ≥ |G|c0 , and the same for I2. But
then the result follows from 3.3.

Another useful consequence of 3.3 is the following:

3.4 If I is an ideal such that I and the ideal of complements of members of I are both incoherent,
then I satisfies 2.1.

Proof. Let I2 be the ideal of complements of members of I, and choose ε > 0 such that no member
of I ∪ I2 is ε-coherent. Then the result follows from 3.3.

Next let us deduce the claims of section 1. It is possible to prove 1.4 ⇒ 1.2 ⇒ 1.3, as we said
in the introduction, but it is more convenient to derive them all directly from results proved in this
section.

Proof of 1.2, assuming 2.3. Let H be a graph, and let I be the ideal of all graphs G such
that neither G nor G contains an induced subdivision of H. Thus I = I2, where I2 is the ideal of
complements of members of I. By 2.3, I is incoherent. By 3.2, there exists c > 0 such that for all
G ∈ I with |G| > 1, there is a pure pair (A,B) in G with |A|, |B| ≥ c|G|. Hence I has the strong
Erdős-Hajnal property. This proves 1.2.

Proof of 1.3, assuming 2.3. Let H be a graph, and let I be the ideal of all graphs G such that
neither G nor G contains an induced subdivision of H. As before, I = I2, where I2 is the ideal of
complements of members of I, and I is incoherent. By 3.4, I satisfies 2.1.

Proof of 1.4, assuming 2.3. Let H be a graph, and let I be the ideal of all graphs that contain
no induced subdivision of H. Let P be a one-vertex path of H. By 2.3, every coherent ideal contains
a P -filleting of H, and so I is incoherent. Choose ε > 0 such that no member of I is ε-coherent,
and let c = ε/9. We claim that c satisfies 1.4. Let G be a graph with |G| > 1 and |E(G)| ≤ c|G|2
that contains no induced subdivision of H. Let Y be the set of vertices of G with degree at least
ε|G|/2. Then |Y |ε|G|/2 ≤ 2|E(G)| ≤ 2c|G|2, and so |Y | < |G|/2. Let X = V (G) \Y ; so |X| > |G|/2,
and so |X| ≥ 2 since |G| ≥ 2. Every vertex of G[X] has degree in G[X] less than ε|G|/2 ≤ ε|X|.
Since G[X] ∈ I, G[X] is not ε-coherent, and so there exist anticomplete subsets A,B of X with
|A|, |B| ≥ ε|X| ≥ c|G|, as required. This proves 1.4.

4 Some preliminaries

In order to prove 2.5, we might as well assume that P is a Hamilton path of H. To see this, let
P have vertices v1, . . . , vk in order and let the remaining vertices of H be vk+1, . . . , vn. Add new
vertices uk+1, . . . , un to H, where each ui is adjacent to vi−1 and vi; let the new graph be H ′ and let
P ′ be the path with vertices

v1, . . . , vk, uk+1, vk+1, uk+2, . . . , un, vn.
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Then P ′ is a Hamilton path of H ′, and if the theorem holds for (H ′, P ′) then it holds for (H,P ).
We will therefore assume that P is a Hamilton path of H. In order to find a P -filleting of H as
an induced subgraph of G, we need to find an induced path Q say of G, with the same number of
vertices as P , such that certain pairs of vertices of Q are joined by induced paths in G, pairwise
disjoint and disjoint from Q (except for their ends), such that their union with Q is induced in G.
(In particular, there must be no edges of G between their interiors.)

A pairing Π in a graph G is a set of pairwise disjoint subsets of V (G), each of cardinality one or
two; and let V (Π) be the union of the members of Π. If X ⊆ V (G), a pairing of X means a pairing
Π with V (Π) = X. A pairing Π of X is feasible in G if for each e ∈ Π with |e| = 2 there is an induced
path Pe of G joining the two members of e, and for each e ∈ Π with |e| = 1, Pe is the one-vertex
path with vertex set e, such that for all distinct e, f ∈ Π, the sets V (Pe), V (Pf ) are anticomplete.

An induced subgraph of G isomorphic to T is called a copy of T in G. Let us say a caterpillar is a
tree in which some path contains all vertices with degree more than one. Its leaves are its vertices of
degree one. A leaf-pairing of T means a pairing of the set of leaves of T . A caterpillar in G means an
induced subgraph of G that is a caterpillar. Let T be a caterpillar in G, and let Π be a leaf-pairing of
T . Let X be the set of all vertices in V (G)\V (T ) with no neighbours in V (T )\V (Π). The pairing Π
is feasible in G relative to T if Π is feasible in G[X ∪ V (Π)]. Thus, another way to pose the problem
of 2.5 is to say that we are given a caterpillar T with a leaf-pairing, and we are searching for a copy
T ′ of T in G such that the corresponding leaf-pairing of T ′ is feasible in G relative to T ′.

Let T be a caterpillar in G. We say T is versatile in G if every leaf-pairing of T is feasible in G
relative to T . In order to prove 2.5 it therefore suffices to prove the following strengthening.

4.1 For every caterpillar T , there exists ε > 0 such that for every ε-coherent massed graph (G,µ),
there is a versatile copy of T in G.

If u is a vertex of a graph H, we denote by N r(u) the set of all vertices v of G such that the
distance between u, v is exactly r, and N r[u] the set of v such that this distance is at most r. For
r ≥ 1 an integer, and ε > 0, let us say a massed graph (G,µ) is (ε, r)-coherent if

• µ(N r[v]) < ε for every vertex v; and

• min(µ(A), µ(B)) < ε for every two anticomplete sets of vertices A,B.

(Thus, (ε, 1)-coherent ⇒ ε-coherent ⇒ (2ε, 1)-coherent.)
The proof of 4.1 breaks into two parts. Given a caterpillar T , we will first prove the statement of

4.1 for massed graphs (G,µ) that are (ε, r)-coherent (for some appropriate value of r depending on
T but not on G); and then we will use this to prove 4.1 in general. The first part is more difficult,
and carried out in section 6.

5 Finding a caterpillar

We need a result which is a modification of the main theorem (2.6) of [18]. The main idea of its
proof is exactly that of [18], but we need several minor changes, and it seemed best to prove the
whole thing again. First we need a lemma (also proved in [18]). We say X ⊆ V (G) is connected if
G[X] is connected.
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5.1 Let (G,µ) be an ε-coherent massed graph, and let Y ⊆ V (G) with µ(Y ) ≥ 3ε. Then there is a
connected subset X ⊆ Y with µ(X) > µ(Y )− ε.

Proof. Let the vertex sets of the components of G[Y ] be X1, . . . , Xk say. Choose i ≥ 1 minimal
such that µ(X1 ∪ · · · ∪Xi) ≥ ε. Since the sets X1 ∪ · · · ∪Xi and Xi+1 ∪ · · · ∪Xn are anticomplete, it
follows that µ(Xi+1 ∪ · · · ∪Xn) < ε; and from the minimality of i, µ(X1 ∪ · · · ∪Xi−1) < ε. But

µ(X1 ∪ · · · ∪Xi−1) + µ(Xi) + µ(Xi+1 ∪ · · · ∪Xn) ≥ µ(Y ) ≥ 3ε,

and so µ(Xi) ≥ ε. Since the sets Xi and Y \Xi are anticomplete, it follows that µ(Y \Xi) < ε, and
so µ(Xi) > µ(Y )− ε. This proves 5.1.

A rooted caterpillar is a tree T with a distinguished vertex h, called its head, such that some path
of T with one end h contains all the vertices with degree more than one. A rooted caterpillar T with
more than one vertex has a unique predecessor T ′ (up to isomorphism), defined as follows. Let h be
the head of T .

• If h is adjacent to some leaf u of T , let T ′ be the rooted caterpillar obtained from T by deleting
u, with the same head h.

• If h has no neighbours that are leaves, then h is a leaf; let its neighbour be u, and let T ′ be
the rooted caterpillar obtained by deleting v, with head u.

Thus, every rooted caterpillar can be grown in canonical one-vertex steps from a one-vertex rooted
caterpillar. If T is a rooted caterpillar with n vertices, say, let T1, . . . , Tn be the rooted caterpillars
such that Tn = T , and |T1| = 1, and Ti−1 is the predecessor of Ti for 2 ≤ i ≤ n. We call T1, . . . , Tn
the ancestors of T .

Let Y be a set of pairwise disjoint subsets of V (G), where G is a graph. Let N be a graph, and
for each v ∈ V (N) let Xv ⊆ V (G). We say that the family Xv (v ∈ V (N)) is Y-spread if for each
v ∈ V (N) there exists Yv ∈ Y such that the sets Yv (v ∈ V (N)) are all different, and Xv ⊆ Yv for
each v ∈ V (N).

If A,B ⊆ V (G) are disjoint, we say A covers B if every vertex in B has a neighbour in A. Let
(G,µ) be a massed graph. We say X ⊆ V (G) is δ-dominant if µ(X ∪

⋃
x∈X N(x)) ≥ δ.

The distance in G between u, v is called the G-distance between u, v. For X ⊆ V (G) and v ∈ X, let
us say v is an r-centre of X if every vertex in X has G[X]-distance at most r from v (and consequently
X is connected). Let us say a massed graph (G,µ) is (δ, r)-focussed if for every Z ⊆ V (G) with
µ(Z) ≥ δ, there is a vertex v ∈ Z with µ(N r

G[Z][v]) ≥ µ(Z)/2.
Let N be the union of one or more rooted caterpillars with pairwise anticomplete vertex sets.

(Thus each component of N has a head.) Let H be the set of heads of the components of N . Let
(G,µ) be a massed graph. A δ-realization of N in G is an assignment of a subset Xv ⊆ V (G) to each
vertex v ∈ V (N), satisfying the following conditions:

• the sets Xv (v ∈ V (N)) are pairwise disjoint;

• for every edge uv of N , if v lies on the path of N between u and the head of the component of
N containing u, then Xu covers Xv;
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• for all distinct u, v ∈ V (N), if u, v are nonadjacent in N and not both in H then Xu, Xv are
anticomplete; and

• for each v ∈ H, µ(Xv) ≥ δ, and for each v ∈ V (N) \H, Xv is connected and δ-dominant.

5.2 Let T be a rooted caterpillar, let δ, ε > 0, let (G,µ) be an ε-coherent massed graph, and let Y be

a set of disjoint subsets of V (G) such that |Y| = 2|T | and µ(Y ) ≥ 22
|T |

(δ + ε) for each Y ∈ Y. Then
there is a Y-spread δ-realization of T in G.

If in addition r ≥ 0 is an integer, ε ≤ δ/2, and (G,µ) is (δ, r)-focussed, then there is a Y-spread
δ-realization (Xv : v ∈ V (T )) of T in G such that Xv has an r-centre for each v ∈ V (T ) except the
head.

Proof. There are two cases: in one (let us call this the “focussed case”) we have the additional
hypotheses that r ≥ 0 is an integer, ε ≤ δ/2, and (G,µ) is (δ, r)-focussed; and in the other case (the
“unfocussed case”) we do not assume this. Let p = 2|T | and for 0 ≤ i ≤ p let mi = 2i(δ + ε) − ε.
Thus m0 = δ, and mi+1 = 2mi + ε for 0 ≤ i < p.

If N is a disjoint union of rooted caterpillars, each isomorphic to an ancestor of T , we call N
a nursery, and we define φ(N) =

∑
C 2|C|, where the sum is taken over all components C of N .

Let Np be the nursery with p components, each an isolated vertex. Thus φ(Np) = 2p, and since
2p(δ + ε) ≥ mp, the members of Y form a Y-spread mp-realization of Np in G. Choose k ≤ p
minimum such that there is a nursery Nk with k components and with φ(Nk) ≥ 2p, and there is a
Y-spread mk-realization of Nk in G. Since φ(Nk) ≥ 2p and each component of Nk is an ancestor of
T , it follows that Nk has at least two components, and so k ≥ 2. Suppose (for a contradiction) that
each component of Nk is isomorphic to an ancestor of T different from T .

Let the components of Nk be H1, . . . ,Hk, where |H1| ≤ · · · ≤ |Hk|, and for 1 ≤ i ≤ k let hi be
the head of Hi. Now for 1 ≤ i ≤ k there is an ancestor Si of T such that Hi is the predecessor of Si,
since Hi is not isomorphic to T . We recall that Si is obtained from Hi by adding a new leaf adjacent
to hi, and either keeping the same head, or making the new vertex the new head. Let I be the set
of all i ∈ {1, . . . , k} such that Hi, Si have different heads. If I 6= ∅, choose i ∈ I, maximum, and
otherwise let i = 1.

Let (Xv : v ∈ V (Nk)) be a Y-spread mk-realization of Nk in G. We will choose Z ⊆ Xhi

with µ(Z) ≥ ε, and an ordering {z1, . . . , zn} of the elements of Z, but we treat the foccussed and
unfocussed cases differently. Suppose first we are in the unfocussed case. Since k ≥ 2 and hence
mk ≥ 3ε, 5.1 implies that there exists Z ⊆ Xhi with µ(Z) > µ(Xhi) − ε ≥ mk − ε such that Z
is connected. Number the vertices of Z as z1, . . . , zn say, such that {z1, . . . , zq} is connected for
1 ≤ q ≤ n.

In the focussed case, since (G,µ) is (δ, r)-focussed and µ(Xhi) ≥ mk ≥ δ, there exists Z ⊆ Xhi

with µ(Z) > µ(Xhi)/2 and with an r-centre. Thus µ(Z) ≥ ε since µ(Z) ≥ µ(Xhi)/2 ≥ mk/2 ≥
δ/2 ≥ ε, by hypothesis. Let z1 be an r-centre of Z, and choose the ordering z1, . . . , zn of the vertices
of Z in increasing order of G[Z]-distance from z1.

Since k ≥ 2, there exists j 6= i with 1 ≤ j ≤ k; and since µ(Z) ≥ ε, the set of vertices in Xhj

with a neighbour in Z has mass more than µ(Xhj ) − ε ≥ mk−1. Consequently we may choose q
with 0 ≤ q ≤ n, minimum such that for some j ∈ {1, . . . , k} \ {i}, the set of vertices in Xhj with a
neighbour in {z1, . . . , zq} has mass at least mk−1. In particular, {z1, . . . , zq} is mk−1-dominant, and
q ≥ 1.
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• If j < i, it follows that i ∈ I. Let Nk−1 be the graph obtained from Nk by adding the edge
hihj , and deleting all vertices in V (Hj)\{hj}. Let H ′i be the component of Nk−1 that contains
the edge hihj , and let us assign its head to be hj . Consequently H ′i is isomorphic to Si, and
so Nk−1 is a nursery with k − 1 components. Moreover, |Hi| ≥ |Hj | (because i > j), and so
φ(Nk−1) ≥ φ(Nk).

• If j > i, it follows that j /∈ I. Let Nk−1 be the graph obtained from Nk by adding the edge
hihj , and deleting all vertices in V (Hi) \ {hi}. Let H ′j be the component of Nk−1 that contains
the edge hihj , and let us assign its head to be hj . Thus H ′j is isomorphic to Sj , and again
Nk−1 is a nursery with k − 1 components and φ(Nk−1) ≥ φ(Nk).

For each v ∈ V (Nk−1) define X ′v as follows:

• if v 6= {h1, . . . , hk} let X ′v = Xv;

• let X ′hi = {z1, . . . , zq};

• let X ′hj be the set of vertices in Xhj with a neighbour in {z1, . . . , zq};

• for 1 ≤ ` ≤ k with ` 6= i, j, let X ′h` be the set of vertices in Xh` with no neighbour in {z1, . . . , zq}.

We see that X ′hi covers X ′hj , and has no edges to X ′h` for 1 ≤ ` ≤ k with ` 6= i, j; and X ′hi is connected

and mk−1-dominant; and in the focussed case, X ′hi has an r-centre. Moreover, µ(X ′hj ) ≥ mk−1. Let
1 ≤ ` ≤ k with ` 6= i, j; then, since q ≥ 1 and from the choice of q, the mass of the set of vertices in
Xh` with a neighbour in {z1, . . . , zq−1} is less than mk−1, and hence µ(Xh` \X ′h`) < mk−1 + ε. Since
µ(Xh`) ≥ mk and mk = 2mk−1 + ε, it follows that µ(X ′h`) ≥ mk−1. Thus (X ′v : v ∈ V (Nk−1)) is a
Y-spread mk−1-realization of Nk−1 in G, contrary to the minimality of k since φ(Nk−1) ≥ φ(Nk) ≥ 2p.

Consequently some component of Nk is isomorphic to T ; but then the theorem holds (since
mk ≥ δ). This proves 5.2.

6 If no small ball has large mass

In this section we prove 4.1 assuming that no ball with bounded radius has large mass. We need
first:

6.1 Let k ≥ 0 be an integer, and let ε, κ > 0 such that κ+ 4ε ≤ 1 and (k−1)κ ≤ 1. Let (G,µ) be an
ε-coherent massed graph. Then there are 2k + 1 subsets A1, . . . , Ak, B1, . . . , Bk, C of V (G), pairwise
disjoint, with the following properties:

• for 1 ≤ i ≤ k, Ai is connected and covers Bi;

• for 1 ≤ i ≤ k, Ai, C are anticomplete;

• for all distinct i, j ∈ {1, . . . , k}, Ai is anticomplete to Aj ∪Bj;

• µ(C) ≥ 1− 3kε; and

• for 1 ≤ i ≤ k, the set of vertices in C covered by Bi has mass at least κ− 3kε.
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Proof. We proceed by induction on k; the result is trivial for k = 0, taking C = V (G), so we assume
k ≥ 1. Consequently we may assume that there are 2k − 1 subsets A1, . . . , Ak−1, B1, . . . , Bk−1, C

′ of
V (G), pairwise disjoint, with the following properties:

• for 1 ≤ i ≤ k − 1, Ai is connected and covers Bi;

• for 1 ≤ i ≤ k − 1, Ai, C
′ are anticomplete;

• for all distinct i, j ∈ {1, . . . , k − 1}, Ai is anticomplete to Aj ∪Bj ;

• µ(C ′) ≥ 1− 3(k − 1)ε; and

• for 1 ≤ i ≤ k − 1, the set of vertices in C ′ covered by Bi has mass at least κ− 3(k − 1)ε.

Choose these subsets such that, in addition, |B1|+ · · ·+ |Bk−1| is minimum. For 1 ≤ i ≤ k − 1, let
Ci be the set of vertices in C ′ covered by Bi. Thus µ(Ci) ≥ κ− 3(k − 1)ε, and from the minimality
of |B1|+ · · ·+ |Bk−1|, it follows that µ(Ci) ≤ κ− (3k − 4)ε. Let D = C ′ \ (C1 ∪ · · · ∪ Ck−1). Thus

µ(D) ≥ 1− 3(k − 1)ε− (k − 1)(κ− (3k − 4)ε) = (1− (k − 1)κ) + (k − 1)(3k − 7)ε.

We claim that µ(D) ≥ 3ε. If k = 1, the above implies that µ(D) = 1, and if k = 2, the above
implies that µ(D) ≥ 1 − κ − ε; and so in either case µ(D) ≥ 3ε, since κ + 4ε ≤ 1. If k ≥ 3, then
(k− 1)(3k− 7) ≥ 3 (indeed, ≥ 4), and so the same displayed inequality implies that µ(D) ≥ 3ε since
1− (k − 1)κ ≥ 0. This proves the claim that µ(D) ≥ 3ε. Note that D is anticomplete to Ai ∪Bi for
1 ≤ i < k.

For X ⊆ D, let B(X) denote the set of vertices in C ′ \X with a neighbour in X. By 5.1, there
exists a connected subset X ⊆ D with µ(X) ≥ µ(D) − ε; and hence there is a connected subset
X ⊆ D with µ(X ∪ B(X)) ≥ ε. Choose such a set X minimal, and let Ak = X and Bk = B(X).
Then Ak is anticomplete to Ai ∪Bi for 1 ≤ i < k, since Ak = X ⊆ D; and Bk is anticomplete to Ai
for 1 ≤ i < k, since Bk = B(X) ⊆ C ′.

Choose x ∈ Ak such that Ak \ {x} is connected (or empty). Since µ(x) < ε and µ(N(x)) < ε, the
minimality of X implies that µ(Ak ∪Bk) ≤ 3ε. Let C = C ′ \ (Ak ∪Bk). Since µ(C ′) ≥ 1− 3(k− 1)ε,
it follows that µ(C) ≥ 1− 3kε, and since the set of vertices in C with no neighbour in Ak ∪ Bk has
mass less than ε, it follows that the set Ck say of vertices in C with a neighbour in Ak ∪Bk satisfies
µ(Ck) ≥ 1− (3k+ 1)ε ≥ κ− 3kε. Also Ck is anticomplete to Ak, since Bk = B(X), and so Bk covers
Ck. For 1 ≤ i < k, Ci ⊆ Bk ∪ C, and µ(Ci ∩Bk) ≤ 3ε, and so

µ(Ci ∩ C) ≥ µ(Ci)− 3ε ≥ κ− 3(k − 1)ε− 3ε = κ− 3kε.

Since Bi covers Ci ∩ C, this proves 6.1.

This is used to prove the following. Let us say a k-ladder in a graph G is a family of 3k subsets

A1, . . . , Ak, B1, . . . , Bk, C1, . . . , Ck

of V (G), pairwise disjoint and such that

• for 1 ≤ i ≤ k, Ai is connected and covers Bi, and Bi covers Ci;

11



• for 1 ≤ i ≤ k, Ai, Ci are anticomplete; and

• for all distinct i, j ∈ {1, . . . , k}, Ai is anticomplete to Aj ∪Bj ∪ Cj .

If in addition we have

• for 1 ≤ i < j ≤ k, Bi is anticomplete to Cj

we say the ladder is half-cleaned. Let us say the union of the k-ladder is the triple (A,B,C) where
A =

⋃
1≤i≤k Ai, B =

⋃
1≤i≤k Bi, and C =

⋃
1≤i≤k Ci.

6.2 Let ε, κ > 0, and let k ≥ 0 be an integer such that (k−1)k(κ+ε) ≤ 1 and (k−1)(κ+ε)+4ε ≤ 1.
Let (G,µ) be an ε-coherent massed graph. Then there is a half-cleaned k-ladder

A1, . . . , Ak, B1, . . . , Bk, C1, . . . , Ck

in G such that µ(Ci) ≥ κ for 1 ≤ i ≤ k.

Proof. Let κ′ = k(κ + ε). Since κ′ + 4ε ≤ 1 and (k − 1)κ′ ≤ 1, it follows from 6.1 that there are
2k + 1 subsets A1, . . . , Ak, B

′
1, . . . , B

′
k, C of V (G), all disjoint, with the following properties:

• for 1 ≤ i ≤ k, Ai is connected and covers B′i;

• for 1 ≤ i ≤ k, Ai, C are anticomplete;

• for all distinct i, j ∈ {1, . . . , k}, Ai is anticomplete to Aj ∪B′j ; and

• for 1 ≤ i ≤ k, the set of vertices in C covered by B′i has mass at least κ′.

Inductively, suppose that 0 ≤ j < k and we have defined B1, . . . , Bj with Bi ⊆ B′i for 1 ≤ i ≤ j,
and we have defined disjoint subsets C1, . . . , Cj of C such that for 1 ≤ i ≤ j, Bi covers Ci and is
anticomplete to C \ (C1 ∪ · · · ∪Ci), with κ ≤ µ(Ci) ≤ κ+ ε. Thus µ(C1 ∪ · · · ∪Cj) ≤ (k − 1)(κ+ ε),
and since the set of vertices in C covered by B′j+1 has mass at least κ′ = k(κ + ε), we may choose
Bj+1 ⊆ B′j+1 minimal such that the set, Cj+1 say, of vertices in C \ (C1 ∪ · · · ∪Cj) covered by Bj+1

has mass at least κ. From the minimality of Bj+1, it follows that µ(Cj+1) ≤ κ + ε. This completes
the inductive definition and so proves 6.2.

6.3 Let ε > 0, and let k ≥ 0 be an integer. Let (G,µ) be an (ε, 2)-coherent massed graph, and let

A1, . . . , Ak, B1, . . . , Bk, C1, . . . , Ck

be a k-ladder in G such that µ(Ci) ≥ 3kε for 1 ≤ i ≤ k. Let (A,B,C) be its union. Suppose
that bi ∈ Bi for 1 ≤ i ≤ k, such that b1, . . . , bk are pairwise nonadjacent. Then every pairing of
{b1, . . . , bk} is feasible in G[A ∪B ∪ C].

Proof. For each v ∈ B, let i(v) ∈ {1, . . . , k} such that v ∈ Bi(v), and for 1 ≤ i ≤ k let Di =
Ai ∪ Bi ∪ Ci. Let Π be a pairing of {b1, . . . , bk}, and let {s1, t1}, . . . , {sn, tn} be the members of Π
with cardinality two. For 1 ≤ m ≤ n we will construct inductively a path Pm between sm, tm with
the following properties:
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• V (Pm) ⊆ Di(sm) ∪Di(tm);

• for 1 ≤ ` < m, the sets V (P`), V (Pm) are anticomplete;

• V (Pm) is anticomplete to {b1, . . . , bk} \ {sm, tm}; and

• at most two vertices of V (Pm) belong to C, and at most two to B \ {sm, tm}.

Let 1 ≤ m ≤ n, and suppose we have constructed P1, . . . , Pm−1; we construct Pm as follows. Let

Z = {b1, . . . , bk} ∪ ((V (P1) ∪ · · · ∪ V (Pm−1)) ∩ (B ∪ C)).

Thus |Z| ≤ k + 4(m − 1) ≤ 3k − 4, since m ≤ n ≤ k/2. Let X be the set of vertices in Ci(sm) that
have G-distance at least three from every vertex of Z. Since (G,µ) is (ε, 2)-coherent, it follows that
µ(X) ≥ µ(Ci(sm))− (3k−4)ε ≥ ε. Let Y be the set of vertices in Ci(tm) that have G-distance at least
three from every vertex of Z; then similarly µ(Y ) ≥ ε. Since X ∩ Y = ∅ and (G,µ) is ε-coherent,
there exist x ∈ X and y ∈ Y , adjacent. Since Bi(sm) covers Ci(sm), there exists x′ ∈ Bi(sm) adjacent
to x; and since the distance between x and Z is at least three, it follows that x′ has no neighbour in
Z. Similarly there exists y′ ∈ Bi(tm) adjacent to y. Since Ai(sm) is connected and covers Bi(sm), and
similarly for tm, it follows that the subgraph of G induced on Ai(sm) ∪Ai(tm) ∪ {sm, tm, x, y, x′, y′} is
connected. Choose an induced path Pm joining sm, tm in this subgraph. Then Pm satisfies the first
and fourth bullets above.

We claim that for 1 ≤ ` < m, V (P`) and V (Pm) are anticomplete. Suppose not, and let u ∈ V (P`)
and v ∈ V (Pm) be adjacent or equal. Now either u is one of s`, t`, or u belongs to one of Ai(s`), Ai(t`),
or u ∈ Z; and either v is one of sm, tm, or v belongs to one of Ai(sm), Ai(tm), or v ∈ {x, y, x′, y′}.
If u ∈ Ai(s`), then all its neighbours in A ∪ B ∪ C belong to Ai(s`) ∪ Bi(s`) from the definition of a
k-ladder; and since v is not in the latter set, it follows that u /∈ Ai(s`). Similarly u /∈ Ai(t`), and
v /∈ Ai(sm) ∪ Ai(tm). Consequently u, v ∈ B ∪ C. Thus u ∈ Z, and so v /∈ {x, y, x′, y′} from the
choice of x, y, x′, y′. Hence v is one of sm, tm. But from the choice of P`, V (P`) is anticomplete to
{b1, . . . , bk} \ {s`, t`}, a contradiction. Thus Pm satisfies the second bullet.

For the third bullet, suppose that u ∈ {b1, . . . , bk} \ {sm, tm} is adjacent to v ∈ V (Pm). Since
u ∈ Z, it follows that v /∈ {x, y, x′, y′}; and as before v /∈ Ai(sm) ∪Ai(tm), and so v is one of sm, tm, a
contradiction since b1, . . . , bk are pairwise nonadjacent. Thus Pm satisfies the third bullet.

This completes the inductive definition, and hence proves 6.3.

In turn, 6.3 is used to prove the following, the main result of this section.

6.4 For every caterpillar T , there exist ε > 0 and an integer r ≥ 1, such that for every (ε, r)-coherent
massed graph (G,µ), there is a versatile copy of T in G.

Proof. We may assume that |T | ≥ 3. Assign a head to T to make it rooted, not one of the leaves.
Let k = 2|T |. Let r = 5k, and choose ε > 0 such that (k − 1)k(2k(3k + 2) + 1)ε ≤ 1. Let (G,µ) be
an (ε, r)-coherent massed graph. By 6.2, there is a half-cleaned k-ladder

A1, . . . , Ak, B1, . . . , Bk, C1, . . . , Ck

in G such that µ(Ci) ≥ 2k(3k + 2)ε for 1 ≤ i ≤ k. Then the unfocussed case of 5.2 (taking
δ = (3k + 1)ε) implies that there is a {C1, . . . , Ck}-spread (3k + 1)ε-realization (Xv : v ∈ V (T )) of
T in G.
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Let t1, . . . , tq be the vertices of T that are not leaves, where t1 is the head of T and titi+1 is an
edge of T for 1 ≤ i < q. Choose x1 ∈ Xt1 . For 2 ≤ i ≤ q in turn, since Xti covers Xti−1 by definition
of a realization, we may choose xi ∈ Xti adjacent to xi−1. Since each xi belongs to one of C1, . . . , Ck,
it follows that {x1, . . . , xq} is anticomplete to A1 ∪ · · · ∪ Ak. Also, since there are no edges between
Xu, Xv for nonadjacent u, v ∈ V (T ), it follows that x1, . . . , xq are the vertices in order of an induced
path of G. For the same reason we have the following two statements:

(1) For each leaf v of T with neighbour tj say, xj has a neighbour in Xv, and Xv is anticom-
plete to {x1, . . . , xq} \ {xj}.

(2) For all distinct leaves u, v of T , Xu is anticomplete to Xv.

We recall that C1, . . . , Ck are pairwise disjoint, and Xv (v ∈ V (T )) is {C1, . . . , Ck}-spread; let I
be the set of i ∈ {1, . . . , k} such that Xv ⊆ Ci for some leaf v of T . For each i ∈ I, let vi be the
(unique) leaf of T with Xvi ⊆ Ci. Let i ∈ I, and let j ∈ {1, . . . , q} such that vi is adjacent to tj in
T . We define xi = xj . Thus there may be distinct values i, i′ ∈ I with xi = xi

′
.

Let i ∈ I. Since Xvi is (2k + 1)ε-dominant, and (G,µ) is (ε, r)-coherent, there exists u ∈ Xvi

with a neighbour v such that the G-distance between v and x1 is at least r + 1. Consequently the
G-distance between u and x1 is at least r. By (1), Xvi ∪ {xi} is connected, and so there is a path
of G[Xvi ∪ {xi}] between xi and u; and hence there is a minimal path Pi of G[Xvi ∪ {xi}] with one
end xi and the other ui say, such that the G-distance between x1 and ui is at least q+ 4i. It follows
that the G-distance between x1 and ui is exactly q+ 4i. Choose a vertex bi ∈ Bi adjacent to ui. Let
ci be the second vertex of Pi, that is, the vertex adjacent to xi, and let Qi = Pi \ {xi}. Thus Qi is a
path of G[Xvi ]. The subgraph T ′ of G induced on {x1, . . . , xq} ∪ {ci : i ∈ I} is a copy of T , by (1)
and (2), and we will show that it is versatile.

(3) For all distinct i, j ∈ I, the sets V (Qi) ∪ {bi} and V (Qj) ∪ {bj} are anticomplete.

We may assume that i < j. Certainly V (Qi) and V (Qj) are anticomplete, by (2). Also bi has
no neighbour in V (Qj) since the k-ladder is half-cleaned; so it remains to check that bj has no neigh-
bour in V (Qi) ∪ {bi}. Let v ∈ V (Qi); then from the minimality of Qi, the G-distance between v, x1
is at most q + 4i. But the G-distance between uj and x1 is q + 4j, and so the G-distance between
v, uj is at least four. Consequently the G-distance between v, bj is at least three, and in particular
bj has no neighbour in V (Qi); and setting v = ui, since the G-distance between v, bj is at least three
it follows that bi, bj are nonadjacent. This proves (3).

(4) For all i ∈ I, the sets V (Qi) ∪ {bi} and {x1, . . . , xq} \ {xi} are anticomplete.

Let j ∈ {1, . . . , q} and suppose that xj is adjacent to some v ∈ V (Qi) ∪ {bi} and xj 6= xi. Since the
G-distance between x1, bi is q+ 4i, and the G-distance between x1, xj is at most q−1, it follows that
bi, xj are nonadjacent, and so v ∈ Qi, contrary to (1).

Let Z be the set of vertices in G with G-distance from x1 at most 4k + q + 4, and for 1 ≤ i ≤ k
let C ′i = Ci \ Z. Since k ≥ 2q+2, it follows that r = 5k ≥ 4k + q + 4, and so (G,µ) is (ε, 4k + q + 4)-
coherent. Hence µ(Z) ≤ ε. Thus for 1 ≤ i ≤ k, µ(C ′i) ≥ µ(Ci)− ε ≥ 3kε. Let Q =

⋃
i∈I V (Qi)∪{bi}.
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Since every vertex in Q has G-distance at most 4k+ q+ 1 from x1, it follows that every vertex in C ′i
has G-distance at least three from Q. Let B′i be the set of vertices in Bi \ {bi} with no neighbours
in V (Q). Since every vertex in C ′i has a neighbour in Bi and has G-distance at least three from Q,
it follows that B′i covers C ′i. Hence the sets

Ai (i ∈ I), B′i ∪ {bi} (i ∈ I), C ′i (i ∈ I)

form an |I|-ladder, with union (A′, B′, C ′) say. Since µ(C ′i) ≥ 3kε and r ≥ 2, every pairing of
{bi : i ∈ I} is feasible in G[A′ ∪B′ ∪ C ′] by 6.3.

Since A′ ∪B′ ∪ C ′ \ {bi : i ∈ I} is anticomplete to

(Q \ {bi : i ∈ I}) ∪ {x1, . . . , xq},

it follows from (3) and (4) that every pairing of {ci : i ∈ I} is feasible in the subgraph induced on
A′ ∪B′ ∪ C ′ ∪

⋃
i∈I V (Qi). But {ci : i ∈ I} is the set of leaves of T ′, and since

A′ ∪B′ ∪ C ′ ∪
⋃
i∈I

(V (Qi) \ {ci})

is anticomplete to {x1, . . . , xq}, it follows that T ′ is versatile. This proves 6.4.

7 The general proof

Now we turn to the proof of 4.1 in general. Fix the caterpillar T , and choose εr and r to satisfy
6.4 with ε replaced by εr. Now we will choose ε much smaller than εr, and try to prove that in
every ε-coherent massed graph (G,µ), some copy of T is versatile. We can therefore assume that for
every Z ⊆ V (G), there is no mass µ′ on G[Z] that is (εr, r)-coherent; and in particular (assuming
µ(Z) > 0), the mass µ′ on G[Z] defined by µ′(X) = µ(X)/µ(Z) for each X ⊆ Z is not (εr, r)-
coherent. Consequently, either there is a vertex v ∈ Z with µ(N r

G[Z][v]) ≥ ε0µ(Z), or there are two

anticomplete sets A,B ⊆ Z with µ(A), µ(B) ≥ εrµ(Z). The latter is only helpful if εrµ(Z) ≥ ε, but
in that case we can assume the latter never occurs. Thus, for every Z ⊆ V (G) with µ(Z) ≥ ε/εr,
there is a vertex v ∈ Z with µ(N r

G[Z][v]) ≥ εrµ(Z). Since N r
G[Z][v] is anticomplete to Z \ N r+1

G[Z][v],

and µ′(N r
G[Z][v]) ≥ εr (and because of the “latter never occurs” assumption above), it follows that

µ′(Z \N r+1
G[Z][v]) < εr, and so µ′(N r+1

G[Z][v]) ≥ 1− εr, that is, µ(N r+1
G[Z][v]) ≥ (1− εr)µ(Z). Initially we

could have chosen εr as small as we want, and in particular we may assume that εr ≤ 1/2; and so
µ(N r+1

G[Z][v]) ≥ µ(Z)/2. Because of this we will be able to apply the focussed case of 5.2.

For X ⊆ V (G) and v ∈ V (G), we say v touches X if either v ∈ X or v has a neighbour in X;
and otherwise v is anticomplete to X. We need the following.

7.1 Let t, r ≥ 1 be integers and ε > 0, and let (G,µ) be an ε-coherent massed graph. Let T be a
caterpillar in G with t vertices, and let x1, . . . , xq be the vertices of T with degree more than one.
For each leaf v of T let xv be its neighbour in {x1, . . . , xq}, and let Xv ⊆ V (G), such that

• for each leaf v, v ∈ Xv, and Xv∩{x1, . . . , xq} = ∅, and Xv is anticomplete to {x1, . . . , xq}\{xv};

• for all distinct leaves u, v, Xu is anticomplete to Xv;
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• for each leaf v, xv is an r-centre for Xv ∪ {xv};

• for each leaf v, v is the unique neighbour of xv in Xv; and

• for each leaf v, Xv ∪ {xv} is (r + 2)tt+1ε-dominant.

Then T is versatile.

Proof. Define κi = (r + 2)tt−i+1ε for 0 ≤ i ≤ t. Let Π be a pairing of the set of leaves L of
T . Let L = {v1, . . . , v`}, where Π consists of the sets {v2i−1, v2i} for 1 ≤ i ≤ k for some k ≤ `/2,
together with the singleton sets {vi} for 2k + 1 ≤ i ≤ `. Let X0

v = Xv ∪ {xv} for each v ∈ L. For
1 ≤ i ≤ k, we define Xi

v (v ∈ {v2i+1, . . . , v`}) and Pi inductively as follows. We assume P1, . . . , Pi−1
and Xi−1

v (v ∈ {v2i−1, . . . , v`}) have been defined, such that

• for 1 ≤ h ≤ i− 1, Ph is an induced path between v2h−1, v2h, of length at most 2r + 1;

• for 1 ≤ h ≤ i− 1, V (Ph) \ {v2h−1, v2h} is anticomplete to V (T ) \ {v2h−1, v2h};

• for 1 ≤ h < h′ ≤ i− 1, V (Ph) is anticomplete to V (Ph′);

• for 1 ≤ h ≤ i− 1 and v ∈ {v2i−1, . . . , v`}, V (Ph) is anticomplete to Xi−1
v ;

• for v ∈ {v2i−1, . . . , v`}, Xi−1
v is κi−1-dominant; and

• for v ∈ {v2i−1, . . . , v`}, {xv, v} ⊆ Xi−1
v and xv is an r-centre for Xi−1

v .

For each w ∈ {v2i+1, . . . , v`}, choose Xi
w ⊆ Xi−1

w , minimal such that Xi
w is κi-dominant and xw is a

r-centre for Xi
w. By deleting a vertex in Xi

w with maximum G[Xi
w]-distance from xw, the minimality

of Xi
w implies that the set of vertices that touch Xi

w has mass at most κi + ε. Also the set of vertices
that touch {x1, . . . , xq} ∪

⋃
h<i V (Ph) has mass at most (q + (k − 1)(2r + 2))ε. Let u = v2i−1 and

v = v2i. Let C be the set of all vertices that do not touch {x1, . . . , xq} ∪
⋃
h<i V (Ph) and do not

touch Xi
w for w ∈ {v2i+1, . . . , v`}. Let A,B ⊆ C be the sets of all vertices in C that touch Xi−1

u and
touch Xi−1

v respectively.
Since Xi−1

u is κi−1-dominant, it follows that

µ(A) ≥ κi−1 − (q + (k − 1)(2r + 2))ε− `(κi + ε).

The expression on the right side of this inequality is at least ε, since q + ` = t and ` ≤ t − 1 and
k ≤ `/2 and r ≥ 1 (we leave checking this to the reader); and so µ(A) ≥ ε. The same holds for
µ(B); and so A,B are not anticomplete. Consequently there are vertices a, b, adjacent or equal, such
that a touches Xi−1

u and b touches Xi−1
v , and a, b are anticomplete to {x1, . . . , xq} ∪

⋃
h<i V (Ph)

and to Xi
w for w ∈ {v2i+1, . . . , v`}. Since xu is an r-centre for Xi−1

u , and u is the unique neighbour
of xu in Xi−1

u , there is a path of G[Xi−1
u ∪ {a}] between u and a of length at most r, and the

same for v; and therefore there is an induced path Pi between u, v of length at most 2r + 1, and
all its vertices belong to Xi−1

u ∪ Xi−1
v ∪ {a, b}. In particular, V (Pi) is anticomplete to V (Ph) for

h < i, since Xi−1
u ∪ Xi−1

v ∪ {a, b} is anticomplete to V (Ph); and V (Pi) is anticomplete to Xi
w for

w ∈ {v2i+1, . . . , v`}, since Xi−1
u ∪ Xi−1

v ∪ {a, b} is complete to Xi
w. This completes the inductive

definition.
But then the paths P1, . . . , Pk together with the singletons {ci} (2k + 1 ≤ i ≤ `) show that Π is

feasible relative to T . Consequently T is versatile. This proves 7.1.
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This is used to prove:

7.2 Let T be a caterpillar with t vertices, let r ≥ 1 be an integer, and let ε, δ > 0 with ε ≤ δ/2, such
that δ ≤ 2−(t+2t)t−t and ε ≤ 2−(t+2t)t−2t(3r + 5)−1. Let (G,µ) be a (δ, r)-focussed ε-coherent massed
graph. Then there is a versatile copy of T in G.

Proof. We may assume that |T | ≥ 3, T is rooted, and its head is an internal vertex. Let t = |T |
and k = 2t. Let λ = 1/k − ε.

(1) There exist pairwise disjoint subsets Y1, . . . , Yk of V (G) with µ(Yi) ≥ λ for 1 ≤ i ≤ k.

We define Y1, . . . , Yk ⊆ V (G) inductively as follows. Let 1 ≤ i < k, and assume we have chosen
Y1, . . . , Yi ⊆ V (G), pairwise disjoint and each with λ ≤ µ(Yi) ≤ λ+ ε. Thus

µ(Y1 ∪ · · · ∪ Yi) ≤ (k − 1)(λ+ ε),

and so
µ(V (G) \ (Y1 ∪ · · · ∪ Yi)) ≥ 1− (k − 1)(λ+ ε) ≥ λ.

Consequently we may choose Yi+1 disjoint from Y1 ∪ · · · ∪ Yi with µ(Yi) ≥ λ. Choose Yi+1 minimal
with this property; then µ(Yi) ≤ λ+ ε. This completes the inductive definition of Y1, . . . , Yk and so
proves (1).

Let κ0 = 2−kλ − ε, and for 1 ≤ i ≤ t let κi = κ0t
−i. Since G is (δ, r)-focussed, it is also (κ0, r)-

focussed, since κ0 ≥ δ. From the focussed case of 5.2, there is a {Y1, . . . , Yk}-spread κ0-realization
(Xv : v ∈ V (T )) of T in G such that Xv has an r-centre for each v ∈ V (T ) except the head. Let the
vertices of degree more than one in T be t1, . . . , tq, where t1 is the head and titi+1 is an edge of T for
1 ≤ i < q. Choose x1 ∈ Xt1 , and inductively for i = 2, . . . , q, choose xi ∈ Xti adjacent to xi−1. As
in the proof of 6.4, x1, . . . , xt are the vertices in order of an induced path of G. We need to arrange
that for each leaf v of T adjacent to ti say, xi has a unique neighbour in Xv.

Let L = {v1, . . . , v`} be the set of leaves of T , and for each v ∈ L let xv be the vertex xj such
that v is adjacent to tj in T . Thus xv is the unique vertex in {x1, . . . , xq} covered by Xv. Since Xv

has an r-centre, and xv has a neighbour in Xv, it follows that xv is a (2r + 1)-centre of Xv ∪ {xv}.
Let X0

v = Xv ∪ {xv} for v ∈ L. For 0 ≤ i ≤ ` we will inductively define Xi
v (v ∈ L) satisfying the

following: for 0 ≤ i ≤ `,

• for each v ∈ L, xv ∈ Xi
v and Xi

v \ {xv} is anticomplete to {x1, . . . , xq} \ {xv};

• for all distinct u, v ∈ L, Xi
u \ {xu} is anticomplete to Xi

v \ {xv};

• for 1 ≤ j ≤ i, xvj is a (3r + 2)-centre of Xi
vj , and xvj has a unique neighbour in Xi

vj ;

• for i < j ≤ `, xvj is a (2r + 1)-centre of Xi
vj ; and

• for each v ∈ L, Xi
v is κi-dominant.

17



Suppose that 1 ≤ i ≤ `, and we have defined Xi−1
v (v ∈ L) as above. For each u ∈ L\{vi}, let u = vj

say. Let rj = 3r + 2 if j < i, and rj = 2r + 1 if j > i, so in either case xu is an rj-centre of Xi−1
u .

Choose Xi
u ⊆ Xi−1

u , minimal such that Xi
u is κi-dominant and xu is an rj-centre for Xi

u. It follows
from the minimality of each Xi

u that the set of vertices that touch Xi
u has mass at most κi + ε.

Let v = vi, and let Y ′′ be the set of all vertices that touch Xi−1
v ; then µ(Y ′′) ≥ κi−1 since Xi−1

v

is κi−1-dominant. Let Y ′ be the set of vertices in Y ′′ that are anticomplete to

{x1, . . . , xq} ∪
⋃

u∈L\{v}

Xi
u.

Thus µ(Y ′) ≥ µ(Y ′′)− qε− (`− 1)(κi + ε). Since µ(Y ′′) ≥ κi−1 and δ ≤ 2−(t+2t)t−t by hypothesis, it
follows that µ(Y ′) ≥ δ (we leave it to the reader to check this arithmetic). Since G is (δ, r)-focussed,
there is a subset Y ⊆ Y ′ with µ(Y ) ≥ µ(Y ′)/2, such that Y has an r-centre y say. Since xv is a
(2r+1)-centre for Xi−1

v , and y touches this set, there is an induced path P of G[Xi−1
v ∪{y}] between

xv and y, of length at most 2r + 2. Let Xi
v = Y ∪ V (P ). Then xv is a (3r + 2)-centre for Xi

v. Since
xv is anticomplete to Y and has only one neighbour in P , it follows that xv has only one neighbour
in Y ∪ V (P ). Moreover, Y is κi-dominant since µ(Y ) ≥ ε. This completes the inductive definition.

For each v ∈ L, let cv be the unique neighbour of xv in X`
v. The subgraph T ′ induced on

{x1, . . . , xq} ∪ {cv : v ∈ L} is a copy of T . Since ε ≤ 2−(t+2t)t−2t(3r + 5)−1 by hypothesis, it follows
that κ` ≥ (3r + 4)tt+1ε, and so 7.1 (with r replaced by 3r + 2) implies that T ′ is versatile. This
proves 7.2.

Now let us put these pieces together, to prove 4.1, which we restate:

7.3 For every caterpillar T , there exists ε > 0, such that for every ε-coherent massed graph (G,µ),
there is a versatile copy of T in G.

Proof. By 6.4 there exist εr > 0 and an integer r ≥ 1, such that for every (εr, r)-coherent massed
graph (G,µ), there is a versatile copy of T in G. We may assume εr ≤ t−t(3r+ 5)−1. Choose ε such
that ε ≤ 2−(t+2t)t−tεr. Let δ = ε/εr. Then ε, δ satisfy the hypotheses of 7.2.

Let (G,µ) be an ε-coherent massed graph; we will prove there is a versatile copy of T in G.
If (G,µ) is (δ, r + 1)-focussed, the result follows from 7.2, so we assume not. Hence there exists
Z ⊆ V (G) with µ(Z) ≥ δ, such that µ(N r+1

G[Z][v]) < µ(Z)/2 for each v ∈ Z. Let µ′(X) = µ(X)/µ(Z)

for all X ⊆ Z; then (G[Z], µ′) is a massed graph. If it is (εr, r)-coherent then the result follows
from 6.4, so we assume not, for a contradiction. If there exist anticomplete subsets A,B of Z with
µ′(A), µ′(B) > εr, then µ(A), µ(B) ≥ ε, which is impossible. Thus there exists v ∈ Z such that
µ′(N r

G[Z][v]) ≥ εr, and hence such that µ(N r
G[Z][v]) ≥ εrµ(Z) ≥ ε. But µ(N r+1

G[Z][v]) < µ(Z)/2 from

the choice of Z, and so µ(Z \N r+1
G[Z][v]) > µ(Z)/2 ≥ ε, a contradiction since the two sets N r

G[Z][v] and

Z \N r+1
G[Z][v] are anticomplete. This proves 7.3.

8 Parallels with χ-boundedness

An ideal is χ-bounded if there is a function f such that χ(G) ≤ f(ω(G)) for each graph G in
the ideal. Such ideals have been studied intensively, and it turns out that incoherent ideals and
χ-bounded ideals are in some ways very similar. Here are two instances:
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• Take a graph H, and let I be the ideal of all H-free graphs. The Gyárfás-Sumner conjecture [17,
25] asserts that I is χ-bounded if and only if H is a forest, and a conjecture of [18] asserts that
I is incoherent if and only if H is a forest. The second is now (very recently) a theorem [8],
and the “only if” part of the first is true, and the “if” part has been shown for some forests.

• A hole in G means an induced cycle of length at least four. Let I be the class of all graphs
with no hole of length at least k, for some fixed integer k. A theorem of [6] says that I is
χ-bounded, and a theorem of [2] says that I is incoherent.

But the parallel does not always work, and in fact neither property implies the other. Here are two
examples showing this, one for each direction:

• The ideal of all perfect graphs is χ-bounded, and indeed so is the ideal of all graphs with no
odd hole [21], but an example of Fox [15] shows that these ideals are coherent.

• Fix a graph H, and let I be the ideal of all graphs such that no induced subgraph is isomorphic
to a subdivision of H. Then I is not necessarily χ-bounded [19], but our main result proves
that it is incoherent.

There are a number of hard results and longstanding open conjectures about ideals that are not
χ-bounded, and it is entertaining to try their parallels for coherent ideals. (The proofs below are
just sketched.)

It is proved in [24] that every ideal that is not χ-bounded contains cycles of all lengths modulo k,
for every integer k ≥ 1. The same is not true for coherent ideals, as the example of Fox [15] shows;
a coherent ideal need not contain a cycle of odd length more than three, and in particular need not
contain a cycle of length 1 modulo 6. But it follows from 2.3 that for all integers `, every coherent
ideal contains a cycle of length 2` modulo k, and hence contains one of every length modulo k if k is
odd. To see this, choose ε > 0 very small, and choose an ε-coherent graph G from the ideal. By 2.3,
G contains a P -filleting of complete graph H of some large (constant) size, where P is a Hamilton
path of H. Choose many disjoint subpaths of P , each of length 2k, with no edges joining them. Let
these paths be P1, . . . , Pn say, and let the ith vertex of Pj be vij . For each i, and 1 ≤ h < k ≤ n,

there is a path of the P -filleting that joins vih, v
i
j , say Qh,ji ; and by Ramsey’s theorem, we may choose

many of the paths Pj such that all the paths Qh,ji have the same length modulo k depending on i.
(Redefine n, and renumber P1, . . . , Pn so that this holds.) Let Ri be the union of

Q1,2
i , Q2,3

i , . . . , Qk,k+1
i ;

then Ri has length divisible by k. But then for any t modulo k, the union of R1, Rt+1 and subpaths
of P1 and Pk+1 (both of length t) makes a hole of length 2t modulo k, and this cycle belongs to the
ideal.

It is conjectured in [22] that in every graph with huge chromatic number and bounded clique
number, there are k holes with consecutive lengths. The same is not true in ε-coherent graphs G
with ε very small, because they need not have odd holes; but perhaps there must always be k even
holes with successive lengths differing by two?

It is proved in [23] that, in any colouring of a graph with huge chromatic number and bounded
clique number, some induced k-vertex path is rainbow (that is, all its vertices have different colours),
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and no other types of connected subgraph have this property. What if we colour a graph which is
ε-coherent for ε very small? Then we can do better than just paths; the results of this paper show
that we can get a rainbow copy of any caterpillar. Each colour class has cardinality at most 2ε|G|, so
by grouping the colour classes, we can partition the vertex set into many disjoint sets each of about
the same size (differing by at most 2ε|G|), and each a union of colour classes. Then 5.2 gives a copy
T ′ of T with at most one vertex from each block of the partition; and in particular, T ′ is rainbow.
Actually, we can do even better; results of [8] show we can get a rainbow copy of any forest.

If we direct the edges of a graph with huge chromatic number and bounded clique number, some
digraphs must be present as induced subdigraphs. For instance, it is proved in [7] that every oriented
star has this property, and so does a three-edge path where both ends point outwards. What if we
direct the edges of a graph which is ε-coherent for ε very small? Now much less is true. We need
not get a directed two-edge path, because of Fox’s example from [15] (this is a comparability graph,
and so can be directed so that there is no induced directed two-edge path). We also need not get an
outdirected 3-star (a tree with four vertices, three of them adjacent from the fourth). To see this,
fix ε, choose k with kε ≥ 2, and take k disjoint sets A1, . . . , Ak each of the same size n/k say, with n
large. Now take a random graph on A1 ∪ · · · ∪ Ak with average degree log n; with high probability
the outcome is ε-coherent, and its maximum degree is O(log(n)). For 1 ≤ i ≤ k in turn, and for
every pair of vertices u, v ∈ Ai+1∪ · · ·∪Ak with a common neighbour in Ai, add an edge uv. Let the
result be G′. Since this process is repeated only k times and the maximum degree at most squares
at each step, the maximum degree of G′ is still less than εn. Now add more edges so that each Ai is
a clique, forming G′′. Thus G′′ is ε-coherent. Orient every edge uv of G′, from u to v if u ∈ Ai and
v ∈ Aj where i < j, and arbitrarily if u, v belong to the same Ai. In the resulting digraph, there
is no induced outdirected 3-star. (Incidentally, because of our main theorem 2.3 we always get a
subdivision of K2,3 as an induced subgraph, and however this is oriented it contains an outdirected
2-star; so we always get an outdirected 2-star.)
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