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Abstract

We elucidate the close connection between the repulsive lattice gas in equi-
librium statistical mechanics and the Lovász local lemma in probabilistic com-
binatorics. We show that the conclusion of the Lovász local lemma holds for
dependency graph G and probabilities {px} if and only if the independent-set
polynomial for G is nonvanishing in the polydisc of radii {px}. Furthermore,
we show that the usual proof of the Lovász local lemma — which provides a
sufficient condition for this to occur — corresponds to a simple inductive ar-
gument for the nonvanishing of the independent-set polynomial in a polydisc,
which was discovered implicitly by Shearer [28] and explicitly by Dobrushin
[12, 13]. We also present a generalization of the Lovász local lemma that allows
for “soft” dependencies. The paper aims to provide an accessible discussion
of these results, which are drawn from a longer paper [26] that has appeared
elsewhere.

Key Words: Graph, lattice gas, hard-core interaction, independent-set polynomial,
polymer expansion, cluster expansion, Mayer expansion, Lovász local lemma, proba-
bilistic method.

1 Introduction

In probabilistic combinatorics, one is often faced with a collection of events (Ax)x∈X

in some probability space, for which one wishes to prove that P(
⋂

x∈X Ax) > 0, i.e. that
with positive probability none of the events happen. If the events are independent,
then this is easily done. However, in practice there are usually some dependencies



present, and so we must find some way to deal with them. One approach is to control
the dependencies by a dependency graph: we say that a graph G with vertex set X
is a dependency graph for the events (Ax)x∈X if, for each x ∈ X, the event Ax is
independent from (the σ-algebra generated by) the collection {Ay: y 6∈ Γ∗(x)}, where
Γ∗(x) = Γ(x) ∪ {x} is the closed neighbourhood of x.

Since we are interested in proving that P(
⋂

x∈X Ax) > 0, the question is then
how large the probabilities of the Ax can be while still being able to guarantee that
P(
⋂

x∈X Ax) > 0. More precisely, we have the following problem:

Problem 1.1 Fix a graph G with vertex set X. For which sequences p = (px)x∈X ∈
[0, 1]X is it true that, for every collection (Ax)x∈X of events with dependency graph G
such that P(Ax) ≤ px for all x ∈ X, we have P(

⋂
x∈X Ax) > 0?

We shall say that a sequence p with this property is good for the dependency graph
G.

An ostensibly unrelated problem arises in statistical mechanics, in the context of
the repulsive lattice gas. In its simplest form (we discuss more general versions later),
the “lattice-gas partition function” associated with the graph G (on vertex set X)
is simply the multivariate generating polynomial for independent subsets of vertices,
i.e. the polynomial

ZG(w) =
∑

X′ ⊆ X

X′ independent

∏
x∈X′

wx , (1.1)

where we associate a separate variable wx (usually interpreted as a complex number)
to each vertex x ∈ X. This polynomial is familiar in combinatorics, though usually
in its single-variable form. (One of our contentions in this paper is that the multi-
variable form is quite natural, and often easier to analyze.) Since the empty set is
trivially independent, we have ZG(0) = 1, so that ZG is nonzero in some (complex)
neighbourhood of the origin.

It is worth remarking that the hard-core lattice gas (1.1) is not merely one in-
teresting statistical-mechanical model; it turns out to be the universal statistical-
mechanical model in the sense that any statistical-mechanical model living on a vertex
set V0 can be mapped onto a gas of nonoverlapping “polymers” on V0, i.e. a hard-core
lattice gas on the intersection graph of V0 [29, Section 5.7].1 This construction, which
is termed the “polymer expansion” or “cluster expansion”, is an important tool in
mathematical statistical mechanics [27, 7, 17, 9, 6]; it is widely employed to prove
the absence of phase transition at high temperature, low temperature, large magnetic
field, low density, or weak nonlinear coupling. Further information on expansion
methods in statistical mechanics (and related combinatorial problems) can be found
in the excellent recent survey by Borgs [6].

Mathematical physicists have thus devoted considerable effort to locating the zeros
of the lattice-gas partition function, and in particular to finding complex polydiscs in

1The intersection graph of a finite set S is the graph whose vertices are the nonempty subsets of
S, and whose edges are the pairs with nonempty intersection.
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which ZG is nonvanishing.2 For a sequence of radii R = (Rx)x∈X , let us define the
closed polydisc DR = {w ∈ CX : |wx| ≤ Rx ∀x}. We then have the following problem:

Problem 1.2 Fix a graph G with vertex set X. For which sequences R = (Rx)x∈X ∈
[0,∞)X does the closed polydisc DR contain no zeros of ZG?

Although the two problems we have stated seem at first sight to be completely
unrelated, they turn out to be closely connected. The main result that we will discuss
in this paper is the following:

Theorem 1.3 (The equivalence theorem) Let G be a finite graph with vertex set
X, and let p = (px)x∈X ∈ [0, 1]X . Then the following two statements are equivalent:

(a) p is good for the dependency graph G.

(b) The closed polydisc Dp contains no zeros of ZG.

This will follow from Theorem 3.1 below.
Physicists and mathematicians have each given sufficient conditions for a sequence

of positive real numbers to have the properties specified in one (and hence both) of
the problems above. For the repulsive lattice gas, Dobrushin [12, 13] gave a sufficient
(but not necessary) condition on R for ZG to be nonvanishing in DR. (A slight gener-
alization of Dobrushin’s result is given below, as Theorem 4.3.) Likewise, the Lovász
Local Lemma [14, 15] — which is an important tool in probabilistic combinatorics
— gives a sufficient (but not necessary) condition for a sequence p to be good for a
dependency graph G.

The equivalence between Problems 1.1 and 1.2 means that it is possible to compare
the Lovász Local Lemma with Dobrushin’s Theorem: both results give sufficient but
not necessary conditions, and it is natural to wonder whether one of them might give
stronger results than the other. Surprisingly, it turns out that the two theorems,
proved in different fields and two decades apart (Dobrushin’s Theorem in the 1990s
and the Local Lemma in the 1970s), give identical criteria! Indeed, close examination
of the (inductive) proofs shows that the two proofs are substantially isomorphic.

1.1 Outline of the paper

The main aim of this paper is to present the connections between dependency
graphs and the lattice gas discovered in [26]. Although there are no new results in
this paper, we hope that this selection of material from the (rather long) paper [26]
will give a shorter and more accessible account of the topic aimed at a combinatorial
audience. In order to simplify the presentation, we have omitted some of the proofs;

2Since the physically realizable values of wx are positive real , the reader is probably wondering
why physicists (of all people!) would want to study ZG(w) for complex values of the wx. The answer,
which is quite subtle, is connected with the Yang–Lee [38] picture of phase transitions; see e.g. [30,
Section 1] or [31, Section 5] for a brief explanation.

3



detailed proofs of all the results in this paper, together with much more extensive
discussion and many further results, can be found in [26], to which we refer the
reader for further information.

In Section 2, we examine the lattice gas. After giving some basic properties and
examples, we review the Mayer expansion, which is the expansion of log ZG in a Taylor
series around w = 0. The crucial property that we shall exploit is the fact that the
coefficients in the Mayer expansion have alternating signs (Proposition 2.1). We use
this to prove (Theorem 2.2) that the closest zeros to the origin lie in the negative real
quadrant (−∞, 0]X , along with some related facts.

In Section 3, we analyze the connection between dependency graphs and lattice
gases, and prove the equivalence of Problems 1.1 and 1.2. (In fact, Theorem 3.1
asserts somewhat more than Theorem 1.3.) The proof of Theorem 3.1 has two key
ingredients: first we use ideas of Shearer [28] to relate good sequences for a dependency
graph G to the negative real zeros of the corresponding multivariate independent-set
polynomial ZG; then we use the results of Section 2 to relate the latter to the complex
zeros of ZG. These arguments can in fact be extended to the lattice gas with “soft
interactions”, which are connected to dependency graphs with a suitably defined
notion of “weak” dependence; we conclude Section 3 by explaining this connection.

In Section 4, we turn to results giving sufficient conditions for a sequence p or R
to have the properties specified in Problems 1.1 and 1.2. After reviewing the Lovász
Local Lemma and Dobrushin’s Theorem, we prove the equivalence of the criteria
given by these two results, and discuss some consequences, including a “softened”
version of the Lovász Local Lemma. We also discuss an improved bound, inspired by
the work of Shearer [28].

We conclude the paper, in Section 5, with some comments on the Lovász/Dobrushin
bounds.

2 The repulsive lattice gas

2.1 Definition

In statistical mechanics, a “grand-canonical gas” is defined by a single-particle
state space X (here a nonempty finite set), a fugacity vector w = {wx}x∈X ∈ CX , and
a two-particle Boltzmann factor W : X×X → C with W (x, y) = W (y, x). The (grand)
partition function ZW (w) is then defined to be the sum over ways of placing n ≥ 0
“particles” on “sites” x1, . . . , xn ∈ X, with each configuration assigned a “Boltzmann
weight” given by the product of the corresponding factors wxi

and W (xi, xj):

ZW (w) =
∞∑

n=0

1

n!

∑
x1,...,xn∈X

(
n∏

i=1

wxi

)( ∏
1≤i<j≤n

W (xi, xj)

)
(2.1a)

=
∑
n

(∏
x∈X

wnx
x W (x, x)nx(nx−1)/2

nx!

) ∏
{x,y}⊆X

W (x, y)nxny

 (2.1b)
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where in (2.1b) the sum runs over all multi-indices n = {nx}x∈X of nonnegative
integers, and the product runs over all two-element subsets {x, y} ⊆ X (x 6= y).
We shall use the notation wn =

∏
x∈X wnx

x and |w| = {|wx|}x∈X (although, abusing
notation, we shall also write |n| =

∑
x∈X |nx|). We will also write w ≥ 0 to indicate

that w is a vector of real numbers such that wx ≥ 0 for all x ∈ X.
In this paper we shall limit attention to the repulsive lattice gas in which 0 ≤

W (x, y) ≤ 1 for all x, y. From this assumption it follows immediately that ZW (w) is
an entire analytic function of w satisfying |ZW (w)| ≤ exp(

∑
x∈X |wx|).

If W (x, x) = 0 for all x ∈ X — in statistical mechanics this is called a hard-core
self-repulsion — then the only nonvanishing terms in (2.1b) have nx = 0 or 1 for all x
(i.e. each site can be occupied by at most one particle), so that ZW (w) can be written
as a sum over subsets:

ZW (w) =
∑

X′⊆X

(∏
x∈X′

wx

) ∏
{x,y}⊆X′

W (x, y)

 . (2.2)

In this case ZW (w) is a multiaffine polynomial, i.e. of degree 1 in each wx separately.
Combinatorially, ZW (w) is the generating polynomial for induced subgraphs of the
complete graph, in which each vertex x gets weight wx and each edge xy gets weight
W (x, y).

If, in addition to hard-core self-repulsion, we have W (x, y) = 0 or 1 for each pair
x 6= y — in statistical mechanics this is called a hard-core pair interaction — then
we can define a (simple loopless) graph G = (X, E) by setting xy ∈ E whenever
W (x, y) = 0 and x 6= y, so that ZW (w) is precisely the independent-set polynomial
for G:

ZG(w) =
∑

X′ ⊆ X

X′ independent

∏
x∈X′

wx . (2.3)

Traditionally the independent-set polynomial is defined as a univariate polynomial
ZG(w) in which wx is set equal to the same value w for all vertices x. But one of
our main contentions in this paper is that ZG is more naturally understood as a
multivariate polynomial; this allows us, in particular, to exploit the fact that ZG is
multiaffine.

More generally, given any W satisfying 0 ≤ W (x, y) ≤ 1 for all x, y, let us define a
simple loopless graph G = GW (the support graph of W ) by setting xy ∈ E(G) if and
only if W (x, y) 6= 1 and x 6= y. The partition function ZW (w) can be thought of as a
“soft” version of the independent-set polynomial for G, in which an edge xy ∈ E(G)
has “strength” 1−W (x, y) ∈ (0, 1].

In the situation of hard-core self-repulsion (2.2), it is convenient to define, for each
subset Λ ⊆ X, the restricted partition function

ZΛ(w) =
∑

X′⊆Λ

∏
x∈X′

wx

∏
{x,y}⊆X′

W (x, y) . (2.4)
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Of course this notation is redundant, since the same effect can be obtained by setting
wx = 0 for x ∈ X \ Λ, but it is useful for the purpose of inductive computations and
proofs. We have, for any x ∈ Λ, the fundamental identity

ZΛ(w) = ZΛ\x(w) + wxZΛ\x(W (x, ·)w) (2.5)

where
[W (x, ·)w]y = W (x, y) wy ; (2.6)

here the first term on the right-hand side of (2.5) covers the summands in (2.4) with
X ′ 63 x, while the second covers X ′ 3 x. In the special case of a hard-core interaction
(= independent-set polynomial) for a graph G, (2.5) reduces to

ZΛ(w) = ZΛ\x(w) + wxZΛ\Γ∗(x)(w) , (2.7)

where we have used the notation Γ∗(x) = Γ(x) ∪ {x}. The fundamental identity
(2.5)/(2.7) plays an important role both in the inductive proof of the Lovász local
lemma and in the Dobrushin–Shearer inductive argument for the nonvanishing of ZW

in a polydisc (Section 4).

Remark. Repeated use of (2.5) obviously gives an algorithm to compute ZW (w).
But this algorithm takes in general exponential time. In fact, calculating ZG(w) for
general graphs G (or even for cubic planar graphs) is NP-hard (as noted by Shearer
[28]), since even calculating the degree of ZG(w) — that is, the maximum size of an
independent set — is NP-hard [16, pp. 194–195]. Therefore, if P 6= NP it is impossible
to calculate ZG(w) for general graphs in polynomial time.

In this section we give some general results concerning the partition function of
a lattice gas; additional related results can be found in [26]. Most of these results
are valid for an arbitrary repulsive lattice gas (2.1), in which multiple occupation
of a site is permitted. A few of the results are restricted to the case of a hard-core
self-repulsion (2.2), in which multiple occupation of a site is forbidden.

2.2 An example: The complete r-ary rooted tree [25, 28]

Before continuing with the general theory, we pause to compute an important
example. Let T

(r)
n be the complete rooted tree with branching factor r and depth

n. We limit attention to the univariate independent-set polynomial. Fix r ≥ 1;
and to lighten the notation, let us write Zn as a shorthand for Z

T
(r)
n

. Applying the

fundamental identity (2.7) to the root vertex, we obtain the nonlinear recursion

Zn(w) = Zn−1(w)r + wZn−2(w)r2

, (2.8)

which is valid for all n ≥ 0 if we set Z−1 ≡ Z−2 ≡ 1. By defining

Yn(w) =
Zn(w)

Zn−1(w)r
, (2.9)
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we can convert the second-order recursion (2.8) to a first-order recursion

Yn(w) = 1 +
w

Yn−1(w)r
(2.10)

with initial condition Y−1 ≡ 1. The polynomials Zn(w) can be reconstructed from
the rational functions Yn(w) by

Zn(w) =
n∏

k=0

Yk(w)rn−k

. (2.11)

Let wn < 0 be the negative real root of Zn of smallest magnitude (set wn = −∞ if
Zn has no negative real root). Note that w−1 = −∞ and w0 = −1. Since Zn(0) = 1,
we have Zn(w) > 0 for all w ∈ (wn, 0]. Let us prove by induction that wn−1 < wn for
n ≥ 0. It is true for n = 0. For n ≥ 1 we have

Zn(wn−1) = Zn−1(wn−1)
r + wn−1Zn−2(wn−1)

r2

< 0 (2.12)

since Zn−1(wn−1) = 0, wn−1 < 0 and Zn−2(wn−1) > 0 by the inductive hypothesis.
Therefore Zn vanishes somewhere between wn−1 and 0.

It follows that the wn increase to a limit w∞ ≤ 0 as n →∞. Let us show, following
Shearer [28], that

w∞ = − rr

(r + 1)r+1
(2.13)

by proving the two inequalities:
Proof of ≥: If w ∈ [w∞, 0), we have Zn(w) > 0 for all n and hence also

Yn(w) > 0 for all n. Since Y−1 > Y0, it follows from the monotonicity of (2.10) that
{Yn(w)}n≥0 is a strictly decreasing sequence of positive numbers, hence converges
to a limit y∗ ≥ 0 satisfying the fixed-point equation y∗ = 1 + w/yr

∗, or equivalently
w = yr+1

∗ − yr
∗. Elementary calculus then shows that w ≥ −rr/(r + 1)r+1; taking

w = w∞ we obtain w∞ ≥ −rr/(r + 1)r+1.
Proof of ≤: If −rr/(r+1)r+1 ≤ w < 0, the equation w = yr+1

∗ −yr
∗ has a unique

solution y∗ ∈ [r/(r + 1), 1). It then follows by induction [using (2.10) and the initial
condition Y−1 = 1] that 1 = Y−1(w) > Y0(w) > . . . > Yn−1(w) > Yn(w) > . . . > y∗ for
all n ≥ 0. In particular, Yn(w) > 0 for all n, so that wn < w for all n. This shows
that w∞ ≤ −rr/(r + 1)r+1.

Let us conclude by observing that (2.10) defines a degree-r rational map Rw: y 7→
1+w/yr parametrized by w ∈ C\0. Moreover, the zeros of Zn(w) correspond to those
values w for which Rw has a (superattractive) orbit 0 7→ ∞ 7→ 1 7→ 1 + w 7→ . . . 7→ 0
of period n + 3 (or some divisor of n + 3). As n →∞, these points accumulate on a
“Mandelbrot-like” set in the complex w-plane [22].

2.3 The Mayer expansion

Let us now return to the general case of a repulsive lattice gas (2.1). Since ZW (w)
is an entire function of w satisfying ZW (0) = 1, its logarithm is analytic in some
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neighborhood of w = 0, and so can be expanded in a convergent Taylor series:

log ZW (w) =
∑
n

cn(W )wn , (2.14)

where we have used the notation wn =
∏

x∈X wnx
x , and of course c0 = 0. In statistical

mechanics, (2.14) is called the Mayer expansion [36, 6]; there is a beautiful combi-
natorial formula for the Mayer coefficients cn(W ), which we shall not need here (see
[36, 6, 26]).

For our purposes, the crucial property of the Mayer expansion is the following:

Proposition 2.1 (signs of Mayer coefficients) Suppose that the lattice gas is re-
pulsive, i.e. 0 ≤ W (x, y) ≤ 1 for all x, y ∈ X. Then, for all n ≥ 0, the Mayer
coefficients cn(W ) satisfy

(−1)|n|−1 cn(W ) ≥ 0 (2.15)

The alternating-sign property (2.15) for the Mayer coefficients of a repulsive gas
has been known in the physics literature for over 40 years: see Groeneveld [18] for
a brief sketch of one proof. Our own proof [26, Section 2.2], which is based on
the partitionability of a matroid complex, also controls the signs of the first two
derivatives of cn(W ) with respect to W . We think that the Mayer coefficients cn(W )
merit further study from a combinatorial point of view; we would not be surprised if
new identities or inequalities were waiting to be discovered.

2.4 The fundamental theorem

Let us now state the principal result of this section. We use the notation |w| =
{|wx|}x∈X .

Theorem 2.2 (The fundamental theorem) Consider any repulsive lattice gas,
and let R = {Rx}x∈X ≥ 0. Then the following are equivalent:

(a) There exists a connected set C ⊆ (−∞, 0]X that contains both 0 and −R, such
that ZW (w) > 0 for all w ∈ C. [Equivalently, −R belongs to the connected
component of Z−1

W (0,∞) ∩ (−∞, 0]X containing 0.]

(b) ZW (w) > 0 for all w ∈ RX satisfying −R ≤ w ≤ 0.

(c) ZW (w) 6= 0 for all w ∈ CX satisfying |w| ≤ R.

(d) The Taylor series for log ZW (w) around 0 is convergent at w = −R.

(e) The Taylor series for log ZW (w) around 0 is absolutely convergent for |w| ≤ R.

Moreover, when these conditions hold, we have |ZW (w)| ≥ ZW (−R) > 0 for all
w ∈ CX satisfying |w| ≤ R.

In the case of hard-core self-repulsion, (a)–(e) are also equivalent to

8



(b′) ZW (−R 1S) > 0 for all S ⊆ X, where

(R1S)x =
{

Rx if x ∈ S
0 otherwise

(2.16)

(f) ZW (−R) > 0, and (−1)|S|ZW (−R; S) ≥ 0 for all S ⊆ X, where

ZW (w; S) =
∑

S⊆X′⊆X

(∏
x∈X′

wx

) ∏
{x,y}⊆X′

W (x, y)

 . (2.17)

(g) There exists a probability measure P on 2X satisfying P (∅) > 0 and

∑
T⊇S

P (T ) =

(∏
x∈S

Rx

) ∏
{x,y}⊆S

W (x, y)

 (2.18)

for all S ⊆ X. [This probability measure is unique and is given by P (S) =
(−1)|S|ZW (−R; S). In particular, P (∅) = ZW (−R) > 0.]

Remarks. 1. The conditions (b′), (f) and (g) are inspired in part by Shearer [28,
Theorem 1].

2. Suppose that the univariate entire function ZW (w), defined by setting wx = w
for all x, is strictly positive whenever −R ≤ w ≤ 0. Then in fact ZW (w) > 0
whenever −R ≤ wx ≤ 0 for all x: this follows from (a) =⇒ (b) by taking C to be the
segment [−R, 0] of the diagonal.

Our proof of Theorem 2.2 hinges on the alternating-sign property (2.15) for the
Taylor coefficients of log ZW . In preparation for this proof, let us recall the Vivanti–
Pringsheim theorem in the theory of analytic functions of a single complex variable
[19, Theorem 5.7.1]: if a power series f(z) =

∑∞
n=0 anz

n with nonnegative coefficients
has a finite nonzero radius of convergence, then the point of the circle of convergence
lying on the positive real axis is a singular point of the function f . Otherwise put, if f
is a function whose Taylor series at 0 has all nonnegative coefficients and f is analytic
on some complex neighborhood of the real interval [0, R), then f is in fact analytic
on the open disc of radius R centered at the origin and its Taylor series is absolutely
convergent there. Here we will need the following multidimensional generalization
[26] of the Vivanti–Pringsheim theorem:

Proposition 2.3 (multidimensional Vivanti–Pringsheim theorem) Let C be
a connected subset of [0,∞)n containing 0, let U be an open neighborhood of C in
Cn, and let f be a function analytic on U whose Taylor series around 0 has all non-
negative coefficients. Then the Taylor series of f around 0 converges absolutely on
the set hull(C) ≡

⋃
R∈C

D̄R, where D̄R denotes the closed polydisc {w ∈ Cn: |wi| ≤

Ri for all i}, and it defines a function that is continuous on hull(C) and analytic on
its interior.

9



We shall also make use of the following elementary result:

Lemma 2.4 Let F be a function on 2X , and define

F−(S) =
∑
X′⊆S

F (X ′) (2.19)

F+(S) =
∑
X′⊇S

F (X ′) (2.20)

Then
F−(S) =

∑
Y⊆Sc

(−1)|Y |F+(Y ) (2.21)

where Sc ≡ X \ S.

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. (c) =⇒ (b) =⇒ (a) is trivial (note that ZW (0) = 1).
(e) =⇒ (d) is trivial. The alternating sign property (2.15) implies that all terms

cnw
n in the Mayer expansion (2.14) are nonpositive when w ≤ 0, and so we get

(d) =⇒ (e).
(e) implies that the sum of the Taylor series for log ZW (w) defines an analytic

function on the open polydisc DR and a continuous function on the closed polydisc
D̄R. Its exponential equals ZW (w) on DR and hence by continuity also on D̄R.
Therefore (e) =⇒ (c).

Finally, assume (a). Since ZW is continuous on CX (and has real coefficients), we
can find an open connected neighborhood C ′ of C in (−∞, 0]X on which ZW > 0,
and an open neighborhood U of C ′ in CX ' R2|X| on which ZW 6= 0. It is fairly easy
to show that we can find a finite polygonal path P ⊂ C ′ from 0 to −R (consider the
set of points in C ′ that can be reached by a finite polygonal path from 0); taking a
suitably small neighborhood of P gives a simply connected open set U ′ in CX with
P ⊂ U ′ ⊂ U (see [26] for details). Then log ZW is a well-defined single-valued analytic
function on U ′, once we specify log ZW (0) = 0. Applying Proposition 2.3 to log ZW

on P and U ′ [using the alternating-sign property (2.15)], we conclude that the Taylor
series for log ZW around 0 is absolutely convergent on D̄R. Therefore (a) =⇒ (e).

The bound |ZW (w)| ≥ ZW (−R) for |w| ≤ R, which is equivalent to Re log ZW (w) ≥
log ZW (−R), is an immediate consequence of the alternating-sign property (2.15).

Now consider the special case of a hard-core self-repulsion. (b) =⇒ (b′) is trivial,
and (b′) =⇒ (b) follows from the fact that ZW is multiaffine (i.e. of degree ≤ 1
in each wx separately) because the value of ZW at any point w in the rectangle
−R ≤ w ≤ 0 is a convex combination of the values at extreme points of the rectangle,
which correspond to possible choices of S ⊂ X in (2.16).

To show that (b) =⇒ (f), note that

ZW (w; S) =

(∏
x∈S

wx

) ∏
{x,y}⊆S

W (x, y)

ZW (W (S, ·)w) (2.22)

10



where we have defined

[W (S, ·)w]y =

(∏
x∈S

W (x, y)

)
wy (2.23)

(note in particular that this vanishes whenever y ∈ S). Hence

(−1)|S|ZW (−R; S) =

(∏
x∈S

Rx

) ∏
{x,y}⊆S

W (x, y)

ZW (−W (S, ·)R) ≥ 0 (2.24)

since −R ≤ −W (S, ·)R ≤ 0, with strict inequality when |S| = 0 or 1 [since the
product over W (x, y) is in that case empty].

To show that (f) =⇒ (b′), use Lemma 2.4 applied to the set function

F (S) =

(∏
x∈S

−Rx

) ∏
{x,y}⊆S

W (x, y)

 . (2.25)

We have

F−(S) = ZW (−R1S) (2.26)

F+(S) = ZW (−R; S) (2.27)

so that Lemma 2.4 asserts the identity

ZW (−R1S) =
∑

Y⊆Sc

(−1)|Y |ZW (−R; Y ) . (2.28)

By (f), the Y = ∅ term is > 0 and the other terms are ≥ 0, so ZW (−R1S) > 0 for
all S.

Finally, let us show that (f) ⇐⇒ (g). By inclusion-exclusion, there are unique
numbers P (T ) satisfying (2.18), namely P (T ) = (−1)|T |ZW (−R; T ). Moreover, tak-
ing S = ∅ in (2.18) we see that

∑
T P (T ) = 1. Therefore, P is a probability mea-

sure if and only if (−1)|T |ZW (−R; T ) ≥ 0 for all T ; and P (∅) > 0 if and only if
ZW (−R; ∅) = ZW (−R) > 0.

3 Dependency graphs and the lattice gas:

The equivalence theorem

In this section, we begin our investigation of the relationship between dependency
graphs and the lattice gas. In Section 3.1, we work with the lattice gas with hard-
core pair interactions, which has partition function given by (2.3); in Section 3.2,
we extend the results to the lattice gas with soft-core pair interactions, which has
partition function given by (2.2).
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3.1 Hard-core version

We begin by recalling the definition of a dependency graph. Let (Ax)x∈X be a
finite family of events on some probability space, and let G be a graph with vertex set
X. We say that G is a dependency graph for the family (Ax)x∈X if, for each x ∈ X,
the event Ax is independent from the σ-algebra σ(Ay: y ∈ X \ Γ∗(x)). Note that
this is much stronger than requiring merely that Ax be independent of each such Ay

separately.
A family of events typically has many possible dependency graphs: for instance,

if G is a dependency graph for events (Ax)x∈X , then any graph obtained by adding
edges to G is also a dependency graph. In particular, if the events Ax are independent,
then any graph on X is a dependency graph. Nor must there be a unique minimal
dependency graph. Consider, for instance, the set of binary strings of length n with
odd digit sum (giving each such string equal probability), and let Ai be the event
that the ith digit is 1. Any graph without isolated vertices is a dependency graph for
this collection of events.

There is also a stronger notion of a dependency graph G for a collection of events
(Ax)x∈X , where we demand that if Y and Z are disjoint subsets of X such that G
contains no edges between Y and Z, then the σ-algebras σ(Ay: y ∈ Y ) and σ(Az: z ∈
Z) are independent. In this case we shall refer to G as a strong dependency graph for
the events (Ax)x∈X . (For instance, this situation arises in any statistical-mechanical
model with variables living on the set X and pair interactions only on the edges of
G, where each Ax depends only on the variable at x.) Alternatively, the dependency-
graph hypothesis can be replaced by a weaker hypothesis concerning conditional
probabilities, as in the lopsided Lovász local lemma (Theorem 4.2). It will follow
from Theorem 3.1 below that all three hypotheses lead to the same lower bounds on
P(
⋂

x∈X Ax).
Our aim is to relate dependency graphs to lattice gases. The following result

(which is a development of Shearer [28, Theorem 1]) gives the connection. For a
graph G, we define

R(G) = {R ∈ [0,∞)X : ZG(w) 6= 0∀w ∈ DR}. (3.1)

Theorem 3.1 (The equivalence theorem, hard-core case) Let (Ax)x∈X be a fam-
ily of events on some probability space, and let G be a graph with vertex set X. Suppose
that (px)x∈X are real numbers in [0, 1] such that, for each x and each Y ⊆ X \ Γ∗(x),
we have

P(Ax|
⋂
y∈Y

Ay) ≤ px . (3.2)

(a) If p ∈ R(G), then

P(
⋂
x∈X

Ax) ≥ ZG(−p) > 0 (3.3)

and more generally

P(
⋂
x∈Y

Ax|
⋂
x∈Z

Ax) ≥
ZG(−p1Y ∪Z)

ZG(−p1Z)
> 0 (3.4)
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for any subsets Y, Z ⊆ X. Moreover, this lower bound is best possible in the
sense that there exists a probability space on which there can be constructed a
family of events (Bx)x∈X with probabilities P(Bx) = px and strong dependency
graph G, such that P(

⋂
x∈X Bx) = ZG(−p).

(b) If p /∈ R(G), then there exists a probability space on which there can be con-
structed:

(i) A family of events (Bx)x∈X with probabilities P(Bx) = px and strong de-
pendency graph G, satisfying P(

⋂
x∈X Bx) = 0; and

(ii) A family of events (B′
x)x∈X with probabilities P(B′

x) = p′x ≤ px and strong
dependency graph G, satisfying P(B′

x ∩ B′
y) = 0 for all xy ∈ E(G) and

P(
⋂

x∈X B
′
x) = 0.

Remarks. 1. Please note that G is here an arbitrary graph with vertex set X; it
need not be a dependency graph for the events (Ax)x∈X . Rather, given G, we can
regard p as defined by

px = max
Y⊆X\Γ∗(x)

P(Ax|
⋂
y∈Y

Ay) (3.5)

(this is clearly the minimal choice). There is then a tradeoff in the choice of G: adding
more edges reduces px (since there are fewer conditional probabilities to control) but
also shrinks the set R(G) (see [26]).

2. Though (3.2) is the weak hypothesis of the lopsided Lovász local lemma (Theo-
rem 4.2), we will prove in (a) and (b) that the extremal families (Bx)x∈X and (B′

x)x∈X

have G as a strong dependency graph. Therefore, all three dependency hypotheses
lead to the same optimal lower bound on P(

⋂
x∈X Ax).

3. The proofs given here of Theorems 3.1 and 3.2 are logically independent of
nearly all of Theorem 2.2. More precisely, if we were to define R(G) by condition
(b) of Theorem 2.2, then the only part of Theorem 2.2 that is used in the proofs of
Theorems 3.1 and 3.2 is the (relatively easy) implication (b) =⇒ (f). But we have
chosen to define R(G) instead by condition (c), in order to emphasize the connection
with the complex zeros of the partition function.

Proof. For p ∈ R(G), we wish to define a family of events (Bx)x∈X [on a new prob-
ability space] such that the hypotheses of the theorem are satisfied and P(

⋂
x∈X Bx)

is as small as possible. An intuitively reasonable way to do this is to make the events
Bx as disjoint as possible, consistent with the condition (3.2) [or with either of the
two stronger notions of dependency graph]. With this in mind, for Λ ⊆ X let us
define

P(
⋂
x∈Λ

Bx) =

{ ∏
x∈Λ

px if Λ is independent in G

0 otherwise

(3.6)
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This defines a signed measure on the σ-algebra generated by (Bx)x∈X ; indeed, inclusion-
exclusion gives

P(
⋂
x∈Λ

Bx ∩
⋂
x 6∈Λ

Bx) =
∑
I⊇Λ

(−1)|I|−|Λ| P(
⋂
x∈I

Bx) (3.7a)

=
∑

I⊇Λ, I independent

(−1)|I|−|Λ|
∏
x∈I

px (3.7b)

= (−1)|Λ| ZG(−p; Λ) , (3.7c)

where ZG(−p; Λ) is defined as in (2.17). In particular, taking Λ = ∅, we have
P(
⋂

x∈X Bx) = ZG(−p). Now since p ∈ R(G), condition (c) (and hence all the
conditions) of Theorem 2.2 is satisfied. Thus Theorem 2.2(f) implies that (3.7c) is
nonnegative for all Λ, so that (3.6) defines a probability measure on σ(Bx: x ∈ X).
[This is the probability measure defined in Theorem 2.2(g).]

If Y and Z are disjoint subsets of X such that G contains no edges between Y
and Z, it follows from (3.6) that for Y0 ⊆ Y and Z0 ⊆ Z the events

⋂
x∈Y0

Bx and⋂
x∈Z0

Bx are independent. This implies (see, for instance, [37, Theorem 4.2] or [4,
Theorem 4.2]) that σ(Bx: x ∈ Y ) and σ(Bx: x ∈ Z) are independent, and so G is a
strong dependency graph.

We next show that (Bx)x∈X is a family minimizing P(
⋂

x∈X Bx). For Λ ⊆ X, we
define

PΛ = P(
⋂
x∈Λ

Ax) (3.8)

QΛ = P(
⋂
x∈Λ

Bx). (3.9)

Let us now prove by induction on |Λ| that PΛ/QΛ is monotone increasing in Λ. Note
first that by inclusion-exclusion,

QΛ =
∑
I⊆Λ

(−1)|I| P(
⋂
x∈I

Bx) (3.10a)

=
∑

I⊆Λ, I independent

(−1)|I|
∏
x∈I

px (3.10b)

= ZG(−p1Λ) . (3.10c)

Thus QΛ > 0 for all Λ, since p ∈ R(G) and R(G) is a down-set. Furthermore, for
y /∈ Λ,

QΛ∪{y} =
∑

I⊆Λ∪{y}, I independent

(−1)|I|
∏
x∈I

px (3.11a)

= QΛ − py

∑
I⊆Λ\Γ(y), I independent

(−1)|I|
∏
x∈I

px (3.11b)

= QΛ − pyQΛ\Γ(y) . (3.11c)
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[Note that this is just the fundamental identity (2.7) applied to ZG(−p1Λ).] On the
other hand,

PΛ∪{y} = PΛ − P(Ay ∩
⋂
x∈Λ

Ax) (3.12a)

≥ PΛ − P(Ay ∩
⋂

x∈Λ\Γ(y)

Ax) (3.12b)

≥ PΛ − pyPΛ\Γ(y) (3.12c)

by the hypothesis (3.2). Now we want to show that PΛ∪{y}/QΛ∪{y} ≥ PΛ/QΛ, or
equivalently that PΛ∪{y}QΛ −QΛ∪{y}PΛ ≥ 0. By (3.11) and (3.12) we have

PΛ∪{y}QΛ −QΛ∪{y}PΛ ≥ [PΛ − pyPΛ\Γ(y)]QΛ − [QΛ − pyQΛ\Γ(y)]PΛ (3.13a)

= py [PΛQΛ\Γ(y) −QΛPΛ\Γ(y)] (3.13b)

≥ 0 (3.13c)

since
PΛ

QΛ

≥
PΛ\Γ(y)

QΛ\Γ(y)

(3.14)

by the inductive hypothesis.
Since PΛ/QΛ is monotone increasing in Λ, we have PX/QX ≥ P∅/Q∅ = 1, which

proves (3.3). More generally, for any subsets Y, Z ⊆ X, we have PY ∪Z/QY ∪Z ≥
PZ/QZ and hence PY ∪Z/PZ ≥ QY ∪Z/QZ , which gives (3.4).

For p 6∈ R(G), choose a minimal vector p′ ≤ p such that p′ ≥ 0 and ZG(−p′) = 0
[such a p′ is in general nonunique]. Then the family of events (B′

x)x∈X defined by

(3.6) with px replaced by p′x satisfies P(
⋂

x∈X B
′
x) = ZG(−p′) = 0 [by (3.7c) with

Λ = ∅]. Since p′ is in the closure of R(G), it follows by the minimality of p′ and the
continuity of ZG that this is a well-defined probability measure; note that if x and y
are adjacent then P(B′

x ∩B′
y) = 0 by (3.6). Thus we have constructed a collection of

events satisfying part (b)(ii) of the Theorem.
To construct a collection of events satisfying part (b)(i), let (Cx)x∈X be an (inde-

pendent) collection of independent events satisfying

[1− P(B′
x)] [1− P(Cx)] = 1− px . (3.15)

Then the events Bx = B′
x ∪ Cx satisfy P(Bx) = px and P(

⋂
Bx) ≤ P(

⋂
B
′
x) = 0.

Remarks. 1. If (Ax)x∈X is a family of events satisfying (3.3) with equality, then we
have PX = QX in the foregoing proof; and since P∅ = Q∅ = 1, the monotonicity
of PΛ/QΛ implies that we have PΛ = QΛ for every Λ ⊆ X. Thus, if (Ax)x∈X is
an extremal family, the probabilities of all events in σ(Ax: x ∈ X) are completely
determined and are given by (3.6)/(3.7).

2. More generally, dependencies between events can be expressed in terms of a
dependency digraph: each event Ax is independent from the σ-algebra σ(Ay: y ∈
X \Γ∗+(x)), where Γ∗+(x) = Γ+(x)∪{x} and Γ+(x) is the out-neighborhood of x. See
e.g. [1, Lemma 5.1.1] or [5, Theorem 1.17]. It would be interesting to have a digraph
analogue of Theorem 3.1, but we do not know how to do this.
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3.2 Soft-core version

Let us now consider how to extend Theorem 3.1 to the more general case of a
soft-core pair interaction, i.e. to allow “soft edges” xy of strength 1−W (x, y) ∈ [0, 1].
The first step here is to replace the hard-core dependency condition (3.2) by an
appropriate soft-core version.

Let W : X ×X → [0, 1] be symmetric and satisfy W (x, x) = 0 for all x ∈ X; and
let (Ax)x∈X be a collection of events in some probability space. For each x ∈ X, let
Sx be a random subset of X, independent of the σ-algebra σ(Ax: x ∈ X), defined by
the probabilities

P(y ∈ Sx) = W (x, y) (3.16)

independently for each y ∈ X. [Thus in the case of a hard-core pair interaction, we
have Sx = X \ Γ∗(x) with probability 1.] Let (px)x∈X be real numbers in [0, 1]. We
say that (Ax)x∈X satisfies the weak dependency conditions with interaction W and
probabilities (px)x∈X if, for each x ∈ X and each Y ⊆ X \ x we have

E

(
P(Ax ∩

⋂
y∈Y ∩Sx

Ay)

)
≤ pxE

(
P(

⋂
y∈Y ∩Sx

Ay)

)
, (3.17)

where the expectations are taken over the random choice of subset Sx. [Note that
in the special case of a hard-core pair interaction, we have Y ∩ Sx = Y \ Γ∗(x)
with probability 1, so that (3.17) reduces to (3.2).] Of course, the reference here to
a random subset Sx can be replaced by an explicit expression for the probabilities
P(Y ∩ Sx = Y ′), so that (3.17) is equivalent to

∑
Y ′⊆Y

(∏
y∈Y ′

W (x, y)

) ∏
y∈Y \Y ′

[1−W (x, y)]

P(Ax ∩
⋂

y∈Y ′

Ay) ≤

px

∑
Y ′⊆Y

(∏
y∈Y ′

W (x, y)

) ∏
y∈Y \Y ′

[1−W (x, y)]

P(
⋂

y∈Y ′

Ay) . (3.18)

We also replace (3.1) by the definition

R(W ) = {R ∈ [0,∞)X : ZW (w) 6= 0∀w ∈ DR}. (3.19)

We can now state a soft-core version of Theorem 3.1:

Theorem 3.2 (The equivalence theorem, soft-core case) Let (Ax)x∈X be a fam-
ily of events in some probability space, and let W : X ×X → [0, 1] be symmetric and
satisfy W (x, x) = 0 for all x ∈ X. Suppose that (Ax)x∈X satisfies the weak dependency
conditions (3.17)/(3.18) with interaction W and probabilities (px)x∈X .

(a) If p ∈ R(W ), then

P(
⋂
x∈X

Ax) ≥ ZW (−p) > 0 (3.20)
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and more generally

P(
⋂
x∈Y

Ax|
⋂
x∈Z

Ax) ≥
ZW (−p1Y ∪Z)

ZW (−p1Z)
> 0 (3.21)

for any subsets Y, Z ⊆ X. Furthermore, this bound is best possible in the sense
that there exists a family (Bx)x∈X with probabilities P(Bx) = px that satisfies the
weak dependency conditions (3.17)/(3.18) with interaction W and probabilities
(px)x∈X , has strong dependency graph GW , and has P(

⋂
x∈X Bx) = ZW (−p).

(b) If p /∈ R(W ), then there exists a probability space on which there can be con-
structed:

(i) A family of events (Bx)x∈X with probabilities P(Bx) = px and satisfying the
weak dependency conditions (3.17)/(3.18) with interaction W , such that
P(
⋂

x∈X Bx) = 0; and

(ii) A family of events (B′
x)x∈X with probabilities P(B′

x) = p′x ≤ px and satisfy-
ing the weak dependency conditions (3.17)/(3.18) with interaction W , such

that P(B′
x ∩B′

y) = W (x, y)P(B′
x)P(B′

y) for all x, y and P(
⋂

x∈X B
′
x) = 0.

The proof of Theorem 3.2 is similar to that of Theorem 3.1; details can be found
in [26].

4 Dependency graphs and the lattice gas:

Sufficient conditions

In this section we shall consider sufficient conditions on a set of radii R = {Rx}x∈X

so that the partition function ZW (w) is nonvanishing in the closed polydisc |w| ≤ R.
Our main tool will be the fundamental identity (2.5), applied inductively.

4.1 The Lovász local lemma

Let G be a graph with vertex set X. Recall that G is a dependency graph for the
family (Ax)x∈X if, for each x ∈ X, the event Ax is independent from the σ-algebra
generated by the events {Ay: y ∈ X \ Γ∗(x)}. Erdős and Lovász [14] proved the
following fundamental result:

Theorem 4.1 (Lovász local lemma) Let G be a dependency graph for the family
of events (Ax)x∈X , and suppose that (rx)x∈X are real numbers in [0, 1) such that, for
each x,

P(Ax) ≤ rx

∏
y∈Γ(x)

(1− ry) . (4.1)

Then P(
⋂

x∈X Ax) ≥
∏

x∈X(1− rx) > 0.
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Erdős and Spencer [15] (see also [1, 23]) later noted that the same conclusion
holds even if Ax and σ(Ay: y ∈ X \ Γ∗(x)) are not independent, provided that the
“harmful” conditional probabilities are suitably bounded. More precisely:

Theorem 4.2 (Lopsided Lovász local lemma) Let (Ax)x∈X be a family of events
on some probability space, and let G be a graph with vertex set X. Suppose that
(rx)x∈X are real numbers in [0, 1) such that, for each x and each Y ⊆ X \ Γ∗(x), we
have

P(Ax|
⋂
y∈Y

Ay) ≤ rx

∏
y∈Γ(x)

(1− ry) . (4.2)

Then P(
⋂

x∈X Ax) ≥
∏

x∈X(1− rx) > 0.

In fact, the arguments of [14, 15] (see also [32, 33]) show that in Theorems 4.1 and
4.2 a slightly stronger conclusion holds: for all pairs Y , Z of subsets of X we have

P(
⋂
x∈Y

Ax|
⋂
x∈Z

Ax) ≥
∏

x∈Y \Z

(1− rx) . (4.3)

The local lemma has proved incredibly useful in probabilistic combinatorics. How-
ever, one limitation of the result is that it does not take into account the “strength”
of dependence. Our aim in this section is to relate the Lovász Local Lemma to Do-
brushin’s Theorem (presented in Section 4.2) and to discuss some consequences. In
particular, we present an extension of the Lovász Local Lemma to the context of
“weak” dependence (Theorem 4.6). Here the precise definition of “weak dependence”
is essentially forced upon us by Theorem 3.2, and it may be a little difficult to use in
practice. It would be very interesting to see some concrete applications of Theorem
4.6.

4.2 Basic bound

In this section, we will provide some sufficient conditions for the nonvanishing of
ZW in a closed polydisc D̄R, based on “local” properties of the interaction W (or of the
graph G). Results of this type have traditionally been proven [24, 11, 27, 7, 8, 10, 29, 9]
by explicitly bounding the terms in the Mayer expansion (2.14); this requires some
rather nontrivial combinatorics (for example, facts about partitionability together
with the counting of trees). Once this is done, an immediate consequence is that ZW

is nonvanishing in any polydisc where the series for log ZW is convergent. Dobrushin’s
brilliant idea [12, 13] was to prove these two results in the opposite order. First one
proves, by an elementary induction on the cardinality of the state space, that ZW is
nonvanishing in a suitable polydisc (Theorem 4.3); it then follows immediately that
log ZW is analytic in that polydisc, and hence that its Taylor series (2.14) is convergent
there. Let us remark that the Dobrushin–Shearer inductive method employed in
Section 4 is limited, at present, to models with hard-core self-repulsion (2.2), for
which ZW is a multiaffine polynomial. It is an interesting open question to know
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whether this approach can be made to work without the assumption of hard-core
self-repulsion.3

Our first (and most basic) bound is due to Dobrushin [12, 13] in the case of a
hard-core interaction; the generalization to a soft repulsive interaction was proven a
few years ago by one of us [30]. The method of proof is, however, already implicit (in
more powerful form) in Shearer [28, Theorem 2].

Theorem 4.3 (Dobrushin [12, 13], Sokal [30]) Let X be a finite set, and let W
satisfy

(a) 0 ≤ W (x, y) ≤ 1 for all x, y ∈ X

(b) W (x, x) = 0 for all x ∈ X

Let R = {Rx}x∈X ≥ 0. Suppose that there exist constants {Kx}x∈X satisfying 0 ≤
Kx < 1/Rx and

Kx ≥
∏
y 6=x

1−W (x, y)KyRy

1−KyRy

(4.4)

for all x ∈ X. Then, for each subset Λ ⊆ X, ZΛ(w) is nonvanishing in the closed
polydisc D̄R = {w ∈ CX : |wx| ≤ Rx for all x} and satisfies there

∣∣∣∣∂ log ZΛ(w)

∂wx

∣∣∣∣ ≤


Kx

1−Kx|wx|
for all x ∈ Λ

0 for all x ∈ X \ Λ

(4.5)

Moreover, if w,w′ ∈ D̄R and w′
x/wx ∈ [0, +∞] for each x ∈ Λ, then∣∣∣∣log

ZΛ(w′)

ZΛ(w)

∣∣∣∣ ≤ ∑
x∈Λ

∣∣∣∣log
1−Kx|w′

x|
1−Kx|wx|

∣∣∣∣ (4.6)

where on the left-hand side we take the standard branch of the log, i.e. | Im log · · · | ≤ π.

Remark. It follows from (4.4) that Kx ≥ 1 and hence that Rx < 1.
It is convenient to rewrite Theorem 4.3 in terms of the new variables rx = KxRx:

Corollary 4.4 Let X be a finite set, and let W satisfy 0 ≤ W (x, y) ≤ 1 for all
x, y ∈ X and W (x, x) = 0 for all x ∈ X. Let R = {Rx}x∈X ≥ 0. Suppose that there
exist constants 0 ≤ rx < 1 satisfying

Rx ≤ rx

∏
y 6=x

1− ry

1−W (x, y)ry

(4.7)

3See also Kotecký and Preiss [21] for a third approach to proving the convergence of the Mayer
expansion.
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for all x ∈ X. Then, for all w satisfying |w| ≤ R, the partition function ZW satisfies

|ZW (w)| ≥ ZW (−R) ≥
∏
x∈X

(1− rx) > 0 (4.8)

and more generally ∣∣∣∣ZW (w1Y ∪Z)

ZW (w1Z)

∣∣∣∣ ≥ ∏
x∈Y

(1− rx) > 0 . (4.9)

In particular, if we define the “maximum weighted degree”

∆W = max
x∈X

∑
y 6=x

[1−W (x, y)] (4.10)

and write

F (∆W ) =
2 + ∆W −

√
∆2

W + 4∆W

2
(4.11)

R(∆W ) = F (∆W ) e−[1−F (∆W )] (4.12)

we have
|ZW (w)| ≥ [1− F (∆W )]|X| > 0 (4.13)

whenever |wx| ≤ R(∆W ) for all x ∈ X.

Proof. Setting rx = KxRx, we find that (4.4) becomes (4.7), and (4.6) with Λ = X
and w′ = 0 becomes (4.8).

To obtain the last claim, note first that

1− r

1−Wr
=

1− r

1− r + (1−W )r
=

1

1 + (1−W ) r
1−r

≥ e−(1−W )r/(1−r) (4.14)

whenever 0 ≤ W ≤ 1 and 0 ≤ r ≤ 1. Therefore, if we set rx = r for all x ∈ X, we
have

rx

∏
y 6=x

1− ry

1−W (x, y)ry

≥ re−∆W r/(1−r) . (4.15)

We then choose r to maximize the right-hand side of (4.15); simple calculus yields
∆W r = (1 − r)2 and r = F (∆W ), so that the right-hand side of (4.15) is bounded
below by R(∆W ). It follows that if we define Rx = R(∆W ) and rx = F (∆W ) for all
x ∈ X then (4.7) and so (4.8) are satisfied.

Remarks. 1. The radius R(∆W ) behaves as

R(∆W ) =

 1− 2∆
1/2
W + 5

2
∆W + O(∆

3/2
W ) as ∆W → 0

1
e∆W

[
1− 1

∆W
+ 3

2∆W
+ O(∆−3

W )
]

as ∆W →∞
(4.16)
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Example 4.6 (the r-ary rooted tree) shows that this bound is sharp (to leading order)

as ∆W → ∞. At the other extreme, the 1 − const × ∆
1/2
W behavior at small ∆W

is also best possible, since the two-site lattice gas with W (x, x) = W (y, y) = 0
and W (x, y) = 1 − ε has ZW (w) = 1 + 2w + (1 − ε)w2 and hence has a root at

w = −1/(1+
√

ε). [However, the coefficient 2 rather than 1 in the ∆
1/2
W term of (4.16)

may not be best possible.]

Specializing Corollary 4.4 to the case of a hard-core pair interaction for a graph
G,

W (x, y) =

{
0 if x = y or xy ∈ E(G)
1 if x 6= y and xy /∈ E(G)

(4.17)

we have:

Corollary 4.5 Let G be a finite graph with vertex set X, and let R = {Rx}x∈X ≥ 0.
Suppose that there exist constants 0 ≤ rx < 1 satisfying

Rx ≤ rx

∏
y∈Γ(x)

(1− ry) (4.18)

for all x ∈ X. Then, for all w satisfying |w| ≤ R, the independent-set polynomial
ZG satisfies

|ZG(w)| ≥ ZG(−R) ≥
∏
x∈X

(1− rx) > 0 (4.19)

and more generally ∣∣∣∣ZG(w1Y ∪Z)

ZG(w1Z)

∣∣∣∣ ≥ ∏
x∈Y

(1− rx) > 0 . (4.20)

In particular, if G has maximum degree ∆, then |ZG(w)| ≥ [∆/(∆ + 1)]|X| > 0
whenever |wx| ≤ ∆∆/(∆ + 1)∆+1 for all x ∈ X.

Proof. The last claim is obtained by setting rx = 1/(∆ + 1) for all x ∈ X.

Remark. The radius ∆∆/(∆ + 1)∆+1 behaves for large ∆ as

∆∆

(∆ + 1)∆+1
=

1

e∆

[
1− 1

2∆
+

7

24∆2
− 3

16∆3
+ O(∆−4)

]
, (4.21)

which agrees with (4.16) to leading order in 1/∆ but is slightly larger (hence better)
at order 1/∆2.

Combining Corollary 4.5 with Theorem 3.1, we immediately obtain the lopsided
Lovász local lemma (Theorem 4.2). It is equally possible to go in the opposite direc-
tion, and deduce the Dobrushin bounds from the Lovász Local Lemma.

Let us remark that we have been able to relate the Lovász local lemma to a
combinatorial polynomial (namely, the independent-set polynomial) only in the case
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of an undirected dependency graph G. Although the local lemma can be formulated
quite naturally for a dependency digraph [1, 5, 23], we do not know whether the
digraph Lovász problem can be related to any combinatorial polynomial. (Clearly
the independent-set polynomial cannot be the right object in the digraph context,
since exclusion of simultaneous occupation is manifestly a symmetric condition.)

The results also allow us to deduce a “soft-core” version of the lopsided Lovász
local lemma. Combining Corollary 4.4 with Theorem 3.2, we obtain the following
result.

Theorem 4.6 Let (Ax)x∈X be a family of events in some probability space, and let
W : X × X → [0, 1] be symmetric and satisfy W (x, x) = 0 for all x ∈ X. Suppose
that (Ax)x∈X satisfies the weak dependency conditions (3.17)/(3.18) with interaction
W and probabilities (px)x∈X . Suppose further that (rx)x∈X are real numbers in [0, 1)
satisfying

px ≤ rx

∏
y∈Γ(x)

(1− ry) . (4.22)

Then
P(
⋂
x∈X

Ax) ≥
∏
x∈X

(1− rx) > 0 , (4.23)

and more generally for sets Y, Z ⊆ X, we have

P(
⋂
x∈Y

Ax|
⋂
x∈Z

Ax) ≥
∏

x∈Y \Z

(1− rx) > 0 . (4.24)

Defining the weighted degree ∆W as in (4.10), we obtain the following:

Lemma 4.7 Let (Ax)x∈X satisfy the weak dependency conditions (3.17)/(3.18) with
interaction W and probabilities (px)x∈X . If px < ∆∆W

W /(∆W + 1)∆W +1 for every
x ∈ X, then P(

⋂
x∈X Ax) > 0.

Proof. As in the proof of Corollary 4.5, set rx = r ≡ 1/(∆W + 1) for all x ∈ X.
Then check (4.7):

rx

∏
y 6=x

1− ry

1−W (x, y)ry

≤ rx

∏
y 6=x

(1− ry)
1−W (x,y)

≤ r(1− r)∆W

≤ ∆∆W
W

(∆W + 1)∆W +1
. (4.25)

In the first inequality we have used the fact that 1 −W (x, y)ry ≤ (1 − ry)
W (x,y) for

0 ≤ W (x, y) ≤ 1.

As noted above, it would be interesting to see applications of Theorem 4.6 and
Lemma 4.7.
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4.3 Improved bound

Finally in this section, we note that Theorem 4.3 can be slightly sharpened. Note,
first of all, that we need not insist that the bound (4.5) hold with the same constant
Kx for all Λ 3 x; rather, we can use constants Kx,Λ that depend on Λ.

Let us define the constants Kx,Λ ∈ [0, +∞] as a function of the family {Rx} by
the recursion

Kx,Λ =
∏

y ∈ Λ \ x

W (x, y) 6= 1

Ry > 0

1−W (x, y)Ky,Λ\xRy

1−Ky,Λ\xRy

(4.26)

if Ky,Λ\xRy < 1 for all terms in the product, and Kx,Λ = +∞ otherwise.
We define a graph G with vertex set V = {x ∈ X: Rx > 0} and edge set E =

{x, y ∈ V : W (x, y) 6= 1}; and for each Λ ⊆ X, let GΛ be the subgraph of G induced
by Λ ∩ V . Then only the connected component of GΛ containing x plays any role in
the definition of Kx,Λ: that is, if GΛ has several connected components with vertex
sets Λ1, . . . , Λk and x ∈ Λi, then Kx,Λ = Kx,Λi

.
Let us now call a pair (x, Λ) “good” if Kx,Λ < ∞ and Kx,ΛRx < 1. It is easily

shown that if (x, Λ) is good, then (y, Λ \ x) is also good whenever y ∈ Λ \ x with
W (x, y) 6= 1 and Ry > 0, i.e. whenever y is a neighbor of x in GΛ. [Indeed, this
follows under the weaker hypothesis that Kx,Λ < ∞.]

The following result can then be proved (see [26] for a proof):

Theorem 4.8 (Improved Dobrushin–Shearer bound) Let X be a finite set, and
let W satisfy

(a) 0 ≤ W (x, y) ≤ 1 for all x, y ∈ X

(b) W (x, x) = 0 for all x ∈ X

Let R = {Rx}x∈X ≥ 0. Define the constants Kx,Λ ∈ [0, +∞] as above. Suppose that
in each connected component of GΛ there exists at least one vertex x for which the
pair (x, Λ) is good. Then ZΛ(w) is nonvanishing in the closed polydisc D̄R; and for
every good pair (x, Λ) and every w ∈ D̄R, we have∣∣∣∣∂ log ZΛ(w)

∂wx

∣∣∣∣ ≤ Kx,Λ

1−Kx,Λ|wx|
. (4.27)

Moreover, if w,w′ ∈ D̄R and w′
x/wx ∈ [0, +∞] for each x ∈ Λ, and in addition the

pair (x, Λ) is good whenever w′
x 6= wx, then∣∣∣∣log

ZΛ(w′)

ZΛ(w)

∣∣∣∣ ≤ ∑
x ∈ Λ

w′
x 6= wx

∣∣∣∣log
1−Kx,Λ|w′

x|
1−Kx,Λ|wx|

∣∣∣∣ , (4.28)

where on the left-hand side we take the standard branch of the log, i.e. | Im log · · · | ≤ π.
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As a corollary of Theorem 4.8, we can deduce a bound due originally (in the Lovász
context) to Shearer [28, Theorem 2], which improves the last sentence of Corollary 4.5
by replacing ∆ by ∆ − 1. Indeed, we can very slightly improve Shearer’s bound by
allowing one vertex x0 to have a larger radius Rx0 :

Corollary 4.9 Let G = (X, E) be a finite graph of maximum degree ∆ ≥ 2, and fix
one vertex x0 ∈ X. Suppose that |wx0 | ≤ (∆−1)∆/∆∆ and that |wx| ≤ (∆−1)∆−1/∆∆

for all x 6= x0. Then ZG(w) 6= 0.

Proof. Since ZG factorizes over connected components, we can assume without loss
of generality that G is connected. (Indeed, if G is disconnected, then we can allow
one “x0-like” vertex in each connected component.) Set Rx0 = (∆ − 1)∆/∆∆ and
Rx = (∆− 1)∆−1/∆∆ for all x 6= x0.

We first claim that if x0 /∈ Λ, and x ∈ Λ is a vertex with at least one neighbor in
X \ Λ, then

Kx,Λ <

(
∆

∆− 1

)∆−1

(4.29)

(note the strict inequality). The proof is by induction on |Λ|, using the definition
(4.26). It certainly holds if Λ = {x}. For general Λ, note first that since every y
appearing in the product on the right-hand side of (4.26) has at least one neighbor
outside of Λ \ x (namely, x itself), Ky,Λ\x satisfies (4.29) by the inductive hypothesis
and so Ky,Λ\xRy < 1/∆. Also, since x has at least one neighbor outside Λ, there are
at most ∆− 1 factors in the product. Thus

Kx,Λ <

(
1

1− 1/∆

)∆−1

=

(
∆

∆− 1

)∆−1

. (4.30)

It then follows that

Kx0,X <

(
∆

∆− 1

)∆

, (4.31)

since the bound (4.29) applies to all the terms Ky,Λ\x0 appearing on the right-hand
side of (4.26). We therefore have Kx0,XRx0 < 1, and so the pair (x0, X) is good. The
claim then follows from Theorem 4.8.

Replacing ∆∆/(∆+1)∆+1 by (∆−1)∆−1/∆∆ may seem to be a negligible improve-
ment, since both quantities have the same leading behavior ≈ 1/(e∆) as ∆ → ∞,
and differ only at higher order:

(∆− 1)∆−1

∆∆
=

1

e∆

[
1 +

1

2∆
+

7

24∆2
+

3

16∆3
+ O(∆−4)

]
(4.32)

[cf. (4.21)].4 But Shearer’s bound (∆ − 1)∆−1/∆∆ has the great merit of being best
possible: for, as he showed [28], if G is the complete rooted tree with branching

4The amusing similarity of (4.21) and (4.32) arises from the fact that −(−∆)−∆/(−∆+1)−∆+1 =
(∆− 1)∆−1/∆∆.
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factor r = ∆ − 1 and depth n, then ZG(w) has negative real zeros that tend to
w = −(∆− 1)∆−1/∆∆ as n →∞ (see Section 2.2 above).

We remark that Corollary 4.9 does not appear to extend naturally to the soft-core
case (note that having one neighbor outside Λ in the argument around (4.29) need
not reduce the weighted degree of a vertex in Λ by 1).

For additional detail and further results, as well as a discussion of the optimal
bounds, we refer the reader to [26].

5 Conclusion

How good are the bounds given by the results in Section 4? We shall consider the
diagonal case, where all radii are the same. Let us define, for a finite graph G,

λc(G) = sup{λ : λ1 ∈ R(G)} . (5.1)

For a countably infinite graph G, we define λc(G) to be the infimum of λc(H) over
finite induced subgraphs H of G.

For graphs G with maximum degree ∆, we know from Corollary 4.9 that λc(G) ≤
(∆−1)∆−1/∆∆, and by Shearer’s result this is optimal for the infinite ∆-regular tree.
The bound is close to optimal for ∆-regular graphs of large girth (as can be seen from
monotonicity results from [26]). However, the value of λc is less easy to determine
for graphs with short cycles. For instance, consider the square lattice Z2. This is
4-regular, and so λc ≥ 33/44 = 0.105, but the correct value of λc is not so clear.
Fortunately, this problem has also been considered by physicists. Indeed, Todo [35]
has given the extraordinarily precise (but nonrigorous) numerical estimate

λc(Z2) = 0.119 338 881 88(1) , (5.2)

obtained by using transfer matrices and the phenomenological-renormalization method
(a variant of finite-size scaling). It would be interesting to gain good rigorous esti-
mates (see [26] for further discussion).

There are other probabilistic inequalities that are expressed in terms of a depen-
dency graph (see for instance Suen [34] or Janson [20]); it would be interesting to know
if any of these can be related to a combinatorial polynomial (= statistical-mechanical
partition function) in a manner analogous to Theorem 3.1. However, even without
such a result, there may be scope for proving further inequalities in the presence of
weak dependency conditions of the form discussed in Section 3.2 above.

Finally, we note that combinatorics and statistical physics have seen a very ex-
tensive and fruitful interaction in recent years; we hope that the results in this paper
indicate that much remains to be discovered.
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