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Abstract

We elucidate the close connection between the repulsive lattice gas in equi-
librium statistical mechanics and the Lovász local lemma in probabilistic com-
binatorics. We show that the conclusion of the Lovász local lemma holds for
dependency graph G and probabilities {px} if and only if the independent-set
polynomial for G is nonvanishing in the polydisc of radii {px}. Furthermore, we
show that the usual proof of the Lovász local lemma — which provides a suffi-
cient condition for this to occur — corresponds to a simple inductive argument
for the nonvanishing of the independent-set polynomial in a polydisc, which
was discovered implicitly by Shearer [98] and explicitly by Dobrushin [37, 38].
We also present some refinements and extensions of both arguments, including
a generalization of the Lovász local lemma that allows for “soft” dependencies.
In addition, we prove some general properties of the partition function of a
repulsive lattice gas, most of which are consequences of the alternating-sign
property for the Mayer coefficients. We conclude with a brief discussion of the
repulsive lattice gas on countably infinite graphs.

Key Words: Graph, lattice gas, hard-core interaction, independent-set polynomial,
polymer expansion, cluster expansion, Mayer expansion, Lovász local lemma, proba-
bilistic method.
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1 Introduction

The lattice gas with repulsive pair interactions is an important model in equilibrium
statistical mechanics [36, 46, 59, 57, 60, 95, 6, 7, 12, 55, 26, 110, 61, 50, 102, 70, 71,
43]. In the special case of a hard-core self-repulsion and hard-core nearest-neighbor
exclusion (i.e. no site can be multiply occupied and no pair of adjacent sites can
be simultaneously occupied), the partition function of the lattice gas coincides with
the independent-set polynomial in combinatorics (also known as the independence
polynomial or the stable-set polynomial) [4, 41, 42, 56, 51, 52, 53, 63, 27, 28, 64, 77, 35].
Moreover, the hard-core lattice gas is the universal statistical-mechanical model in the
sense that any statistical-mechanical model living on a vertex set V0 can be mapped
onto a gas of nonoverlapping “polymers” on V0, i.e. a hard-core lattice gas on the
intersection graph of V0 [100, Section 5.7]. This construction, which is termed the
“polymer expansion” or “cluster expansion”, is an important tool in mathematical
statistical mechanics [97, 29, 47, 31, 24], and much effort has been devoted to finding
complex polydiscs in which the polymer expansion is convergent, i.e. in which the
(polymer-)lattice-gas partition function is nonvanishing [88, 33, 97, 29, 72, 30, 32,
100, 37, 38, 89, 90, 31, 82, 25, 101, 102, 104]. One goal of this paper is to make a
modest contribution to this line of development.

The Lovász local lemma [39, 40, 105, 106] is an important tool in probabilistic
existence proofs in combinatorics. It provides a lower bound on the probability that
none of a collection of “bad” events occurs, when those events are subject to a set of
“local” dependencies, controlled by a “dependency graph”. The Lovász local lemma
(and its algorithmic versions [8, 3]) has found a significant variety of applications,
especially in graph coloring, Ramsey theory, and related algorithmic problems [2, 23,
83].

In this paper we would like to elucidate the close relation between these two
apparently disparate subjects. Following a seminal (but apparently little-known)
paper of Shearer [98], we shall show that the conclusion of the Lovász local lemma
holds for dependency graph G and probabilities {px} if and only if the independent-
set polynomial for G is nonvanishing in the polydisc of radii {px}. Moreover, we shall
show that the usual proof of the Lovász local lemma — which provides a sufficient
condition for this to occur — corresponds to a simple inductive argument for the
nonvanishing of the independent-set polynomial in a polydisc, which was discovered
implicitly by Shearer [98] and explicitly by Dobrushin [37, 38]. Finally, we shall
present some refinements and extensions of both arguments.

We have tried hard to make this paper comprehensible to the union (not the
intersection!) of combinatorialists, probabilists, classical analysts and mathematical
physicists. We apologize in advance to experts in each of these fields for boring them
every now and then with overly detailed explanations of elementary facts.
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1.1 The repulsive lattice gas

In statistical mechanics, a “grand-canonical gas” is defined by a single-particle state
space X (here a nonempty finite set), a fugacity vector w = {wx}x∈X ∈ CX , and a
two-particle Boltzmann factor W : X×X → C with W (x, y) = W (y, x). The (grand)
partition function ZW (w) is then defined to be the sum over ways of placing n ≥ 0
“particles” on “sites” x1, . . . , xn ∈ X, with each configuration assigned a “Boltzmann
weight” given by the product of the corresponding factors wxi

and W (xi, xj):

ZW (w) =
∞∑

n=0

1

n!

∑
x1,...,xn∈X

(
n∏

i=1

wxi

)( ∏
1≤i<j≤n

W (xi, xj)

)
(1.1a)

=
∑
n

(∏
x∈X

wnx
x W (x, x)nx(nx−1)/2

nx!

) ∏
{x,y}⊆X

W (x, y)nxny

 (1.1b)

where in (1.1b) the sum runs over all multi-indices n = {nx}x∈X of nonnegative
integers, and the product runs over all two-element subsets {x, y} ⊆ X (x 6= y). In
this paper we shall limit attention to the repulsive case in which 0 ≤ W (x, y) ≤ 1
for all x, y. From this assumption it follows immediately that ZW (w) is an entire
analytic function of w satisfying |ZW (w)| ≤ exp(

∑
x∈X |wx|).

If W (x, x) = 0 for all x ∈ X — in statistical mechanics this is called a hard-core
self-repulsion — then the only nonvanishing terms in (1.1b) have nx = 0 or 1 for all x
(i.e. each site can be occupied by at most one particle), so that ZW (w) can be written
as a sum over subsets:

ZW (w) =
∑

X′⊆X

(∏
x∈X′

wx

) ∏
{x,y}⊆X′

W (x, y)

 . (1.2)

In this case ZW (w) is a multiaffine polynomial, i.e. of degree 1 in each wx separately.
Combinatorially, ZW (w) is the generating polynomial for induced subgraphs of the
complete graph, in which each vertex x gets weight wx and each edge xy gets weight
W (x, y).

If, in addition to hard-core self-repulsion, we have W (x, y) = 0 or 1 for each pair
x 6= y — in statistical mechanics this is called a hard-core pair interaction — then
we can define a (simple loopless) graph G = (X, E) by setting xy ∈ E whenever
W (x, y) = 0 and x 6= y, so that ZW (w) is precisely the independent-set polynomial
for G:

ZG(w) =
∑

X′ ⊆ X

X′ independent

∏
x∈X′

wx . (1.3)

Traditionally the independent-set polynomial is defined as a univariate polynomial
ZG(w) in which wx is set equal to the same value w for all vertices x [4, 41, 42, 56, 51,
52, 53, 63, 27, 28, 64, 77]. But one of our main contentions in this paper is that ZG is
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more naturally understood as a multivariate polynomial; this allows us, in particular,
to exploit the fact that ZG is multiaffine.1

More generally, given any W satisfying 0 ≤ W (x, y) ≤ 1 for all x, y, let us define a
simple loopless graph G = GW (the support graph of W ) by setting xy ∈ E(G) if and
only if W (x, y) 6= 1 and x 6= y.2 The partition function ZW (w) can be thought of as a
“soft” version of the independent-set polynomial for G, in which an edge xy ∈ E(G)
has “strength” 1−W (x, y) ∈ (0, 1].

In summary, we shall consider in this paper three levels of generality:

(a) The general repulsive lattice gas (1.1), in which multiple occupation of a site
may be permitted.

(b) The lattice gas with hard-core self-repulsion (1.2), in which multiple occupation
of a site is forbidden, but in which the interactions between adjacent sites may
be “soft”.

(c) The lattice gas with hard-core self-repulsion and hard-core pair interaction (1.3),
which is simply the independent-set polynomial for the graph G.

Let us now return to the general case of a repulsive lattice gas (1.1). Since ZW (w)
is an entire function of w satisfying ZW (0) = 1, its logarithm is analytic in some
neighborhood of w = 0, and so can be expanded in a convergent Taylor series:

log ZW (w) =
∑
n

cn(W )wn , (1.4)

where we have used the notation wn =
∏

x∈X wnx
x , and of course c0 = 0. In statistical

mechanics, (1.4) is called the Mayer expansion [112], and there is a beautiful formula
for the coefficients cn(W ), whose derivation we will review briefly (Proposition 2.1).
As a corollary of this formula, we will show (Proposition 2.8) that the Taylor series
(1.4) has alternating signs whenever the lattice gas is repulsive:

(−1)|n|−1cn(W ) ≥ 0 (1.5)

for 0 ≤ W ≤ 1. (Here |n| =
∑

x∈X nx.) Moreover, in this interval, |cn(W )| =
(−1)|n|−1cn(W ) is a decreasing function of each W (x, y), i.e. an increasing function
of the “interaction strength” 1−W (x, y).

1More generally, let G = (X, E) be a graph, and suppose that for x 6= y we have W (x, y) = 0 or
1 according as xy ∈ E or xy /∈ E; but let 0 ≤W (x, x) ≤ 1 be arbitrary. Then we have the amusing
identity ZW (w) = ZG(w̃) where

w̃x =
∞∑

n=1

W (x, x)n(n−1)/2

n!
wn

x .

2Strictly speaking, GW ought to be called the (simple) support graph of 1−W , since xy ∈ E(G)
if and only if 1−W (x, y) 6= 0 and x 6= y. In particular, in the case of a hard-core self-repulsion and
hard-core pair interaction, W is the adjacency matrix of the complementary graph Ḡ. Please note
also that GW does not contain any information about the diagonal weights W (x, x).
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As a simple consequence of the alternating-sign property for log ZW , we will then
prove (Theorem 2.10) the equivalence of a number of conditions for the nonvanish-
ing of ZW in a closed polydisc D̄R = {w: |wx| ≤ Rx for all x}. These equivalent
conditions will play a central role in our study of the Lovász local lemma (Section 4).

Finally, we will provide (Section 5) some sufficient conditions for the nonvan-
ishing of ZW in a closed polydisc D̄R, based on “local” properties of the interac-
tion W (or of the graph G). Results of this type have traditionally been proven
[88, 33, 97, 29, 30, 32, 100, 31, 104] by explicitly bounding the terms in the Mayer ex-
pansion (1.4); this requires some rather nontrivial combinatorics (for example, Propo-
sition 2.4 below together with the counting of trees). Once this is done, an immediate
consequence is that ZW is nonvanishing in any polydisc where the series for log ZW is
convergent. Dobrushin’s brilliant idea [37, 38] was to prove these two results in the
opposite order. First one proves, by an elementary induction on the cardinality of
the state space, that ZW is nonvanishing in a suitable polydisc (Theorem 5.1); it then
follows immediately that log ZW is analytic in that polydisc, and hence that its Taylor
series (1.4) is convergent there. In Section 5 we will prove some refinements of this
result and investigate their sharpness; and in Sections 6 and 7 we will provide some
complementary results that give additional insight into the nature of these bounds.
Let us remark that the Dobrushin–Shearer inductive method employed in Section 5
is limited, at present, to models with hard-core self-repulsion (1.2), for which ZW is
a multiaffine polynomial. It is an interesting open question to know whether this
approach can be made to work without the assumption of hard-core self-repulsion.

1.2 The Lovász local lemma

In combinatorics we are frequently faced with a finite family (Ax)x∈X of “bad” events
in some probability space, having probabilities px = P(Ax), and we want to show
that there is a positive probability that none of the events Ax occurs. Under what
conditions can we do this? In general all we can say is that P(

⋂
x∈X Ax) ≥ 1−

∑
x px,

since in the worst case the events Ax could be disjoint; so we would need
∑

x px <
1 to ensure that P(

⋂
x∈X Ax) > 0. On the other hand, if the events (Ax)x∈X are

independent, then P(
⋂

x∈X Ax) =
∏

x(1 − px), which is positive as soon as px < 1
for all x. This suggests that if the (Ax)x∈X are in some sense “not too strongly
dependent”, then it might be possible to prove P(

⋂
x∈X Ax) > 0 under relatively mild

conditions on the {px}. This is the situation addressed by the Lovász local lemma:
we allow strong dependence among some subsets of the (Ax)x∈X , but insist that most
of these events are independent. Specifically, the local lemma applies to collections of
events in which the dependencies are controlled by a dependency graph, so that each
event is independent from the events that are not adjacent to it.

More precisely, let G be a graph with vertex set X. We say that G is a dependency
graph for the family (Ax)x∈X if, for each x ∈ X, the event Ax is independent from
the σ-algebra generated by the events {Ay: y ∈ X \ Γ∗(x)}. [Here we have used the
notation Γ∗(x) = Γ(x) ∪ {x}, where Γ(x) is the set of vertices of G adjacent to x.]
Erdős and Lovász [39] proved the following fundamental result:
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Theorem 1.1 (Lovász local lemma) Let G be a dependency graph for the family
of events (Ax)x∈X , and suppose that (rx)x∈X are real numbers in [0, 1) such that, for
each x,

P(Ax) ≤ rx

∏
y∈Γ(x)

(1− ry) . (1.6)

Then P(
⋂

x∈X Ax) ≥
∏

x∈X(1− rx) > 0.

Erdős and Spencer [40] (see also [2, 83]) later noted that the same conclusion
holds even if Ax and σ(Ay: y ∈ X \ Γ∗(x)) are not independent, provided that the
“harmful” conditional probabilities are suitably bounded. More precisely:

Theorem 1.2 (Lopsided Lovász local lemma) Let (Ax)x∈X be a family of events
on some probability space, and let G be a graph with vertex set X. Suppose that
(rx)x∈X are real numbers in [0, 1) such that, for each x and each Y ⊆ X \ Γ∗(x), we
have

P(Ax|
⋂
y∈Y

Ay) ≤ rx

∏
y∈Γ(x)

(1− ry) . (1.7)

Then P(
⋂

x∈X Ax) ≥
∏

x∈X(1− rx) > 0.

In fact, the arguments of [39, 40] (see also [105, 106]) show that in Theorems 1.1
and 1.2 a slightly stronger conclusion holds: for all pairs Y , Z of subsets of X we
have

P(
⋂
x∈Y

Ax|
⋂
x∈Z

Ax) ≥
∏

x∈Y \Z

(1− rx) . (1.8)

In this paper we shall (following Shearer [98]) approach the problem by dividing
our discussion into two parts:

1) A best-possible condition to have P(
⋂

x∈X Ax) > 0, in terms of the independent-
set polynomial ZG(−p); and

2) A sufficient condition to have ZG(−p) > 0, along the lines of Lovász, Dobrushin
and Shearer.

We shall treat the first problem in Section 4 and the second problem in Sections 5–7.
We shall also prove a generalization of the Lovász local lemma that allows for “soft”
dependencies (Theorems 4.2 and 5.4).

Let us remark that we have been able to relate the Lovász local lemma to a
combinatorial polynomial (namely, the independent-set polynomial) only in the case
of an undirected dependency graph G. Although the local lemma can be formulated
quite naturally for a dependency digraph [2, 23, 83], we do not know whether the
digraph Lovász problem can be related to any combinatorial polynomial. (Clearly
the independent-set polynomial cannot be the right object in the digraph context,
since exclusion of simultaneous occupation is manifestly a symmetric condition.)
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1.3 Plan of this paper

The plan of this paper is as follows: In Section 2 we prove some general properties of
the partition function of a repulsive lattice gas. In Section 3 we study the additional
properties that arise in the case of a hard-core self-repulsion (1.2), for which ZW is
a multiaffine polynomial. We also calculate some simple examples; in particular, we
show that when the support graph G = GW is a tree, the partition function ZW

can easily be calculated by working upwards from the leaves. In Section 4 we prove
our lower bound on P(

⋂
x∈X Ax) > 0 in terms of the independent-set polynomial

ZG(−p). We also prove a “soft-core” generalization of this result. In Section 5
we give some sufficient conditions for the nonvanishing of ZW in a polydisc, and
investigate their sharpness. In Section 6 we show how the bounds of Section 5 can
be interpreted in terms of a lattice gas on either the “self-avoiding-walk tree” or the
“pruned self-avoiding-walk tree” of G. In Section 7 we show how this tree bound can
be understood as arising from the repeated application of a single “unfolding” step.
Finally, in Section 8 we study the repulsive lattice gas on an infinite graph.

The reader primarily interested in the Lovász local lemma can read the statement
of Theorem 2.10 (skipping the proof) and Definition 2.14, quickly read Section 3.1,
and then jump directly to Section 4. The reader primarily interested in the lattice
gas can skip Section 4.

2 The lattice-gas partition function

In this section we prove some general properties of the partition function of a repulsive
lattice gas. We begin with some elementary identities (Section 2.1). In Section 2.2 we
derive the Mayer expansion and prove some of its properties, notably the alternating-
sign property (Proposition 2.8). In Section 2.3 we state and prove the “fundamental
theorem” (Theorem 2.10), which sets forth a number of equivalent conditions defining
the set that we shall call R(W ) [Definition 2.14] and that plays a central role in the
remainder of this paper. In Section 2.4 we derive the principal properties of the set
R(W ). In Section 2.5 we derive some further consequences of the alternating-sign
property. In Section 2.6 (which is a digression from the main thread of the paper
and can be omitted on a first reading) we discuss the algebraic irreducibility of the
multivariate partition function ZW (w). Finally, in Section 2.7 we make a brief remark
concerning the convexity of log ZW (w) at nonnegative fugacity w.

Nearly all of the results in this section are valid for an arbitrary repulsive lattice
gas (1.1), in which multiple occupation of a site is permitted. A few of the results are
restricted to the case of a hard-core self-repulsion (1.2), in which multiple occupation
of a site is forbidden.
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2.1 Elementary identities

Consider a general lattice gas (1.1) defined on a finite set X. For any subset Λ ⊆ X,
let us define the restricted partition function

ZW,Λ(w) = ZW (w1Λ) (2.1)

where
(w1Λ)x =

{
wx if x ∈ Λ
0 otherwise

(2.2)

This simply forces the sites in X \Λ to be unoccupied. Since W will be fixed through-
out this subsection, we shall often omit it from the notation and write simply ZΛ.

For any x ∈ Λ, we can expand the partition function (1.1b) in terms of the
occupation number nx: we obtain the fundamental identity

ZΛ(w) =
∞∑

n=0

wn
x

n!
W (x, x)n(n−1)/2 ZΛ\x(W (x, ·)n w) (2.3)

where
[W (x, ·)n w]y = W (x, y)n wy . (2.4)

In the special case of a hard-core self-repulsion at site x [i.e. W (x, x) = 0], only
the terms n = 0, 1 appear in this sum; this case will play a key role in this paper
starting in Section 3.1. (Analogous identities can be derived where we expand in
the occupation numbers at an arbitrary set of sites S ⊆ Λ; for example, a two-site
identity for the hard-core case will play a major role in Section 7.)

From (2.3) we can deduce the differentiation identity

∂ZΛ(w)

∂wx

=
∞∑

n=1

wn−1
x

(n− 1)!
W (x, x)n(n−1)/2 ZΛ\x(W (x, ·)n w) (2.5a)

=
∞∑

n=0

wn
x

n!
W (x, x)n(n+1)/2 ZΛ\x(W (x, ·)n+1 w) (2.5b)

=
∞∑

n=0

[W (x, x)wx]
n

n!
W (x, x)n(n−1)/2 ZΛ\x(W (x, ·)nW (x, ·)w) (2.5c)

= ZΛ(W (x, ·)w) . (2.5d)

Repeated application of (2.5) yields the multiple differentiation identity

∂nZΛ(w)

∂wx1 · · · ∂wxn

=

( ∏
1≤i<j≤n

W (xi, xj)

)
ZΛ

( n∏
i=1

W (xi, ·)w
)

, (2.6)

where (
n∏

i=1

W (xi, ·)w)x = wx

n∏
i=1

W (xi, x).
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2.2 The Mayer expansion

We begin by reviewing the derivation of the Mayer expansion (1.4). The first step is
to trivially rewrite the partition function (1.1a) as

ZW (w) =
∞∑

n=0

1

n!

∑
x1,...,xn∈X

(
n∏

i=1

wxi

) ∑
G∈Gn

∏
ij∈E(G)

F (xi, xj) , (2.7)

where Gn is the set of all (simple loopless undirected) graphs on the vertex set
{1, . . . , n}, and

F (x, y) = W (x, y)− 1 (2.8)

is called the two-particle Mayer factor . This is of the form

ZW (w) =
∞∑

n=0

1

n!

∑
G∈Gn

W(G) (2.9)

where the weights

W(G) =
∑

x1,...,xn∈X

(
n∏

i=1

wxi

) ∏
ij∈E(G)

F (xi, xj) (2.10)

satisfy

(a) W(∅) = 1;

(b) W(G) = W(G′) whenever G ∼= G′ (i.e. whenever G and G′ differ only by a
relabelling of vertices); and

(c) W(G) = W(G1)W(G2) whenever G is isomorphic to the disjoint union of G1

and G2.

It then follows from the exponential formula [112, 115, 13, 108] that

log ZW (w) =
∞∑

n=0

1

n!

∑
G∈Cn

W(G) (2.11a)

=
∞∑

n=0

1

n!

∑
x1,...,xn∈X

(
n∏

i=1

wxi

) ∑
G∈Cn

∏
ij∈E(G)

F (xi, xj), (2.11b)

at least in the sense of formal power series in w, where Cn ⊆ Gn is the set of connected
graphs on {1, . . . , n}. Therefore:
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Proposition 2.1 The coefficients cn(W ) of the Mayer expansion (1.4) are given by

cn(W ) =
1

n!

∑
x1, . . . , xn ∈ X

#{i: xi = x} = nx ∀x

∑
G∈Cn

∏
ij∈E(G)

F (xi, xj) (2.12a)

=
∑

(Sx)x∈X⊎
x∈X

Sx = {1, . . . , n}

|Sx| = nx ∀x

∑
G∈Cn

∏
{x,y}⊆X

F (x, y)eG(Sx,Sy)
∏
x∈X

F (x, x)eG(Sx) (2.12b)

where n = |n|, the first sum in (2.12b) runs over all partitions of {1, . . . , n} into
disjoint subsets (Sx)x∈X with the specified cardinalities, and eG(Sx, Sy) [resp. eG(Sx)]
denotes the number of edges of G connecting Sx to Sy [resp. within Sx].

Remark. Even in the simple case X = {x} and W (x, x) = 0, for which log ZW (w) =

log(1 + w) =
∑∞

n=1
(−1)n−1

n
wn, the Mayer expansion (2.11) implies the nontrivial

identity ∑
G∈Cn

(−1)|E(G)| = (−1)n−1(n− 1)! (2.13)

for the generating function of connected spanning subgraphs of the complete graph
Kn. We leave it as an exercise for the reader to find a direct combinatorial proof of
(2.13).

In order to analyze the Mayer coefficients cn(W ), it is convenient to proceed in
a bit more generality. So let H = (V, E) be a graph — we allow loops and multiple
edges — and let z = {ze}e∈E be a family of complex edge weights for H. [Later we
will specialize to H = Kn.] Define the generating function of connected spanning
subgraphs of H (or “connected sum” for short),

CH(z) =
∑

E′ ⊆ E

(V, E′) connected

∏
e∈E′

ze . (2.14)

It is easy to see that CH satisfies the deletion-contraction relation

CH(z) = CH\e(z 6=e) + zeCH/e(z6=e) (2.15)

for any edge e ∈ E: here H \ e is the graph H with edge e deleted, H/e is the graph
H with edge e contracted (note that we do not delete any loops or multiple edges
that may be formed), and z 6=e denotes the family {zf}f∈E\e. Please note that if e is
a loop, then H/e = H \ e and hence

CH(z) = CH\e(z 6=e) + zeCH/e(z 6=e) = (1 + ze) CH\e(z 6=e) . (2.16)

Let C (resp. T ) be the set of subsets E ′ ⊆ E such that (V, E ′) is connected (resp.
is a tree). Clearly C is an increasing family of subsets of E with respect to set-
theoretic inclusion, and the minimal elements of C are precisely those of T (i.e. the
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spanning trees). It is a nontrivial but well-known fact [17, Sections 7.2 and 7.3] [117,
Section 8.3] that the (anti-)complex C is partitionable: that is, there exists a map
R: T → C such that R(T ) ⊇ T for all T ∈ T and C =

⊎
T∈T [T, R(T )] (disjoint union),

where [E1, E2] denotes the Boolean interval {E ′: E1 ⊆ E ′ ⊆ E2}. In fact, many
alternative choices of R are available [17, Sections 7.2 and 7.3] [45, Sections 2 and 6]
[15, Proposition 13.7 et seq.] [101, Proposition 4.1], and most of our arguments will
not depend on any specific choice of R. However, at one point (Proposition 2.6) we
shall need the existence of an R with the following additional property:

Lemma 2.2 Let H = (V, E) be a connected graph, and fix any T0 ∈ T . Then there
exists a map R: T → C such that

(a) R(T ) ⊇ T for all T ∈ T ;

(b) C is the disjoint union of the Boolean intervals [T, R(T )], T ∈ T ; and

(c) R(T0) = T0.

Proof. If H has one vertex and no edges, then T = C = {∅} and the result holds
trivially; so assume henceforth that E 6= ∅. Assign arbitrary weights we > 0 chosen
so that no two spanning trees have equal weight (for example, one can choose the
we to be linearly independent over the rationals). For each E ′ ∈ C, let S(E ′) be the
(unique) minimum-weight spanning tree contained in E ′. (This can be constructed
by a greedy algorithm, i.e. start from ∅ and keep adding the lowest-weight edge in
E ′ that does not create a cycle. See, for instance, [22, Section I.2].) We then define
R(T ) to be the union of all E ′ that have S(E ′) = T . To verify that this works, we
need to show that if S(E1) = S(E2) = T , then S(E1 ∪E2) = T ; but this follows easily
from the validity of the greedy algorithm. [Note that this construction includes, as a
special case, the lexicographically minimum spanning tree for any ordering of E: it
suffices to take wn = 2n.]

By choosing the weights so that we > wf whenever e ∈ T0 and f ∈ E \T0, we can
ensure that for E ′ 6= T0 the first edge chosen by the greedy algorithm will not belong
to T0. Therefore, R(T0) = T0.

Remark. The greedy algorithm works, more generally, for an arbitrary matroid [86,
Section 1.8]. It follows that the independent-set complex of a matroid (or, dually, the
spanning-set anti-complex) is partitionable [17, Sections 7.2 and 7.3].

Given the existence of R, we have the following simple but fundamental identity:

Proposition 2.3 (partitionability identity) Let R: T → C be any map satisfying
R(T ) ⊇ T for all T ∈ T and C is the disjoint union of the Boolean intervals [T, R(T )],
for T ∈ T . Then

CH(z) =
∑

T ⊆ E

(V, T ) tree

∏
e∈T

ze

∑
T⊆E′⊆R(T )

∏
e∈E′\T

ze

12



=
∑

T ⊆ E

(V, T ) tree

∏
e∈T

ze

∏
e∈R(T )\T

(1 + ze) . (2.17)

This identity (for one specific choice of R) is due originally to Penrose [88].
One immediate consequence of the identity (2.17) is the following inequality valid

in the “complex repulsive” regime |1 + ze| ≤ 1:

Proposition 2.4 (Penrose [88]) Let H = (V, E) be a finite undirected graph equipped
with complex edge weights {ze}e∈E satisfying |1 + ze| ≤ 1 for all e. Then

|CH(z)| ≤
∑

T ⊆ E

(V, T ) tree

∏
e∈T

|ze| . (2.18)

This bound plays a major role in several traditional (pre-Dobrushin) proofs of con-
vergence of the Mayer expansion [88, 33, 97, 29, 100, 31, 104], as well as in a recent
bound on the zeros of chromatic polynomials [101].

Let us now define the “generalized connected sum”

CH(λ; z) =
∑

E′ ⊆ E

(V, E′) connected

λc(E′)
∏
e∈E′

ze (2.19a)

= λ−(|V |−1)CH(λz) (2.19b)

where c(E ′) = |E ′| − |V | + 1 is the cyclomatic number of the connected subgraph
(V, E ′) [more generally, for a subgraph (V, E ′) with k(E ′) components, the cyclomatic
number is c(E ′) = |E ′|−|V |+k(E ′)]. Of course, (2.19b) shows that CH(λ; z) contains
no more information than CH(z); it is just a convenient way of scaling all the variables
ze simultaneously. The function CH(λ; z) interpolates between the tree sum (λ = 0)
and the connected sum (λ = 1); and Proposition 2.4 can be rephrased as saying that
|CH(1; z)| ≤ CH(0; |z|). One of us has conjectured that the absolute-value signs can
in fact be put outside the sum, i.e. |CH(1; z)| ≤ |CH(0; z)| [101, Remark 2 in Section
4.1]. In general this is still an open problem; but if the ze are real and lie in the
interval [−1, 0] — which corresponds to the physical repulsive regime 0 ≤ W ≤ 1 —
then a vastly stronger result is true:

Proposition 2.5 (Sokal [101]) Let H = (V, E) be a finite undirected graph equipped
with real edge weights {ze}e∈E satisfying −1 ≤ ze ≤ 0 for all e. Then

(−1)k+|V |−1 dk

dλk
CH(λ; z) ≥ 0 (2.20)

on 0 ≤ λ ≤ 1, for all integers k ≥ 0. In particular, setting k = 0 and λ = 1 we have

(−1)|V |−1CH(z) ≥ 0 . (2.21)
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Proof. By (2.17) and (2.19b), we have

CH(λ; z) =
∑

T ⊆ E

(V, T ) tree

∏
e∈T

ze

∏
e∈R(T )\T

(1 + λze) (2.22)

and hence

dk

dλk
CH(λ; z) = k!

∑
T ⊆ E

(V, T ) tree

∑
T̃ ⊆ R(T ) \ T

|T̃ | = k

∏
e∈T∪T̃

ze

∏
e∈R(T )\(T∪T̃ )

(1 + λze) , (2.23)

which has the claimed sign whenever 0 ≤ λ ≤ 1 and −1 ≤ ze ≤ 0 for all e.3

We shall also need a variant of Proposition 2.5 with strict inequality for the case
k = 0:

Proposition 2.6 Let H = (V, E) be a finite undirected graph equipped with real edge
weights {ze}e∈E satisfying −1 ≤ ze ≤ 0 for all e. Assume furthermore that the
subgraph (V, supp z) is connected [here supp z = {e ∈ E: ze 6= 0}]. Then

(−1)|V |−1 CH(z) > 0 . (2.24)

Proof. Choose T0 ⊆ supp z such that (V, T0) is a spanning tree, and use Lemma 2.2
to choose R so that R(T0) = T0. Then, in the sum (2.22), the term T = T0 is nonzero
with sign (−1)|V |−1, and all the other terms either have the sign (−1)|V |−1 or else are
zero.

We can also prove some inequalities on the partial derivatives of CH(z) with
respect to individual weights ze. Note first that the deletion-contraction identity
(2.15) implies that

∂CH(z)

∂ze

= CH/e(z6=e) . (2.25)

The graph H/e has |V | vertices if e is a loop, and |V | − 1 vertices if e is not a loop.
Repeated application of these facts together with (2.21) yields the following result:

Proposition 2.7 Let H = (V, E) be a finite undirected graph equipped with real edge
weights {ze}e∈E satisfying −1 ≤ ze ≤ 0 for all e. Let k ≥ 1 and e1, . . . , ek ∈ E.

(a) If e1, . . . , ek are not all distinct, we have

∂CH(z)

∂ze1 · · · ∂zek

= 0 . (2.26)

3Equation (4.7) of [101] inadvertently omitted the prefactor k! in (2.23).
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(b) If e1, . . . , ek are all distinct and form a subgraph with cyclomatic number c, we
have

(−1)|V |−k+c−1 ∂CH(z)

∂ze1 · · · ∂zek

≥ 0 . (2.27)

Let us now specialize these results to the Mayer expansion (2.12a) by taking
H = Kn (where n = |n| and Kn denotes the complete graph on n vertices), zij =
F (xi, xj) = W (xi, xj) − 1 and then summing over x1, . . . , xn ∈ X with the specified
cardinalities: we get

cn(W ) =
1

n!

∑
x1, . . . , xn ∈ X

#{i: xi = x} = nx ∀x

CKn(z(x)) (2.28)

where x = (x1, . . . , xn) and z(x)ij = F (xi, xj). Since any subgraph of Kn with 0, 1 or
2 edges has cyclomatic number 0, we can use Propositions 2.5 and 2.7 to deduce the
following:

Proposition 2.8 (signs of Mayer coefficients) Suppose that the lattice gas is re-
pulsive, i.e. 0 ≤ W (x, y) ≤ 1 for all x, y ∈ X. Then, for all x, y, x′, y′ ∈ X, the
Mayer coefficients cn(W ) satisfy

(−1)|n|−1 cn(W ) ≥ 0 (2.29)

(−1)|n|−1 ∂cn(W )

∂W (x, y)
≤ 0 (2.30)

(−1)|n|−1 ∂2cn(W )

∂W (x, y) ∂W (x′, y′)
≥ 0 (2.31)

Proof. (2.29) is an immediate consequence of (2.28) and (2.21). For (2.30), note
first that for any fixed x1, . . . , xn ∈ X, we have

∂CKn(z(x))

∂W (x, y)
=

∑
{i,j}∈E(x,y;x1,...,xn)

∂CKn(z)

∂zij

∣∣∣∣
z=z(x)

, (2.32)

where E(x, y; x1, . . . , xn) is the set of unordered pairs {i, j} (i 6= j) such that {xi, xj} =
{x, y}. Since any subgraph of Kn with one edge has cyclomatic number 0, the inequal-
ity (2.30) now follows from (2.27). Similarly, the left-hand side of (2.31) gives rise to
a double sum over pairs {i, j} ∈ E(x, y; x1, . . . , xn) and {i′, j′} ∈ E(x′, y′; x1, . . . , xn).
The diagonal terms (if any) in this sum vanish by (2.26), and the other terms have
the claimed sign by (2.27).

Please note that (2.31) can be nonzero even when x = x′ and y = y′, because
distinct edges of Kn could correspond to the same pair x, y. Note also that the sign
of the third and higher derivatives cannot be controlled by this method, because a
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subgraph of Kn (n ≥ 4) containing three or more edges could have cyclomatic number
of either parity. Indeed, for the simple case X = {x} and W (x, x) = W we have

ZW (w) =
∞∑

n=0

wnW n(n−1)/2

n!
(2.33)

and hence

log ZW (w) = w +
F

2
w2 +

3F 2 + F 3

6
w3

+
16F 3 + 15F 4 + 6F 5 + F 6

24
w4 + O(w5) (2.34a)

= w +
W − 1

2
w2 +

(W + 2)(W − 1)2

6
w3

+
(W 3 + 3W 2 + 6W + 6)(W − 1)3

24
w4 + O(w5) , (2.34b)

so that
∂3c4(W )

∂W 3
= 5W 3 − 1 (2.35)

has no fixed sign on 0 ≤ W ≤ 1.
We can also determine the precise conditions under which the inequality (2.29) is

strict:

Proposition 2.9 (condition for Mayer coefficients to be nonzero) Suppose that
the lattice gas is repulsive, i.e. 0 ≤ W (x, y) ≤ 1 for all x, y ∈ X. Let n = (nx)x∈X be
a multi-index with support suppn = {x ∈ X: nx 6= 0}. Then (−1)|n|−1 cn(W ) > 0 if
and only if one of the following is true:

(a) |n| = 1;

(b) |n| ≥ 2, suppn = {x} and W (x, x) 6= 1; or

(c) | suppn| ≥ 2 and the induced subgraph GW [suppn] is connected.

Proof. In case (a), cn(W ) = 1 > 0; in case (b) or (c), for each term in (2.28) [actually
they are all the same!] the subgraph of Kn with edge set supp z(x) is connected, so
that (−1)|n|−1 CKn(z(x)) > 0 by Proposition 2.6.

There are only two other possibilities:

(d) n = 0;

(e) | suppn| ≥ 2 and GW [suppn] is disconnected.

16



In case (d), clearly cn(W ) = 0; and in case (e), for each term in (2.28) the subgraph
of Kn with edge set supp z(x) is disconnected, so that (−1)|n|−1 CKn(z(x)) = 0.

Historical remark. The alternating-sign property (2.29) for the Mayer coefficients
of a repulsive gas has been known in the physics literature for over 40 years: see
Groeneveld [48] for a brief sketch of the proof, which uses methods quite different
from ours.4 Nevertheless, this result does not seem to be as well known as it should
be. To the best of our knowledge, the inequalities (2.30) and (2.31) are new. We think
that the Mayer coefficients cn(W ), and more generally the “connected sums” CH(z),
merit further study from a combinatorial point of view; we would not be surprised if
new identities or inequalities were waiting to be discovered.

2.3 The fundamental theorem

Let us now state the principal result of this section:

Theorem 2.10 (The fundamental theorem) Consider any repulsive lattice gas,
and let R = {Rx}x∈X ≥ 0. Then the following are equivalent:

(a) There exists a connected set C ⊆ (−∞, 0]X that contains both 0 and −R, such
that ZW (w) > 0 for all w ∈ C. [Equivalently, −R belongs to the connected
component of Z−1

W (0,∞) ∩ (−∞, 0]X containing 0.]

(b) ZW (w) > 0 for all w satisfying −R ≤ w ≤ 0.

(c) ZW (w) 6= 0 for all w satisfying |w| ≤ R.5

(d) The Taylor series for log ZW (w) around 0 is convergent at w = −R.

(e) The Taylor series for log ZW (w) around 0 is absolutely convergent for |w| ≤ R.

Moreover, when these conditions hold, we have |ZW (w)| ≥ ZW (−R) > 0 for all w
satisfying |w| ≤ R.

In the case of hard-core self-repulsion, (a)–(e) are also equivalent to

(b′) ZW (−R 1S) > 0 for all S ⊆ X, where

(R1S)x =
{

Rx if x ∈ S
0 otherwise

(2.36)

4Groeneveld [48] writes that “a more detailed account of this work, containing also the corre-
sponding results for the pressure and the distribution functions will be published in Physica”, but
to our knowledge that more detailed paper never appeared. See also Penrose [87, eq. (8.1)] for a
related result.

5Here we use the notation |w| = {|wx|}x∈X . This conflicts slightly with our notation |n| =∑
x∈X nx for multi-indices, but we trust that it will not lead to any confusion.
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(f) ZW (−R) > 0, and (−1)|S|ZW (−R; S) ≥ 0 for all S ⊆ X, where

ZW (w; S) =
∑

S⊆X′⊆X

(∏
x∈X′

wx

) ∏
{x,y}⊆X′

W (x, y)

 . (2.37)

(g) There exists a probability measure P on 2X satisfying P (∅) > 0 and

∑
T⊇S

P (T ) =

(∏
x∈S

Rx

) ∏
{x,y}⊆S

W (x, y)

 (2.38)

for all S ⊆ X. [This probability measure is unique and is given by P (S) =
(−1)|S|ZW (−R; S). In particular, P (∅) = ZW (−R) > 0.]

Remarks. 1. The conditions (b′), (f) and (g) are inspired in part by Shearer [98,
Theorem 1].

2. Suppose that the univariate entire function ZW (w), defined by setting wx = w
for all x, is strictly positive whenever −R ≤ w ≤ 0. Then in fact ZW (w) > 0
whenever −R ≤ wx ≤ 0 for all x: this follows from (a) =⇒ (b) by taking C to be the
segment [−R, 0] of the diagonal.

The proof of Theorem 2.10 will hinge on the alternating-sign property (2.29) for
the Taylor coefficients of log ZW . In preparation for this proof, let us recall the
Vivanti–Pringsheim theorem in the theory of analytic functions of a single complex
variable [62, Theorem 5.7.1]: if a power series f(z) =

∑∞
n=0 anz

n with nonnegative
coefficients has a finite nonzero radius of convergence, then the point of the circle
of convergence lying on the positive real axis is a singular point of the function
f . Otherwise put, if f is a function whose Taylor series at 0 has all nonnegative
coefficients and f is analytic on some complex neighborhood of the real interval
[0, R), then f is in fact analytic on the open disc of radius R centered at the origin
and its Taylor series is absolutely convergent there. Here we will need the following
multidimensional generalization of the Vivanti–Pringsheim theorem:

Proposition 2.11 (multidimensional Vivanti–Pringsheim theorem) Let C be
a connected subset of [0,∞)n containing 0, let U be an open neighborhood of C in
Cn, and let f be a function analytic on U whose Taylor series around 0 has all non-
negative coefficients. Then the Taylor series of f around 0 converges absolutely on
the set hull(C) ≡

⋃
R∈C

D̄R, where D̄R denotes the closed polydisc {w ∈ Cn: |wi| ≤

Ri for all i}, and it defines a function that is continuous on hull(C) and analytic on
its interior.

Remark. We could equally well start from an open neighborhood U of 0 in Cn, and
define C to be the connected component of U ∩ [0,∞)n containing 0. This is the
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maximal set C compatible with the given U ; note that it is open in [0,∞)n, and that
hull(C) is then open in Cn.

Proof. Let f(z) =
∑

n anz
n be the Taylor series of f around 0. And let us define

S = {R ∈ [0,∞)n:
∑

n anz
n converges absolutely at z = R} (2.39a)

= {R ∈ [0,∞)n:
∑

n anz
n converges absolutely for z ∈ D̄R} (2.39b)

Note that S is a down-set (that is, R ∈ S and 0 ≤ R′ ≤ R imply R′ ∈ S) and that
0 ∈ S; we shall show that C ⊂ S.

Consider any point z0 ∈ S̄ ∩ C (here S̄ denotes the closure of S). Choose ε > 0
such that the closed polydisc of radius ε in each direction around z0 — call it D̄(z0, ε)
— is contained in U . Then choose z1 ∈ S ∩ D̄(z0, ε/5), and choose z2 ∈ D̄(z1, ε/5)
such that 0 ≤ z2 ≤ z1 and (z2)i < (z1)i for all coordinates i with (z1)i > 0. It follows
that D̄(z2, 3ε/5) ⊂ U . Now, since z1 ∈ S and z2 is strictly below z1 in all nonzero
coordinates, the Taylor series around 0 for f and all its derivatives converge absolutely
at z2. And the Taylor series for f around z2 converges absolutely in D̄(z2, 3ε/5). If
z3 ∈ D̄(z2, 3ε/5) with z3 − z2 ≥ 0, we can write

f(z3) =
∑
k

f (k)(z2)

k!
(z3 − z2)

k (2.40a)

=
∑
k

(z3 − z2)
k
∑
n≥k

(
n

k

)
anz

n−k
2 (2.40b)

=
∑
n

an

∑
0≤k≤n

(
n

k

)
(z3 − z2)

k zn−k
2 (2.40c)

=
∑
n

anz
n
3 , (2.40d)

where the rearrangements are justified because all the terms are nonnegative, so that
the convergence of the iterated sum (2.40b) implies the absolute convergence of the
corresponding double sum. It follows that z3 ∈ S. In particular we can choose
z3 = z2 + (3ε/5, . . . , 3ε/5). Since S is a down-set, and since the the real points of the
polydisc D̄(z0, ε/5) all lie below z3, we conclude that D̄(z0, ε/5)∩ [0,∞)n ⊂ S. Hence
D̄(z0, ε/5)∩C ⊂ S ∩C. Since z0 is an arbitrary point of S̄ ∩C, it follows that S ∩C
is both closed and open in C (and nonempty since 0 ∈ S ∩C). Since C is connected,
we conclude that S ∩ C = C.

For the proof of Theorem 2.10, we need an elementary topological lemma:

Lemma 2.12 Let K be a convex set in Rn, let C be an open connected subset of K (in
the relative topology), let U be an open neighborhood of C in Rn, and let x1, x2 ∈ C.
Then there exists a finite polygonal path P ⊂ C running from x1 to x2 and a simply
connected open set U ′ in Rn satisfying P ⊂ U ′ ⊂ U .
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Proof. It is a well-known fact that any two points in C can be connected by a finite
polygonal path P lying in C. [Sketch of proof: Define an equivalence relation ∼ on
C by setting x ∼ y iff there exists a finite polygonal path in C connecting x to y.
Because K is convex and C is open in K, the equivalence classes of ∼ are (relatively)
open subsets of C. Since C is connected, there is just one equivalence class.] By
removing loops, we can assume that P is non-self-intersecting.

Then we can take U ′ to be a sufficiently small tube centered on P . [Let δ be
the minimal distance between non-adjacent segments of P , and let δ′ be the distance
from P to the complement of U ; we have δ′ > 0 by compactness of P . Then let U ′

be the set of all points whose distance from P is less than min(δ/3, δ′/2). It is not
hard to see that U ′ is simply connected.6]

We shall also make use of the following elementary result:

Lemma 2.13 Let F be a function on 2X , and define

F−(S) =
∑
X′⊆S

F (X ′) (2.41)

F+(S) =
∑
X′⊇S

F (X ′) (2.42)

Then
F−(S) =

∑
Y⊆Sc

(−1)|Y |F+(Y ) (2.43)

where Sc ≡ X \ S.

Proof. This is a straightforward application of inclusion-exclusion (see e.g. [107,
Section 2.1] or [1, Chapter IV]). We have

F (X ′) =
∑

Y⊇X′

(−1)|Y \X
′|F+(Y ) . (2.44)

Hence

F−(S) =
∑
X′⊆S

F (X ′) =
∑
X′⊆S

∑
Y⊇X′

(−1)|Y \X
′|F+(Y ) (2.45a)

=
∑
Y

F+(Y )
∑

X′⊆Y ∩S

(−1)|Y \X
′| (2.45b)

6It suffices to use repeatedly the following fact: If U1 and U2 are simply connected open subsets
of Rn, and U1∩U2 is nonempty and connected, then U1∪U2 is simply connected. For a proof of this
lemma, see e.g. [11, pp. 46–47]. This is a special case of the Seifert–van Kampen theorem, which
gives a recipe for computing the fundamental group (first homotopy group) of U1 ∪ U2 in terms of
the fundamental groups of U1, U2 and U1 ∩ U2 [79, Chapter 4].
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=
∑
Y

F+(Y )(−1)|Y ∩Sc|
∑

X′⊆Y ∩S

(−1)|(Y ∩S)\X′| (2.45c)

=
∑
Y

F+(Y )(−1)|Y ∩Sc|δY ∩S,∅ (2.45d)

=
∑

Y⊆Sc

(−1)|Y |F+(Y ) . (2.45e)

Proof of Theorem 2.10. (c) =⇒ (b) =⇒ (a) is trivial.
(e) =⇒ (d) is trivial, while (d) =⇒ (e) follows from the alternating-sign property

(2.29).
(e) implies that the sum of the Taylor series for log ZW (w) defines an analytic

function on the open polydisc DR and a continuous function on the closed polydisc
D̄R. Its exponential equals ZW (w) on DR and hence by continuity also on D̄R.
Therefore (e) =⇒ (c).

Finally, assume (a). Since ZW is continuous on CX (and has real coefficients), we
can find an open connected neighborhood C ′ of C in (−∞, 0]X on which ZW > 0,
and an open neighborhood U of C ′ in CX ' R2|X| on which ZW 6= 0. Applying
Lemma 2.12 (with n = 2|X|), we can find a finite polygonal path P ⊂ C ′ from 0 to
−R and a simply connected open set U ′ in CX satisfying P ⊂ U ′ ⊂ U . Then log ZW

is a well-defined single-valued analytic function on U ′, once we specify log ZW (0) = 0.
Applying Proposition 2.11 to log ZW on P and U ′ [using the alternating-sign property
(2.29)], we conclude that the Taylor series for log ZW around 0 is absolutely convergent
on D̄R. Therefore (a) =⇒ (e).

The bound |ZW (w)| ≥ ZW (−R) for |w| ≤ R, which is equivalent to Re log ZW (w) ≥
log ZW (−R), is an immediate consequence of the alternating-sign property (2.29).

Now consider the special case of a hard-core self-repulsion. (b) =⇒ (b′) is trivial,
and (b′) =⇒ (b) follows from the fact that ZW is multiaffine (i.e. of degree ≤ 1 in each
wx separately) because the value of ZW at any point w in the rectangle −R ≤ w ≤ 0
is a convex combination of the values at the vertices.

To show that (b) =⇒ (f), note that

ZW (w; S) =

(∏
x∈S

wx

) ∏
{x,y}⊆S

W (x, y)

ZW (W (S, ·)w) (2.46)

where we have defined

[W (S, ·)w]y =

(∏
x∈S

W (x, y)

)
wy (2.47)

(note in particular that this vanishes whenever y ∈ S). Hence

(−1)|S|ZW (−R; S) =

(∏
x∈S

Rx

) ∏
{x,y}⊆S

W (x, y)

ZW (−W (S, ·)R) ≥ 0 (2.48)
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since −R ≤ −W (S, ·)R ≤ 0, with strict inequality when |S| = 0 or 1 [since the
product over W (x, y) is in that case empty].

To show that (f) =⇒ (b′), use Lemma 2.13 applied to the set function

F (S) =

(∏
x∈S

−Rx

) ∏
{x,y}⊆S

W (x, y)

 . (2.49)

We have

F−(S) = ZW (−R1S) (2.50)

F+(S) = ZW (−R; S) (2.51)

so that Lemma 2.13 asserts the identity

ZW (−R1S) =
∑

Y⊆Sc

(−1)|Y |ZW (−R; Y ) . (2.52)

By (f), the Y = ∅ term is > 0 and the other terms are ≥ 0, so ZW (−R1S) > 0 for
all S.

Finally, let us show that (f) ⇐⇒ (g). By inclusion-exclusion, there are unique
numbers P (T ) satisfying (2.38), namely P (T ) = (−1)|T |ZW (−R; T ). Moreover, tak-
ing S = ∅ in (2.38) we see that

∑
T P (T ) = 1. Therefore, P is a probability mea-

sure if and only if (−1)|T |ZW (−R; T ) ≥ 0 for all T ; and P (∅) > 0 if and only if
ZW (−R; ∅) = ZW (−R) > 0.

2.4 Properties of the set R(W )

The following definition plays a central role in the remainder of this paper:

Definition 2.14 (definition of R(W )) We define R(W ) to be the set of all vectors
R ≥ 0 satisfying the equivalent conditions (a)–(e) of Theorem 2.10. When W is the
hard-core pair interaction for a graph G,

W (x, y) =

{
0 if x = y or xy ∈ E(G)
1 if x 6= y and xy /∈ E(G)

(2.53)

we also write R(G).

Proposition 2.15 (elementary properties of R(W )) For any repulsive lattice gas,
the set R(W ) is

(a) open in [0,∞)X

(b) a down-set [i.e. R ∈ R(W ) and 0 ≤ R′ ≤ R imply R′ ∈ R(W )]
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(c) logarithmically convex [i.e. R,R′ ∈ R(W ) and 0 ≤ λ ≤ 1 imply Rλ(R′)1−λ ∈
R(W )].

Moreover, the set R(W ) is an increasing function of each W (x, y) on 0 ≤ W ≤ 1.

Proof. It is obvious from Theorem 2.10(b) or (c) that R(W ) is open in [0,∞)X and
is a down-set.

Given any formal power series f(z) =
∑

n anz
n with complex coefficients, let us

define its set of radii of absolute convergence by

cvg(f) = {R ≥ 0:
∑
n

|an|Rn <∞} . (2.54)

It then follows immediately from Hölder’s inequality for infinite series that cvg(f)
is logarithmically convex.7 By Theorem 2.10(e) we have R(W ) = cvg(log ZW ), so
R(W ) is logarithmically convex.

Finally, from (2.29)/(2.30) we see that |cn(W )| is a decreasing function of each
W (x, y) on 0 ≤ W ≤ 1, so R(W ) = cvg(log ZW ) is an increasing function of each
W (x, y) on 0 ≤ W ≤ 1.

See Corollary 2.19 below for a strict monotonicity that strengthens Proposi-
tion 2.15(b); and see Corollary 2.29 for an additional convexity property in the special
case of a hard-core self-repulsion.

Remark. If Λ is any nonempty subset of X, we can obviously define a lattice gas on
Λ with interaction W � Λ, and there will be a corresponding set R(W � Λ) ⊆ [0,∞)Λ.
Now, for any w ∈ CΛ, we trivially have ZW �Λ(w) = ZW (w,0) where 0 ∈ CX\Λ; hence
R ∈ R(W � Λ) if and only if (R,0) ∈ R(W ). So the sets R(W � Λ) are the sections
through 0 of R(W ).

Next let us show that the sets R(W ) are bounded in a suitable sense. In the
case of hard-core self-repulsion this is immediate, because R(W ) ⊆ [0, 1)X . [This
containment is trivial if |X| = 1, and otherwise follows from Proposition 2.15(b).
Alternatively, it is trivial if W (x, y) = 1 for all x 6= y, and otherwise follows from
the monotonicity statement in the last sentence of Proposition 2.15.] However, in
the general case the set R(W ) can be unbounded, as is shown by the following two
examples:

(a) Let X = {x} and W (x, x) = 1; then ZW (w) = ew and R(W ) = [0,∞).

(b) Let X = {x, y}, W (x, x) = W (y, y) = 1 and W (x, y) = 0; then ZW (wx, wy) =
ewx + ewy − 1 and R(W ) = {(Rx, Ry): Rx, Ry ≥ 0 and e−Rx + e−Ry > 1}. This
set is unbounded, since Rx can go to ∞ as Ry → 0 (and vice versa). [When
Ry = 0 this reduces to example (a).]

7See [49, Chapters B and G], [73, Sections 2.3 and 3.4.3], [92, Section II.3.8] and [114, pp. 116–
122] for further discussion of related questions in the theory of analytic functions of several complex
variables.
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We now claim that these are essentially the only ways in which R(W ) can be un-
bounded:

Proposition 2.16 (boundedness of R(W )) Consider any repulsive lattice gas, and
let x ∈ X.

(a) If W (x, x) < 1, then there exists Cx <∞ such that R(W ) ⊆ [0, Cx)× [0,∞)X\x.
[In particular, if W (x, x) < 1 for all x ∈ X, then R(W ) is bounded.]

(b) Suppose that W (x, x) = 1, and let a ∈ [0,∞)X\x. If there exists at least one y ∈
X such that W (x, y) < 1 and ay > 0, then the section {Rx: (Rx, a) ∈ R(W )}
is bounded. Moreover, the converse is true provided that a ∈ R(W � (X \ x)).

Remark. Since R(W ) is a down-set, this proposition can alternatively be formulated
as follows: Let a,b ∈ [0,∞)X ; then the set {λ ≥ 0: a + λb ∈ R(W )} is bounded
if there exists x ∈ suppb and y ∈ supp a ∪ suppb such that W (x, y) < 1; and the
converse is true provided that a ∈ R(W ).

Proof. (a) Using the fact that R(W ) is a down-set, it suffices to prove the claim for
the single-site partition function

ZW (w) =
∞∑

n=0

W n(n−1)/2

n!
wn (2.55)

where 0 ≤ W < 1. If W = 0, we have ZW (w) = 1 + w, so that R(W ) = [0, 1). If
0 < W < 1, then ZW is a nonpolynomial entire function of order 0 [76, Theorem I.2];
and by the Hadamard factorization theorem [76, Theorem I.13], any such function
must have infinitely many zeros. In particular, R(W ) = [0, α) where α is the smallest
absolute value of a zero of ZW .8

(b) If there does not exist y ∈ X such that W (x, y) < 1 and ay > 0, then
ZW (w) = ewxZW,X\x(w6=x) whenever suppw ⊆ supp a ∪ {x}. It follows that the
section {Rx: (Rx, a) ∈ R(W )} is either empty [in case a /∈ R(W � (X \ x))] or all of
[0,∞) [in case a ∈ R(W � (X \ x))].

Now suppose that there does exist such a y. Using the fact that R(W ) is a down-
set, it suffices to prove the claim for the two-site partition function with Λ = {x, y}.
Moreover, by the monotonicity statement in the last sentence of Proposition 2.15, we
may assume that W (y, y) = 1. Writing W ≡ W (x, y) ∈ [0, 1), we need to treat

ZW (wx, wy) =
∞∑

nx,ny=0

W nxny

nx!ny!
wnx

x wny
y (2.56a)

=
∞∑

nx=0

wnx
x exp(wyW

nx)

nx!
(2.56b)

8It turns out (though we do not need this fact here) that all the zeros of ZW are negative real
numbers [85, 66].
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If wy 6= 0, this is an entire function of order 1 in wx that is not of the form eαwxP (wx)
for any α ∈ C and polynomial P .9 It again follows from the Hadamard factorization
theorem that ZW ( · , wy) has infinitely many zeros. Choosing any wy ∈ C with |wy| =
ay (which by hypothesis is nonzero), we conclude from Theorem 2.10(c) that the
section {Rx: (Rx, ay) ∈ R(W )} is bounded.

Let R(W ) be the closure of R(W ), and let ∂R(W ) = R(W ) \ R(W ). [Note that
this is the boundary of R(W ) in [0,∞)X , not in RX .] Since R(W ) is a down-set, it
is obvious that R(W ) is a down-set as well.

Proposition 2.17 (properties of closure and boundary of R(W )) For any re-
pulsive lattice gas:

(a) If −w ∈ R(W ), then
∂nZW (w)

∂wx1 · · · ∂wxn

≥ 0 (2.57)

for all n ≥ 0 and all x1, . . . , xn ∈ X.

(b) If −w ∈ ∂R(W ), then ZW (w) = 0.

Proof. (a) We have ZW (w) > 0 for −w ∈ R(W ), so by continuity ZW (w) ≥ 0 for
−w ∈ R(W ). The general claim (2.57) then follows from the multiple differentiation
identity (2.6), using the facts that 0 ≤ W ≤ 1 and that R(W ) is a down-set.

(b) If ZW (w) were strictly positive, then −R(W ) ∪ {w} would be a connected
subset of (−∞, 0]X on which ZW is strictly positive, so by Theorem 2.10(a) we would
have −w ∈ R(W ).

9Proof. If P (z) =
∑K

k=0 akzk, then

eαzP (z) =
∞∑

n=0

(αz)n

n!

[
a0 + n

a1

α
+ n(n− 1)

a2

α2
+ . . . + n(n− 1) · · · (n−K + 1)

aK

αK

]

≡
∞∑

n=0

αnQ(n)
n!

zn

where Q is a polynomial. But F (n) = exp(wyWn) is not of the form αnQ(n) for any α ∈ C and
polynomial Q.

Alternate proof. We have

ZW (wx, wy) − ewx =
∞∑

nx=0

wnx
x

nx!
[exp(wyWnx)− 1]

Since wy is fixed and 0 ≤ W ≤ 1, we have | exp(wyWnx) − 1| ≤ CWnx for some constant C < ∞,
from which it follows that

|ZW (wx, wy) − ewx | ≤ CeW |wx| .

If ZW (wx, wy) were equal to eαwxP (wx), then by taking wx → +∞ we conclude that we would have
to have α = 1 and P ≡ 1 (since W < 1); but ZW is not in fact of this form when wy 6= 0.
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Under an appropriate connectivity condition, we can prove that the inequality
(2.57) is strict for n = 1:

Proposition 2.18 Consider any repulsive lattice gas. Let R ∈ R(W ), and suppose
that the induced subgraph GW [suppR] is connected. Then

∂ZW (w)

∂wx

∣∣∣∣
w=−R

> 0 for all x ∈ suppR . (2.58)

Here the connectedness hypothesis is essential, as is shown by taking G to be the
edgeless graph K̄n, for which ZG(w) =

∏n
i=1(1 + wi), and taking R = (1, . . . , 1). It

is also essential to consider the induced subgraph GW [suppR], since a site can be
effectively eliminated by setting its fugacity to zero: for example, when G is the path
123, we have ZG(w) = (1 + w1)(1 + w3) + w2, and a counterexample to (2.58) is
obtained by taking R2 = 0 and R1 = R3 = 1.

Before proving Proposition 2.18, let us state and prove some corollaries.

Corollary 2.19 (strict monotonicity) Consider any repulsive lattice gas. Let R ∈
R(W ), and suppose that the induced subgraph GW [suppR] is connected. If 0 ≤ R′ ≤
R with R′

x < Rx for at least one x, then R′ ∈ R(W ).

Proof. Since ZW (−R) ≥ 0 and ∂ZW (w)/∂wx|w=−R > 0 by Propositions 2.17(a)
and 2.18, we have ZW (−(R− εδx)) > 0 for all sufficiently small ε > 0 [here δx is the
vector with xth coordinate 1 and all other coordinates 0]. Since R(W ) is a down-set,
we have R− εδx ∈ R(W ); but by Proposition 2.17(b), R− εδx cannot lie in ∂R(W ),
so we must have R − εδx ∈ R(W ). Now pick ε small enough so that R′ ≤ R − εδx

and use the fact that R(W ) is a down-set.

Corollary 2.20 Consider any repulsive lattice gas.

(a) If R ∈ ∂R(W ), then every neighborhood of −R in (−∞, 0]X contains points
w 6= −R with suppw = suppR where ZW > 0, where ZW = 0 and where
ZW < 0.

(b) R ∈ R(W ) if and only if ZW (w) ≥ 0 for all w satisfying −R ≤ w ≤ 0.

Proof. (a) Let X1, . . . , Xk be the vertex sets of the components of GW [suppR]. For
any w with suppw ⊆ suppR, we have ZW (w) =

∏k
i=1 ZW (w1Xi

). Pick a vertex

xi in each Xi, and let w± = −R ± εδx1 + ε
∑k

i=2 δxi
. By Proposition 2.18, for all

sufficiently small ε > 0 we have ±ZW (w1X1) > 0 and ZW (w1Xi
) > 0 for 2 ≤ i ≤ k.

This proves the existence of points near −R with ZW > 0 and ZW < 0. The existence
of points w 6= −R with ZW = 0 then follows by the intermediate value theorem.

(b) “Only if” is obvious from Proposition 2.17(a) together with the fact thatR(W )
is a down-set. To prove “if”, suppose that ZW (w) ≥ 0 for all w satisfying −R ≤
w ≤ 0. Consider the line segment {λR}0≤λ≤1, and let λmax = sup{λ ∈ [0, 1]: λR ∈
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R(W )}. If λmax = 1, then R ∈ R(W ). If λmax < 1, then λmaxR ∈ ∂R(W ), so by
part (a) we can choose w arbitrarily close to −λmaxR with suppw = suppR (and in
particular satisfying −R ≤ w ≤ 0) such that ZW (w) < 0 — a contradiction.

Remark. Corollary 2.20(b) is an analogue of Theorem 2.10(b) for the closure of
R(W ). It is worth noting that the analogue of Theorem 2.10(a) is false: for example,
for G = K2 we have ZG(w) = (1+w1)(1+w2), so that the set {R ≥ 0: ZG(−R) ≥ 0}
is connected and equals [0, 1]2 ∪ [1,∞)2, while R(W ) = [0, 1]2 only.

Proof of Proposition 2.18. If R ∈ R(W ), then W (x, ·)R ∈ R(W ) as well
[since 0 ≤ W ≤ 1 and R(W ) is a down-set], so (2.58) follows from the differentiation
identity (2.5). So we can assume henceforth that R ∈ ∂R(W ). By deleting sites
where Rx = 0, we can also assume without loss of generality that suppR = X. Let
us define

S = {x ∈ X:
∂ZW (w)

∂wx

∣∣∣∣
w=−R

= 0} (2.59)

S ′ = {x ∈ X: ZW (wx,−R 6=x) = 0 for all wx ∈ C} (2.60)

Clearly S ′ ⊆ S ⊆ X. The Proposition will then be an immediate consequence of
Lemmas 2.21 and 2.22 below.

Lemma 2.21 Let R ∈ ∂R(W ), and let S, S ′ be defined as in (2.59)/(2.60). If
suppR = X and GW is connected, then either S ′ = S = ∅ or else S ′ = S = X.

Lemma 2.22 Suppose R ∈ R(W ) and for all x ∈ X and all wx ∈ C, we have
ZW (wx,−R 6=x) = 0. Then GW [suppR] is disconnected.

Proof of Lemma 2.21. Suppose S 6= ∅, and consider any x ∈ S. Then ZW (−R) =
0 and ZW (−W (x, ·)R) = ∂ZW (w)/∂wx|w=−R = 0 [using the differentiation identity

(2.5)]. By monotonicity of ZW in R(W ), we have ZW (−R′) = 0 whenever −R ≤
−R′ ≤ −W (x, ·)R. In particular, if y is adjacent to x in GW [i.e. W (x, y) < 1], then
ZW (wy,−R 6=y) = 0 for all wy ∈ [−Ry,−W (x, y)Ry]. By analyticity it follows that
ZW (wy,−R 6=y) = 0 for all wy ∈ C, i.e. y ∈ S ′ ⊆ S. Since GW is connected, it easily
follows that S ′ = S = X.

Proof of Lemma 2.22. As before, we may assume without loss of generality
that suppR = X. The proof is by induction on |X|. If |X| = 1, the hypothesis is
impossible, since ZW (0) = 1 6= 0. So let |X| > 1 and suppose that GW is connected.
Choose a vertex x ∈ X such that GW \ x is connected [e.g. let x be any endvertex of
a spanning tree in GW ]. By the fundamental identity (2.3), we have

ZW (wx,−R 6=x) = ZW (0,−R 6=x) + wxZW (0,−W (x, ·)R 6=x)

+ terms of order w2
x and higher (2.61)
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Since ZW (·,−R 6=x) is identically zero, all coefficients in the Taylor expansion (2.61)
must vanish; in particular we must have

ZW (0,−R 6=x) = 0 (2.62a)

ZW (0,−W (x, ·)R 6=x) = 0 (2.62b)

Pick y 6= x with W (x, y) < 1 [which is possible since x is not an isolated vertex of
GW ]. Since Ry > 0 and ZW (0, wy,−R 6=x,y) is monotonic in wy for wy ∈ [−Ry, 0], it
must be vanishing on the nontrivial interval [−Ry,−W (x, y)Ry]. By analyticity of
ZW , it follows that ZW (0, wy,−R 6=x,y) = 0 for all wy ∈ C, so in particular

ZW (0,−Ry,−R 6=x,y) = 0 (2.63a)

∂ZW (0, wy,−R 6=x,y)

∂wy

∣∣∣∣
wy=−Ry

= 0 (2.63b)

Notice that R ≡ (Rx,R 6=x) ∈ R(W ) implies (0,R 6=x) ∈ R(W ) [since R(W ) is a

down-set], or in other words R 6=x ∈ R(W � (X \ x)). Moreover, by (2.63a) R 6=x must
lie in ∂R(W � (X \ x)). So we can apply Lemma 2.21 to X \ x to conclude that
S ′ = X \ x; therefore, by the inductive hypothesis, GW \ x is disconnected, which
contradicts the choice of x.

Remark. One might think that Lemma 2.22 would hold not only for R ∈ R(W )
but for arbitrary w(0) ∈ CX . However, this is false: Consider the star K1,4 with
center x and endvertices y1, . . . , y4 with interactions W ∈ (0, 1) along the edges [and
W (x, x) = W (yi, yi) = 0]. Then

ZW (wx, wy1 , . . . , wy4) =
4∏

i=1

(1 + wyi
) + wx

4∏
i=1

(1 + Wwyi
) . (2.64)

Setting w
(0)
y1 = w

(0)
y2 = −1 and w

(0)
y3 = w

(0)
y4 = −1/W [here w

(0)
x is arbitrary], we see

that ZW (wz,w
(0)
6=z) = 0 for every vertex z and every wz ∈ C.

2.5 Further consequences of the alternating-sign property

Let us now exploit systematically the alternating-sign property (2.29) for the Taylor
coefficients of log ZW . The general context is the following:

Definition 2.23 (absolute monotonicity) Let U ⊂ Cn be a union of open poly-
discs centered at 0 (a “complete Reinhardt domain”). We say that f is absolutely
monotone in U if it is analytic in U and all the Taylor coefficients of f at 0 are
nonnegative.

We will use the following essentially trivial result:
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Lemma 2.24 (elementary consequences of absolute monotonicity) Let f be
absolutely monotone in a union U of open polydiscs centered at 0 ∈ Cn. Then:

(a) All the derivatives Dαf (where α is a multi-index) are absolutely monotone in
U .

(b) For every λ ∈ [0, 1]n, the function

fλ(z) = f(z)− f(λz) (2.65)

is absolutely monotone in U . [Here λz is the pointwise product, so that (λz)x =
λxzx.]

(c) For all multi-indices α, we have

|(Dαf)(z)| ≤ (Dαf)(R) (2.66)

whenever |z| ≤ R ∈ U . In particular, (Dαf)(R) ≥ 0 whenever 0 ≤ R ∈ U .

Now, the alternating-sign property (2.29) is precisely the statement that

f(z) = − log ZW (−z) (2.67)

is absolutely monotone in the domain DR(W ) =
⋃

R∈R(W )

DR =
⋃

R∈R(W )

D̄R. Applying

Lemma 2.24(c) to f , we obtain:

Proposition 2.25 For any repulsive lattice gas:

(a) When −w ∈ R(W ), we have

(−1)n−1 ∂n log ZW (w)

∂wx1 · · · ∂wxn

≥ 0 (2.68)

for all n ≥ 0 and all x1, . . . , xn ∈ X.

(b) When |w| ≤ R ∈ R(W ), we have∣∣∣∣∂n log ZW (w)

∂wx1 · · · ∂wxn

∣∣∣∣ ≤ (−1)n−1 ∂n log ZW (w′)

∂w′
x1
· · · ∂w′

xn

∣∣∣∣
w′=−R

(2.69)

for all n ≥ 0 and all x1, . . . , xn ∈ X.

Proof. This is an immediate consequence of the alternating-sign property (2.29)
together with Lemma 2.24(c) and Theorem 2.10(d).

Let us now define

YW (w; λ) =
ZW (λw)

ZW (w)
. (2.70)
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By Lemma 2.24(b), the function

fλ(z) = log YW (−z; λ) = log
ZW (−λz)

ZW (−z)
(2.71)

is absolutely monotone on DR(W ) whenever λ ∈ [0, 1]X . Applying Lemma 2.24(c) to
fλ, we obtain:

Proposition 2.26 For any repulsive lattice gas and any λ ∈ [0, 1]X :

(a) When −w ∈ R(W ), we have

(−1)n ∂n log YW (w; λ)

∂wx1 · · · ∂wxn

≥ 0 (2.72)

for all n ≥ 0 and all x1, . . . , xn ∈ X.

(b) When |w| ≤ R ∈ R(W ), we have∣∣∣∣∂n log YW (w; λ)

∂wx1 · · · ∂wxn

∣∣∣∣ ≤ (−1)n ∂n log YW (w′; λ)

∂w′
x1
· · · ∂w′

xn

∣∣∣∣
w′=−R

(2.73)

for all n ≥ 0 and all x1, . . . , xn ∈ X. In particular, setting n = 0 we have∣∣∣∣ZW (λw)

ZW (w)

∣∣∣∣ ≤ ZW (−λR)

ZW (−R)
< ∞ (2.74)

for all w ∈ D̄R. That is, the quantity |ZW (λw)/ZW (w)| takes its maxi-
mum on the polydisc D̄R at the point w = −R, and this maximum value
ZW (−λR)/ZW (−R) is therefore an increasing function of R ∈ R(W ).

Let us define the function ZW : [0,∞)X → [0,∞) by

ZW (R) = inf
−R≤w≤0

max[ZW (w), 0] (2.75a)

= inf
w∈D̄R

|ZW (w)| (2.75b)

=

{
ZW (−R) for R ∈ R(W )
0 for R /∈ R(W )

(2.75c)

where the equivalence of these three expressions is an immediate consequence of
Theorem 2.10. We then have:

Corollary 2.27 For any repulsive lattice gas, the function ZW is

(a) continuous

(b) decreasing
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(c) satisfies ZW (λ1λ2R)ZW (R) ≤ ZW (λ1R)ZW (λ2R) for all λ1, λ2 ∈ [0, 1]X

and R ∈ [0,∞)X

(d) log submodular [i.e. ZW (R1 ∧R2)ZW (R1 ∨R2) ≤ ZW (R1)ZW (R2), where ∧
(resp. ∨) denotes the elementwise min (resp. max) of vectors]

Proof. (a) The continuity of ZW follows easily from (2.75a) or (2.75b) and the
continuity of ZW . [For any r < ∞, the function ZW is uniformly continuous on the
compact ball B = {w ∈ C: |w| ≤ r}. If R,R′ ∈ B ∩ [0,∞)X with |R−R′| ≤ δ, then
|ZW (R)−ZW (R′)| ≤ sup

w,w′ ∈ B

|w −w′| ≤ δ

|ZW (w)−ZW (w′)|. Uniform continuity of ZW on

B therefore implies uniform continuity of ZW on B ∩ [0,∞)X .]
(b) The decreasing property is an immediate consequence of (2.75a) or (2.75b).
(c) This is trivial if R /∈ R(W ), so assume R ∈ R(W ). Then YW (−R; λ2) =

ZW (λ2R)/ZW (R), while YW (−λ1R; λ2) = ZW (λ1λ2R)/ZW (λ1R), so that the claim
follows from Proposition 2.26 with n = 1.

(d) The log submodularity follows immediately from (c) by setting R = R1 ∨R2

and λi = Ri/R for i = 1, 2 (setting 0/0 = 1 where needed). [Alternatively, for
R1 ∨R2 ∈ R(W ) it follows by integrating (2.68) with n = 2 and x1 6= x2.]

We can also prove a strict version of the cases n = 0 of Propositions 2.25(a) and
2.26(a) as well as Corollary 2.27(c). Note first that

− log ZW (−R) =
∑
n

(−1)|n|−1 cn(W )Rn (2.76)

− log ZW (−R) + log ZW (−λR) =
∑
n

(−1)|n|−1 cn(W ) (1− λn)Rn (2.77)

− log ZW (−R) + log ZW (−λ1R) + log ZW (−λ2R) − log ZW (−λ1λ2R)

=
∑
n

(−1)|n|−1 cn(W ) (1− λn
1 )(1− λn

2 )Rn (2.78)

By Proposition 2.8, all three quantities are nonnegative whenever R ∈ R(W ) and
λ, λ1, λ2 ∈ [0, 1]X . We can determine when they are strictly positive:

Proposition 2.28 Consider any repulsive lattice gas, and let R ∈ R(W ) and λ, λ1, λ2 ∈
[0, 1]X . Then:

(a) − log ZW (−R) > 0 if and only if R 6= 0.

(b) − log ZW (−R) + log ZW (−λR) > 0 if and only if suppR ∩ supp(1− λ) 6= ∅.

(c) − log ZW (−R)+log ZW (−λ1R)+log ZW (−λ2R)− log ZW (−λ1λ2R) > 0 if and
only there exists a component of GW [suppR] that meets both supp(1−λ1) and
supp(1− λ2).
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Proof. We examine the terms in (2.76)–(2.78) and determine (for some of them)
when they are nonzero.

(a) “Only if” is trivial; for “if”, just consider the term n = δx for some x ∈ suppR,
and use Proposition 2.9(a).

(b) “Only if” is again trivial; for “if”, just consider n = δx for some x ∈ suppR∩
supp(1− λ), and again use Proposition 2.9(a).

(c) For “if”, let S be the vertex set of a component of GW [suppR] that meets both
supp(1 − λ1) and supp(1 − λ2), take n = 1S, and use Proposition 2.9(a) or 2.9(c).
For “only if”, suppose that cn(W ) 6= 0. Then, by Proposition 2.9, either n = δx

for some x ∈ X, or n = kδx for some k ≥ 2 and some x ∈ X having W (x, x) 6= 1,
or | suppn| ≥ 2 and GW [suppn] is connected. In all three cases, GW [suppn] is
connected. Furthermore, to make a nonzero contribution to (2.78), suppn has to
meet both supp(1 − λ1) and supp(1 − λ2) and be contained in suppR. Therefore,
there is a component of GW [suppR] (namely, the one containing suppn) that meets
both supp(1− λ1) and supp(1− λ2).

For a repulsive lattice gas with hard-core self-repulsion [i.e. W (x, x) = 0 for all
x ∈ X], the set R(W ) has an additional convexity property:

Corollary 2.29 (convexity of two-dimensional sections) For any repulsive lat-
tice gas with hard-core self-repulsion, the two-dimensional sections of R(W ) parallel
to the coordinate axes are convex and (when nonempty) are bounded either by a hy-
perbola or by a straight line.

Proof. For x, y ∈ X (x 6= y) and a nonnegative vector α = (αz)z∈X\{x,y}, consider
the section

Px,y,αR(W ) = {(Rx, Ry): (Rx, Ry, α) ∈ R(W )} . (2.79)

If (0, 0, α) /∈ R(W ), then clearly the section is empty; so let us assume henceforth
that (0, 0, α) ∈ R(W ). Let ZW (wx, wy;−α) be the polynomial obtained from ZW (w)
by setting wz = −αz for z 6= x, y. Then, as ZW is multiaffine, we have

ZW (wx, wy;−α) = A + Bwx + Cwy + Dwxwy (2.80)

where

A = ZW (0, 0;−α) (2.81a)

B = ZW (0, 0;−W (x, ·)α) (2.81b)

C = ZW (0, 0;−W (y, ·)α) (2.81c)

D = W (x, y) ZW (0, 0;−W (x, ·)W (y, ·)α) (2.81d)

as a consequence of the multiple differentiation identity (2.6). Since (0, 0, α) ∈ R(W ),
0 ≤ W (x, y) ≤ 1 for all x, y, and R(W ) is a down-set, we have A, B, C > 0 and D ≥ 0
[with D = 0 if and only if W (x, y) = 0]. Moreover, by Corollary 2.27(c) we have
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AD ≤ BC.10 It follows from Theorem 2.10(a) that Px,y,αR(W ) is the component of
[0,∞)2 ∩ {(Rx, Ry): ZW (−Rx,−Ry;−α) > 0} containing (0, 0) [here we have used
the fact that (0, 0, α) ∈ R(W )]. Thus,

Px,y,αR(W ) = {(Rx, Ry): Rx, Ry ≥ 0 and BRx + CRy < A} (2.82)

in case D = 0, and

Px,y,αR(W ) = {(Rx, Ry): 0 ≤ Rx ≤ C/D and 0 ≤ Ry ≤ B/D and

(C/D −Rx)(B/D −Ry) > (BC − AD)/D2} (2.83)

in case D > 0.

Remarks. 1. The proof shows that the boundary of Px,y,αR(W ) is a straight line
when W (x, y) = 0 and is a hyperbola when 0 < W (x, y) ≤ 1.

2. Consider w = (wx, wy) and w′ = (w′
x, w

′
y), and let 0 ≤ λ ≤ 1; then

ZW (λw + (1− λ)w′;−α) − [λZW (w;−α) + (1− λ)ZW (w′;−α)]

= −Dλ(1− λ)(wx − w′
x)(wy − w′

y) , (2.84)

so that ZW ( · ;−α) is concave along line segments of negative slope in the (wx, wy)-
plane. This provides an alternate proof that the projected section Px,y,αR(W ) is
convex [because R(W ) is a down-set, only line segments of negative slope need be
considered].

3. The convexity of two-dimensional sections is false without the hypothesis of
hard-core self-repulsion: consider X = {1, 2}, W (1, 1) = W (2, 2) = 1 and W (1, 2) =
0. Then ZW (w) = ew1 + ew2 − 1, so that R(W ) = {(R1, R2): R1, R2 ≥ 0 and e−R1 +
e−R2 > 1}, which is not convex.

4. Even in the case of hard-core self-repulsion, R(W ) itself is not in general
convex. To see this, let X = {1, 2, 3} and let G be the path 123; its independent-set
polynomial is ZG(w) = w2 + (1 + w1)(1 + w3). The diagonal section of R(G) given
by R1 = R3 = x and R2 = y is the region of [0, 1]2 where y < (1− x)2, which is not
convex.

2.6 Algebraic irreducibility of ZW (w)

In this subsection — which is a digression from the main thread of the paper and
can be omitted on a first reading — we discuss the algebraic irreducibility of the
multivariate partition function ZW (w). We restrict attention to the case of hard-core
self-repulsion, in which ZW is a multiaffine polynomial.

Let R be a commutative ring with identity, and let W : X×X → R be symmetric
and satisfy W (x, x) = 0 for all x ∈ X. Define the support graph GW by setting

10In the case of a hard-core pair interaction, this follows alternatively from Corollary 2.27(d).
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xy ∈ E(G) if and only if W (x, y) 6= 1 and x 6= y. Define the polynomial ZW ∈ R[w]
by

ZW =
∑

X′⊆X

 ∏
{x,y}⊆X′

W (x, y)

(∏
x∈X′

wx

)
. (2.85)

Proposition 2.30 Suppose that R is an integral domain. Then ZW is irreducible
over R if and only if GW is connected.

The proof is based on an easy but crucial lemma [34, Lemma 4.7]:

Lemma 2.31 Let P1 and P2 be nonzero polynomials in the indeterminates {wx}x∈X

with coefficients in an integral domain R. Suppose that P1P2 is multiaffine (i.e. of
degree 0 or 1 in each variable separately). Then:

(a) There exist disjoint subsets X1, X2 ⊆ X such that Pi uses only the variables
{wx}x∈Xi

(i = 1, 2).

(b) P1 and P2 are both multiaffine.

Proof. Suppose there exists x ∈ X such that both P1 and P2 use the variable wx.
For i = 1, 2, let di ≥ 1 be the degree of Pi in the variable wx, and let Qi 6= 0 be the
coefficient of wdi

x in Pi, considered as an element of the polynomial ring R[w6=x]. Then
Q1Q2 6= 0 because R[w6=x] is an integral domain [65, Theorem III.5.1 and Corollary
III.5.7]. But this shows that the coefficient of wd1+d2

x in P1P2 is nonzero, contradicting
the hypothesis that P1P2 is multiaffine (since d1 + d2 ≥ 2). This proves (a); and (b)
is an easy consequence.

Proof of Proposition 2.30. If GW is disconnected, it is obvious that ZW is
reducible. To prove the converse, suppose that ZW is reducible, i.e. ZW = P1P2

where P1 and P2 are nonconstant polynomials over R. It follows from Lemma 2.31
that there exist disjoint subsets X1, X2 ⊆ X such that Pi uses only the variables
{wx}x∈Xi

(we can assume without loss of generality that X1 ∪ X2 = X); moreover,
neither X1 nor X2 can be empty (since P1 and P2 are nonconstant). Let ai ∈ R be
the constant term of Pi (i = 1, 2). Since ZW has constant term 1, we have a1a2 = 1.
Replacing P1 by a2P1 and P2 by a1P2, we can assume without loss of generality that
a1 = a2 = 1. For x ∈ X1 (resp. x ∈ X2), let bx be the coefficient of the linear term wx

in P1 (resp. in P2). Since the linear term wx has coefficient 1 in ZW and a1 = a2 = 1,
we have bx = 1 for all x ∈ X. It follows that, for x ∈ X1 and y ∈ X2, the term wxwy

in P1P2 has coefficient 1; since this term has coefficient W (x, y) in ZW = P1P2, we
have W (x, y) = 1 whenever x ∈ X1 and y ∈ X2. Hence GW is disconnected.

Remarks. 1. The univariate polynomial ZW (w) is obviously reducible over C
whenever |X| ≥ 2; and it is in many cases reducible over R as well. Indeed, it
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can be reducible over the integers: e.g. for G = P4 (the 4-vertex path) we have
ZG(w) = 1 + 4w + 3w2 = (3w + 1)(w + 1).

2. Results analogous to Proposition 2.30 hold for some other combinatorial poly-
nomials. For example, the irreducibility over C for the (bivariate) Tutte polynomial
ZM(x, y) of a connected matroid M was proven recently by Merino, de Mier and
Noy [80]. Likewise, the irreducibility over any integral domain R for the multivariate
basis generating polynomial of a connected matroid M — or more generally, for any
multiaffine polynomial whose support is exactly the collection of bases of M — was
proven recently by Choe, Oxley, Sokal and Wagner [34].

3. It would be interesting to know whether analogous results can be obtained
without the hypothesis of hard-core self-repulsion. The difficulty is to find the right
ring in which to work. Irreducibility in the ring R[[w]] of formal power series is too
trivial, because every formal power series with constant term 1 is invertible. On the
other hand, it might conceivably be possible to prove irreducibility in the ring of
entire functions (or entire functions of order 1) on CX — but only for |X| ≥ 2, since
it is manifestly false if |X| = 1 and 0 < W (x, x) < 1 (a nonpolynomial entire function
of order 0 has infinitely many zeros [76, Theorem I.13]).

2.7 Convexity of log Z at nonnegative fugacity

In this paper we are primarily concerned with the behavior of ZW (w) for complex
fugacities w. However, the regime of nonnegative fugacities w is of particular interest
to probabilists and statistical mechanicians, since the Boltzmann weights [cf. (1.1)]
are there nonnegative and so can be interpreted, after normalization, as a probability
measure on lattice-gas configurations. In this “probabilistic regime”, the logarithm
of the partition function is, in very great generality, a convex function of all the
interaction energies [67, p. 12]. Let us prove the specialization of this statement to
our model:

Let 0 ≤ W, W ′ ≤ 1 and w,w′ ≥ 0. Then, for 0 ≤ λ ≤ 1, define Wλ(x, y) =
W (x, y)λW ′(x, y)1−λ and (wλ)x = wλ

x(w′
x)

1−λ. By Hölder’s inequality applied to (1.1a)
or (1.1b), we obtain:

Lemma 2.32 Suppose that 0 ≤ W, W ′ ≤ 1 and w,w′ ≥ 0. Then, for 0 ≤ λ ≤ 1,

ZWλ
(wλ) ≤ ZW (w)λZW ′(w′)1−λ . (2.86)

That is, log ZWλ
(wλ) is a convex function of λ; or in other words, log ZW (w) is a

convex function of the vector 〈{log W (x, y)}x,y∈X , {log wx}x∈X〉.
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3 The lattice gas with hard-core self-repulsion

We now restrict attention to the case of a repulsive lattice gas with hard-core self-
repulsion, i.e. 0 ≤ W (x, y) ≤ 1 for all x, y and W (x, x) = 0 for all x. This means, as
noted in the Introduction, that ZW (w) can be written as a sum over subsets:

ZW (w) =
∑

X′⊆X

∏
x∈X′

wx

∏
{x,y}⊆X′

W (x, y) . (3.1)

Here we shall exploit this special structure, which implies that ZW is a multiaffine
polynomial , i.e. a polynomial of degree 1 in each wx separately. Since W will be fixed
throughout, we shall henceforth often omit it from the notation.

3.1 The fundamental identity

Let us define, for each subset Λ ⊆ X, the restricted partition function

ZΛ(w) =
∑

X′⊆Λ

∏
x∈X′

wx

∏
{x,y}⊆X′

W (x, y) . (3.2)

Of course this notation is redundant, since the same effect can be obtained by setting
wx = 0 for x ∈ X \ Λ, but it is useful for the purpose of inductive computations and
proofs. We have, for any x ∈ Λ, the fundamental identity

ZΛ(w) = ZΛ\x(w) + wxZΛ\x(W (x, ·)w) (3.3)

where
[W (x, ·)w]y = W (x, y) wy ; (3.4)

here the first term on the right-hand side of (3.3) covers the summands in (3.2) with
X ′ 63 x, while the second covers X ′ 3 x. [Note that (3.3) is a special case of (2.3).]
In the special case of a hard-core interaction (= independent-set polynomial) for a
graph G, (3.3) reduces to

ZΛ(w) = ZΛ\x(w) + wxZΛ\Γ∗(x)(w) , (3.5)

where we have used the notation Γ∗(x) = Γ(x) ∪ {x} [here Γ(x) denotes the set
of vertices of G adjacent to x]. The fundamental identity (3.3)/(3.5) will play an
important role both in the inductive proof of the Lovász local lemma [cf. (4.10) and
(4.22)] and in the Dobrushin–Shearer inductive argument for the nonvanishing of ZW

in a polydisc (Section 5).
Let us also remark that because ZΛ\x is multiaffine, the last term in (3.3) can be

expanded to rewrite ZΛ\x(W (x, ·)w) as a linear combination of values at the vertices
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of a rectangle:11

ZΛ(w) = ZΛ\x(w) + wx

∑
Y⊆Λ\x

(∏
y∈Y

W (x, y)

) ∏
y∈(Λ\x)\Y

[1−W (x, y)]

ZY (w) .

(3.6)
In the hard-core case, the only term with a nonzero coefficient is Y = Λ \ Γ∗(x), so
that (3.6) reduces to (3.5).

Remark. Repeated use of (3.3) obviously gives an algorithm to compute ZW (w).
But this algorithm takes in general exponential time. In fact, calculating ZG(w) for
general graphs G (or even for cubic planar graphs) is NP-hard (as noted by Shearer
[98]), since even calculating the degree of ZG(w) — that is, the maximum size of an
independent set — is NP-hard [44, pp. 194–195]. Therefore, if P 6= NP it is impossible
to calculate ZG(w) for general graphs in polynomial time.

A key role in (3.3) is manifestly played by the rational function

Kx,Λ(w) ≡
ZΛ\x(W (x, ·)w)

ZΛ\x(w)
. (3.7)

Note that Kx,Λ(w) depends only on {wy}y∈Λ\x; in particular, it does not depend on
wx. We shall sometimes write it as Kx,Λ(w6=x) to emphasize this fact. Please note
also that ZΛ(w) is nonvanishing in the region |wx| < 1/|Kx,Λ(w6=x)| and vanishes at
wx = −1/Kx,Λ(w6=x). We have

∂ log ZΛ(w)

∂wx

=
Kx,Λ(w6=x)

1 + Kx,Λ(w6=x)wx

. (3.8)

Since Kx,Λ(w) is a special case of the function YW (w; λ) defined in (2.70), we obtain
as an immediate corollary of Proposition 2.26(b):

Proposition 3.1 Consider any repulsive lattice gas with hard-core self-repulsion. If
R ∈ R(W ), then

|Kx,Λ(w)| ≤ Kx,Λ(−R) < ∞ (3.9)

for all w ∈ D̄R. That is, the maximum of |Kx,Λ(w)| over D̄R is attained at w = −R,
and this maximum value Kx,Λ(−R) is an increasing function of R ∈ R(W ).

11If F : CX → C is multiaffine, then F can be reconstructed from its values at the corners of any
rectangle with positive volume. For example, if the rectangle is [0, 1]X , we have

F (z) =
∑

Y⊆X

(∏
i∈Y

zi

) ∏
i∈X\Y

(1− zi)

F (1Y ) .

This is clear when z ∈ {0, 1}X , and equality for all z then follows because both sides are multiaffine.
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The function Kx,Λ(−R) will play an important role in Section 5.
We can translate the fundamental identity (3.3) into a recursion for the rational

functions Kx,Λ(w). Let us order arbitrarily the sites Λ \ x = {y1, . . . , yk}. Then we
write (3.7) as a telescoping product:

Kx,Λ(w) =
k∏

i=1

ZΛ\x(w̃
(i))

ZΛ\x(w̃(i−1))
(3.10)

where the vectors w̃(i) are defined by

(w̃(i))y =

{
W (x, y)wy if y = yj for some j ≤ i
wy otherwise

(3.11)

[Note that it is irrelevant how we define (w̃(i))y for y = x, since we set this weight to
zero anyway by considering ZΛ\x.] Applying the fundamental identity (3.3) to yi, we
obtain

ZΛ\x(w̃
(i))

ZΛ\x(w̃(i−1))
=

1 + W (x, yi)wyi
Kyi,Λ\x(w̃

(i−1))

1 + wyi
Kyi,Λ\x(w̃

(i−1))
(3.12)

and hence

Kx,Λ(w) =
k∏

i=1

1 + W (x, yi)wyi
Kyi,Λ\x(w̃

(i−1))

1 + wyi
Kyi,Λ\x(w̃

(i−1))
. (3.13)

This identity will play a central role at the end of Section 5. In the special case of a
hard-core pair interaction, (3.13) becomes

Kx,Λ(w) =
l∏

i=1

1

1 + wyi
Kyi,Λ\x\{y1,...,yi−1}(w)

(3.14)

where {y1, . . . , yl} is an ordering of Λ ∩ Γ(x).
Note, finally, that the partition functions ZΛ(w) can be reconstructed from the

rational functions Kx,Λ(w). For, by the fundamental identity (3.3) and the definition
(3.7), we have

ZΛ(w)

ZΛ\x(w)
= 1 + wxKx,Λ(w6=x) ; (3.15)

and hence, setting Λ = {x1, . . . , xn} (in arbitrary order) we can write

ZΛ(w) =
n∏

i=1

Z{x1,...,xi}(w)

Z{x1,...,xi−1}(w)
=

n∏
i=1

[
1 + wxKxi,{x1,...,xi}(w)

]
. (3.16)

3.2 Examples

Let us take a moment to compute a few examples of partition functions ZW (w).
We shall assume hard-core self-repulsion [i.e. W (x, x) = 0 for all x] throughout,
and shall mostly restrict attention to the case of a hard-core pair interaction, i.e.
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the independent-set polynomial ZG(w) for a graph G. In some cases we shall, for
simplicity, compute only the univariate polynomial ZG(w) obtained by setting wx = w
for all vertices x.

Example 3.1. The complete graph Kn. Clearly ZKn(w) = 1 + w1 + . . . + wn. In
particular, R(Kn) = {R: R1 + . . . + Rn < 1}.

Example 3.2. The n-vertex path Pn. We limit attention to the univariate
independent-set polynomial. Applying the fundamental identity (3.5) to an end-
vertex, we obtain the recursion relation

ZPn(w) = ZPn−1(w) + wZPn−2(w) , (3.17)

which is valid for all n ≥ 0 if we define ZP0 ≡ ZP−1 ≡ 1 and ZP−2 ≡ 0. The solution
of (3.17) is

ZPn(w) =
1√

1 + 4w
(λn+2

+ − λn+2
− ) (3.18)

where

λ± =
1±
√

1 + 4w

2
. (3.19)

(An alternative method of obtaining this result is given in Example 3.2′ below.) The
zeros of ZPn are located at

w = − 1

4 cos2 πk
n+2

(3.20)

for k = 1, 2, . . . , bn+1
2
c. The zero nearest the origin converges from below to w = −1/4

as n→∞. Elementary counting arguments give also the explicit formula

ZPn(w) =

bn+1
2
c∑

k=0

(
n + 1− k

k

)
wk . (3.21)

Example 3.3. The n-vertex cycle Cn. We again limit attention to the univariate
independent-set polynomial. Applying the fundamental identity (3.5), we find

ZCn(w) = ZPn−1(w) + wZPn−3(w) , (3.22)

valid for n ≥ 2. Inserting (3.18)/(3.19), we obtain

ZCn(w) = λn
+ + λn

− . (3.23)

(An alternative method of obtaining this result is given in Example 3.3′ below.) The
zeros of ZCn are located at

w = − 1

4 cos2 π(k+ 1
2
)

n

(3.24)
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for k = 0, 1, . . . , bn
2
c − 1. The zero nearest the origin converges from below to w =

−1/4 as n → ∞. Elementary counting arguments [or (3.21)/(3.22)] give also the
explicit formula

ZCn(w) =

bn
2
c∑

k=0

n

n− k

(
n− k

k

)
wk . (3.25)

Remark. There is a one-to-one correspondence between matchings on a graph G
and independent sets on the line graph L(G). Since L(Pn) = Pn−1 and L(Cn) = Cn,
these formulae for ZPn and ZCn can also be found in the work of Heilmann and Lieb
on matching polynomials [58, pp. 196–197]. Heilmann and Lieb also noted that ZPn

and ZCn can be written as Chebyshev polynomials.

Example 3.3′. The “soft” n-vertex cycle Cn. Let us now generalize Example 3.3
by considering the cycle Cn with edge weights

W (x, y) =
{

W if xy is an edge of Cn

1 otherwise
(3.26)

where W is a constant in [0, 1] (the case W = 0 corresponds to the independent-
set polynomial of Cn, while the case W = 1 corresponds to the independent-set
polynomial of the edgeless graph on n vertices). Then the univariate polynomial
ZW (w) is given by a “transfer matrix” [7, Section 2.1] [14, Sections 2.2–2.4] [107,
Section 4.7]:

ZW (w) = tr

(
1 1
w wW

)n

(3.27)

where the first (resp. second) row or column corresponds to an empty (resp. occupied)
site, and the fugacity w is attributed to the row only. It follows that

ZW (w) = λn
+ + λn

− , (3.28)

where

λ± =
1 + wW ±

√
(1− wW )2 + 4w

2
(3.29)

are the eigenvalues of the transfer matrix. Simple algebra then shows that all of the
zeros of ZW are real and negative (when 0 ≤ W ≤ 1).

Example 3.2′. The “soft” n-vertex path Pn. Let us now generalize Example 3.2
analogously. The univariate polynomial ZW (w) is again given by a transfer matrix:

ZW (w) = (1 1)

(
1 1
w wW

)n−1(
1
w

)
. (3.30)

After some algebra we find

ZW (w) = A+λn+2
+ + A−λn+2

− , (3.31)
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with λ± given by (3.29) and

A± =
2

±(2−W + wW 2)
√

(1− wW )2 + 4w + W [(1− wW )2 + 4w]
. (3.32)

Example 3.4. The star K1,r. Let x be the center vertex of the star and let
y1, . . . , yr be the leaves. The independent-set polynomial is

ZK1,r(w) =
r∏

i=1

(1 + wyi
) + wx . (3.33)

More generally, suppose we have a pair interaction matrix W (x, yi) [with W (yi, yj) = 1
for all i 6= j and W (x, x) = W (yi, yi) = 0]. Then

ZW (w) =
r∏

i=1

(1 + wyi
) + wx

r∏
i=1

[1 + W (x, yi)wyi
] . (3.34)

Example 3.5. The complete bipartite graph Km,n. Let X = {x1, . . . , xm} and
Y = {y1, . . . , yn} be the bipartition. Then the independent-set polynomial is

ZKm,n(w) =
m∏

i=1

(1 + wxi
) +

n∏
j=1

(1 + wyj
) − 1 . (3.35)

Example 3.6. The complete r-ary rooted tree [94, 98]. Let T
(r)
n be the complete

rooted tree with branching factor r and depth n. We limit attention to the univariate
independent-set polynomial. Fix r ≥ 1; and to lighten the notation, let us write Zn

as a shorthand for Z
T

(r)
n

. Applying the fundamental identity (3.5) to the root vertex,
we obtain the nonlinear recursion

Zn(w) = Zn−1(w)r + wZn−2(w)r2

, (3.36)

which is valid for all n ≥ 0 if we set Z−1 ≡ Z−2 ≡ 1. By defining

Yn(w) =
Zn(w)

Zn−1(w)r
, (3.37)

we can convert the second-order recursion (3.36) to a first-order recursion

Yn(w) = 1 +
w

Yn−1(w)r
(3.38)

with initial condition Y−1 ≡ 1. The polynomials Zn(w) can be reconstructed from
the rational functions Yn(w) by

Zn(w) =
n∏

k=0

Yk(w)rn−k

. (3.39)
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Let wn < 0 be the negative real root of Zn of smallest magnitude (set wn = −∞
if Zn has no negative real root). Note that w−1 = −∞ and w0 = −1. Let us prove
by induction that wn−1 < wn for n ≥ 0. It is true for n = 0. For n ≥ 1 we have

Zn(wn−1) = Zn−1(wn−1)
r + wn−1Zn−2(wn−1)

r2

< 0 (3.40)

since Zn−1(wn−1) = 0, wn−1 < 0 and Zn−2(wn−1) > 0 by the inductive hypothesis.
Therefore Zn vanishes somewhere between wn−1 and 0.

It follows that the wn increase to a limit w∞ ≤ 0 as n→∞. Let us show, following
Shearer [98], that

w∞ = − rr

(r + 1)r+1
(3.41)

by proving the two inequalities:
Proof of ≥: If w ∈ [w∞, 0), we have Zn(w) > 0 for all n and hence also

Yn(w) > 0 for all n. Since Y−1 > Y0, it follows from the monotonicity of (3.38) that
{Yn(w)}n≥0 is a strictly decreasing sequence of positive numbers, hence converges
to a limit y∗ ≥ 0 satisfying the fixed-point equation y∗ = 1 + w/yr

∗, or equivalently
w = yr+1

∗ − yr
∗. Elementary calculus then shows that w ≥ −rr/(r + 1)r+1; taking

w = w∞ we obtain w∞ ≥ −rr/(r + 1)r+1.
Proof of ≤: If −rr/(r+1)r+1 ≤ w < 0, the equation w = yr+1

∗ −yr
∗ has a unique

solution y∗ ∈ [r/(r + 1), 1). It then follows by induction [using (3.38) and the initial
condition Y−1 = 1] that 1 = Y−1(w) > Y0(w) > . . . > Yn−1(w) > Yn(w) > . . . > y∗ for
all n ≥ 0. In particular, Yn(w) > 0 for all n, so that wn < w for all n. This shows
that w∞ ≤ −rr/(r + 1)r+1.

Let us conclude by observing that (3.38) defines a degree-r rational map Rw: y 7→
1+w/yr parametrized by w ∈ C\0. Moreover, the zeros of ZW (w) correspond to those
values w for which Rw has a (superattractive) orbit 0 7→ ∞ 7→ 1 7→ 1 + w 7→ . . . 7→ 0
of period n + 3 (or some submultiple of n + 3). As n→∞, these points accumulate
on a “Mandelbrot-like” set in the complex w-plane. For further information on the
maps y 7→ 1 + w/yr, see [81, 5, 18, 19, 20, 21].

3.3 Reduction formulae

Recall that, given W , we have defined a simple loopless graph G = GW (“the support
graph of W”) by setting xy ∈ E(G) if and only if W (x, y) 6= 1 and x 6= y. When
the support graph G has a very simple structure, the polynomial ZW (w) can be
simplified:

1) Disconnected graph. Suppose that G can be written as the disjoint union of G1

and G2. Set Λi = V (Gi). Then clearly ZW factorizes:

ZΛ1∪Λ2(w) = ZΛ1(w) ZΛ2(w) . (3.42)

Note that ZΛi
(w) depends only on {wx}x∈Λi

.
2) Cut vertex. Suppose that G = G1 ∪ G2 where V (G1) ∩ V (G2) = {x}. [If G1

and G2 have at least two vertices, this means that x is a cut vertex of G. But the
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formulae below hold also in the trivial cases V (G1) = {x} or V (G2) = {x} or both.]
Again set Λi = V (Gi). The fundamental identity (3.3) asserts that

ZΛ1∪Λ2(w) = Z(Λ1∪Λ2)\x(w) + wxZ(Λ1∪Λ2)\x(W (x, ·)w) . (3.43)

But since the graphs G1 \ x and G2 \ x are disjoint12, we can apply the factorization
(3.42) to the right-hand side of (3.43), yielding

ZΛ1∪Λ2(w) = ZΛ1\x(w) ZΛ2\x(w) + wx ZΛ1\x(W (x, ·)w) ZΛ2\x(W (x, ·)w)

(3.44a)

= ZΛ1\x(w)
[
ZΛ2\x(w) + weff,G1

x ZΛ2\x(W (x, ·)w)
]

(3.44b)

= ZΛ1\x(w) ZΛ2(w6=x, w
eff,G1
x ) (3.44c)

where we have defined

weff,G1
x = wx

ZΛ1\x(W (x, ·)w)

ZΛ1\x(w)
= wxKx,Λ1(w) . (3.45)

This can be interpreted as “integrating out” the variables in V (G1) \ x, leaving an
“effective fugacity” weff,G1

x for the vertex x ∈ V (G2).

Example 3.4 revisited. Integrating out the leaves y1, . . . , yr of the star K1,r, we
find from (3.34):

weff,K1,r
x = wx

r∏
i=1

1 + W (x, yi)wyi

1 + wyi

. (3.46)

3.4 When G is a tree . . .

When the support graph G = GW is a tree, every vertex of G is either a cut vertex
or a leaf, so the partition function ZW (w) can be calculated by repeated use of the
reduction formula (3.44)/(3.45). This can be done in many ways, but the simplest is
probably to “roll up” the tree “from the leaves up”, as follows:

We say that a vertex x ∈ V (G) is a near-leaf of G if it is adjacent to at least
one leaf of G. If x is a near-leaf of G, then we can write G = G1 ∪ G2 where
V (G1) ∩ V (G2) = {x}, G1 is a star with center x consisting of x and some or all of
the leaves of G adjacent to x, and G2 is a tree. Integrating out G1 \ x using (3.46),
we obtain

weff,G1
x = wx

∏
y∈V (G1\x)

1 + W (x, y)wy

1 + wy

(3.47)

and of course
ZΛ1\x(w) =

∏
y∈V (G1\x)

(1 + wy) . (3.48)

12We recall that G \ x denotes the graph obtained from G by deleting the vertex x and all edges
incident with it.
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Applying this process repeatedly, we can obtain a linear-time algorithm for evaluating
ZW (w) at any point w ∈ CX whenever the support graph GW is a tree. (It is also
an algorithm for computing ZW (w) as a polynomial in w, but in this context it may
no longer be linear-time, because of the need to multiply rational functions of w.)
The simplest approach is to orient the tree by choosing arbitrarily one vertex of the
tree as the root, and then to work upwards from the leaves. We obtain the following
algorithm:

Algorithm T. Given numbers {wx}x∈X and {W (x, y)}x,y∈X for which
the support graph G = GW is a tree, we compute ZW (w) as follows:

1) Pick (arbitrarily) a root x0 ∈ X. Define

depth(x) = dist(x, x0)

D = max
x∈X

depth(x)

children(x) = {y: xy ∈ E(G) and depth(y) = depth(x) + 1}

2) For d = D, D − 1, . . . , 0, do:

For all vertices x of depth d, set

weff
x ←− wx

∏
y∈children(x)

1 + W (x, y)weff
y

1 + weff
y

. (3.49)

[Note that all the needed weff
y have been set at the previous

iteration. If weff
y = −1 for any child y of x, the algorithm is

declared to fail.]

3) Output

ZW (w) =
∏

x∈V (G)

(1 + weff
x ) . (3.50)

The correctness of this algorithm (when it succeeds) follows from (3.44b), (3.44c) and
(3.48). Indeed, for any vertex x, the weff

x produced by this algorithm is weff,Gx
x where

Gx is the subtree consisting of x and all its descendants.
This also provides an algorithm for testing whether a given vector R lies in R(W ):

Theorem 3.2 Consider any repulsive lattice gas with hard-core self-repulsion for
which the support graph GW is a tree. Then a vector R ≥ 0 lies in R(W ) if and
only if Algorithm T with w = −R produces −1 < weff

x ≤ 0 for all vertices x.

Proof. If Algorithm T with w = −R produces −1 < weff
x ≤ 0 for all x, then by

the monotonicity of (3.49) in each weff
y it also does so when w = −R′ for any vector

0 ≤ R′ ≤ R. By (3.50) this means that ZW (−R′) > 0 for all such R′, hence that
R ∈ R(W ).
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Conversely, let x be a vertex such that weff
x /∈ (−1, 0] but weff

y ∈ (−1, 0] for all
descendants y of x. Since weff

y ∈ (−1, 0] for all children y of x, and wx = −Rx ≤ 0, it
follows from (3.49) that weff

x ≤ 0, so we must have weff
x ≤ −1. Now set R′

z = Rz for z
in the subtree consisting of x and its descendants, and R′

z = 0 otherwise. Applying
Algorithm T to w′ = −R′, it follows from (3.50) that ZW (w′) ≤ 0. Thus R′ 6∈ R(W );
and since R(W ) is a down-set, we have R 6∈ R(W ).

Example 3.6 revisited. Consider again the tree T
(r)
n . Comparison of (3.38) with

(3.49) shows that in the multivariate case weff
x = Yn(w)− 1 for all vertices x of height

n above the leaves. Then (3.39) is equivalent to (3.50).

3.5 Upper bounds on R(W ) when GW is a tree

We can use Theorem 3.2 to prove upper bounds on the set R(W ) whenever the
support graph GW is a tree. Let us begin by considering the special case of a hard-
core pair interaction, i.e. the independent-set polynomial for a tree G on the vertex set
X. As before, pick (arbitrarily) a root x0 ∈ X, and define Xi = {x ∈ X: depth(x) = i}
for i = 0, . . . , D. Given any vector R ≥ 0, define R̃i to be the geometric mean of Rx

over all vertices x of depth i:

R̃i =

(∏
x∈Xi

Rx

)1/|Xi|

. (3.51)

Now apply Algorithm T to w = −R, let px = −weff
x , and define

p̃i =

(∏
x∈Xi

px

)1/|Xi|

(3.52)

(we assume here that weff
x ≤ 0 for all x ∈ Xi). By (3.49) we have

px =
Rx∏

y∈children(x)

(1− py)
, (3.53)

so that

p̃i =
R̃i( ∏

y∈Xi+1

(1− py)

)1/|Xi|
. (3.54)

Now  ∏
y∈Xi+1

(1− py)

1/|Xi+1|

≤ 1 − 1

|Xi+1|
∑

y∈Xi+1

py (3.55a)

≤ 1 −

 ∏
y∈Xi+1

py

1/|Xi+1|

(3.55b)
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by two applications of the arithmetic-geometric mean inequality. It follows that

p̃i ≥
R̃i

(1− p̃i+1)|Xi+1|/|Xi|
. (3.56)

So, suppose we fix the numbers (R̃i)
D
i=0 and define (p̂i)

D
i=0 by the recursion

p̂i =
R̃i

(1− p̂i+1)|Xi+1|/|Xi|
(3.57)

with initial condition p̂D+1 = 0 (which is well-defined as long as p̂i+1 remains < 1).
Then it follows immediately from the monotonicity of the right-hand side of (3.56)
that p̃i ≥ p̂i as long as the former is well-defined. In particular, if for some level i we
have p̂i ≥ 1, then p̃i is either ≥ 1 or else ill-defined, so that there exists x ∈ Xi with
weff

x /∈ (−1, 0]. It then follows from Theorem 3.2 that R /∈ R(W ). Moreover, since

this calculation depends only on the numbers (R̃i)
D
i=0, the same conclusion holds for

any R with the given geometric means on levels.
Let us now generalize this argument to the case of a soft-core pair interaction

0 ≤ W (x, y) ≤ 1. It is easily verified that 1 −Wp ≥ (1 − p)W whenever 0 ≤ p ≤ 1
and 0 ≤ W ≤ 1. Therefore, defining px = −weff

x as before and applying Algorithm T
to w = −R, we have

px ≥
Rx∏

y∈children(x)

(1− py)1−W (x,y)
. (3.58)

Now let us assign to each vertex x a weight

αx =
d∏

j=1

[1−W (xj−1, xj)] (3.59)

where x0, x1, . . . , xd ≡ x is the unique path in GW connecting x to the root x0. [In
particular, αx0 = 1 and if y is a child of x, then αy = [1−W (x, y)]αx.] Setting

α̃i =
∑
x∈Xi

αx , (3.60)

let us define R̃i and p̃i to be the weighted geometric means

R̃i =

(∏
x∈Xi

Rαx
x

)1/α̃i

(3.61)

p̃i =

(∏
x∈Xi

pαx
x

)1/α̃i

(3.62)
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The preceding argument can then be repeated verbatim (using the weighted arithmetic-
geometric mean inequality), yielding

p̃i ≥
R̃i

(1− p̃i+1)α̃i+1/α̃i
, (3.63)

which can be analyzed analogously to (3.56). We have therefore proven:

Proposition 3.3 Consider any repulsive lattice gas with hard-core self-repulsion for
which the support graph GW is a tree. Define weights (αx)x∈X and (α̃i)

D
i=0 by (3.59)/(3.60),

and define numbers (p̂i)
D
i=0 by the recursion

p̂i =
R̃i

(1− p̂i+1)α̃i+1/α̃i
(3.64)

(as long as p̂i+1 remains < 1), with initial condition p̂D+1 = 0. Suppose that there
exists an i for which p̂i ≥ 1. Then R /∈ R(W ) for all vectors R ≥ 0 satisfying∏
x∈Xi

R
αx/α̃i
x ≥ R̃i for all i.

Just as Proposition 3.3 “homogenizes” each level of a tree, we can also “homoge-
nize” between levels. Let us again begin by considering the special case of a hard-core
pair interaction. We first define branching factors bi = |Xi+1|/|Xi|. Choose any
number b̄ > 0 and define

γi = |Xi|/b̄i . (3.65)

Fix an integer k ≥ 1 (the number of levels to be averaged together) and define

γi,k =
i+k−1∑

j=i

γj . (3.66)

Then define the weighted inter-level geometric means

p̃i,k =

(
i+k−1∏

j=i

p̃
γj

j

)1/γi,k

(3.67)

R̃i,k =

(
i+k−1∏

j=i

R̃
γj

j

)1/γi,k

(3.68)

for i = 0, . . . , D + 1− k, and p̃i,k = R̃i,k = 0 for i ≥ D + 2− k. It follows from (3.56)
that

p̃i,k ≥
R̃i,k

i+k−1∏
j=i

(1− p̃j+1)bjγj/γi,k

=
R̃i,k

i+k−1∏
j=i

(1− p̃j+1)b̄γj+1/γi,k

. (3.69)
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Now

i+k−1∏
j=i

(1− p̃j+1)
γj+1/γi+1,k ≤ 1 −

i+k−1∑
j=i

γj+1

γi+1,k

p̃j+1

≤ 1 −
i+k−1∏

j=i

p̃
γj+1/γi+1,k

j+1

≡ 1 − ˜̃pi+1 (3.70)

by two applications of the arithmetic-geometric mean inequality, so that

p̃i,k ≥
R̃i,k

(1− p̃i+1,k)b̄γi+1,k/γi,k
, (3.71)

for i = 0, . . . , D + 1− k. This holds true for an arbitrary choice of the numbers b̄ and
k.

In the special case in which the sequence {b0, b1, . . . , bD−1} is periodic of period k
(where D ≥ k), we can choose b̄ to be the geometric mean of the bi over one period:

b̄ =

(
k−1∏
i=0

bi

)1/k

. (3.72)

Then the sequence {γ0, γ1, . . . , γD} is also periodic of period k, so that γ0,k = γ1,k =
. . . = γD+1−k,k, and (3.71) simplifies to

p̃i,k ≥
R̃i,k

(1− p̃i+1,k)b̄
(3.73)

for i = 0, . . . , D + 1− k [note that for i = D + 1− k we have p̃i+1,k = 0, so the value
of the exponent b̄γi+1,k/γi,k is in this case irrelevant].

So we can argue as before: suppose we fix the numbers (R̃i,k)
D+1−k
i=0 and define

(p̂i,k)
D+1−k
i=0 by the recursion

p̂i,k =
R̃i,k

(1− p̂i+1,k)b̄γi+1,k/γi,k
(3.74)

(as long as p̂i+1,k remains < 1), with initial condition p̂D+2−k,k = 0. Then it follows
immediately from the monotonicity of the right-hand side of (3.71) that p̃i,k ≥ p̂i,k as
long as the former is well-defined. In particular, if for some level i we have p̂i,k ≥ 1,

then p̃i,k is either ≥ 1 or else ill-defined, so that there exists x ∈
⋃i+k−1

j=i Xj with

weff
x /∈ (−1, 0]. It then follows from Theorem 3.2 that R /∈ R(W ). Moreover, since

this calculation depends only on the numbers (R̃i,k)
D+1−k
i=0 , the same conclusion holds

for any R with the given geometric means on-and-between levels.
The same argument works with soft-core pair interaction if we replace |Xi| by α̃i.

We have therefore proven:
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Proposition 3.4 Consider any repulsive lattice gas with hard-core self-repulsion for
which the support graph GW is a tree. Define weights (αx)x∈X and (α̃i)

D
i=0 by (3.59)/(3.60).

Fix an integer k ≥ 1 and a real number b̄ > 0, and define γi = α̃i/b̄
i. Then define

(γi,k)
D+1−k
i=0 , (p̃i,k)

D+1−k
i=0 and (R̃i,k)

D+1−k
i=0 by (3.66)–(3.68). Finally, define numbers

(p̂i,k)
D
i=0 by the recursion

p̂i,k =
R̃i,k

(1− p̂i+1,k)b̄γi+1,k/γi,k
(3.75)

(as long as p̂i+1,k remains < 1), with initial condition p̂D+2−k,k = 0. Suppose that
there exists an i for which p̂i,k ≥ 1. Then R /∈ R(W ) for all vectors R ≥ 0 satisfying

i+k−1∏
j=i

( ∏
x∈Xj

R
αx/α̃j
x

)γj/γi,k

≥ R̃i,k for all i = 0, . . . , D + 1− k.

We will return to these ideas in Section 8.2.

4 Dependency graphs and the lattice gas

4.1 Hard-core version

Let (Ax)x∈X be a finite family of events on some probability space, and let G be
a graph with vertex set X. We say that G is a dependency graph for the family
(Ax)x∈X if, for each x ∈ X, the event Ax is independent from the σ-algebra σ(Ay: y ∈
X \ Γ∗(x)). [Here we have used the notation Γ∗(x) = Γ(x) ∪ {x}, where Γ(x) is the
set of vertices of G adjacent to x.] Note that this is much stronger than requiring
merely that Ax be independent of each such Ay separately.

A family of events typically has many possible dependency graphs: for instance,
if G is a dependency graph for events (Ax)x∈X , then any graph obtained by adding
edges to G is also a dependency graph. In particular, if the events Ax are independent,
then any graph on X is a dependency graph. Nor must there be a unique minimal
dependency graph. Consider, for instance, the set of binary strings of length n with
odd digit sum (giving each such string equal probability), and let Ai be the event
that the ith digit is 1. Any graph without isolated vertices is a dependency graph for
this collection of events.

There is also a stronger notion of a dependency graph G for a collection of events
(Ax)x∈X , where we demand that if Y and Z are disjoint subsets of X such that G
contains no edges between Y and Z, then the σ-algebras σ(Ay: y ∈ Y ) and σ(Az: z ∈
Z) are independent. In this case we shall refer to G as a strong dependency graph for
the events (Ax)x∈X .13 Alternatively, the dependency-graph hypothesis can be replaced
by a weaker hypothesis concerning conditional probabilities, as in the lopsided Lovász

13For instance, this situation arises in any statistical-mechanical model with variables living on
the set X and pair interactions only on the edges of G, where each Ax depends only on the variable
at x.
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local lemma (Theorem 1.2). It will follow from Theorem 4.1 below that all three
hypotheses lead to the same lower bounds on P(

⋂
x∈X Ax).

The various forms of the Lovász local lemma (e.g. Theorems 1.1 and 1.2) provide
a sufficient (but not necessary) condition to have P(

⋂
x∈X Ax) > 0, in terms of the

existence of numbers (rx)x∈X satisfying px ≤ rx

∏
y∈Γ(x)(1 − ry) for suitable proba-

bilities or conditional probabilities p = (px)x∈X . As discussed in the Introduction,
we shall approach the problem by dividing our analysis into two parts. First, in this
section, we examine a best-possible condition to have P(

⋂
x∈X Ax) > 0, in terms of the

independent-set polynomial ZG(−p); then, in the next section, we discuss a sufficient
condition to have ZG(−p) > 0, in terms of the existence of such numbers (rx)x∈X or
generalizations thereof.

The following result is a development of Shearer [98, Theorem 1].

Theorem 4.1 Let (Ax)x∈X be a family of events on some probability space, and let
G be a graph with vertex set X. Suppose that (px)x∈X are real numbers in [0, 1] such
that, for each x and each Y ⊆ X \ Γ∗(x), we have

P(Ax|
⋂
y∈Y

Ay) ≤ px . (4.1)

(a) If p ∈ R(G), then

P(
⋂
x∈X

Ax) ≥ ZG(−p) > 0 (4.2)

and more generally

P(
⋂
x∈Y

Ax|
⋂
x∈Z

Ax) ≥
ZG(−p1Y ∪Z)

ZG(−p1Z)
> 0 (4.3)

for any subsets Y, Z ⊆ X. Moreover, this lower bound is best possible in the
sense that there exists a probability space on which there can be constructed a
family of events (Bx)x∈X with probabilities P(Bx) = px and strong dependency
graph G, such that P(

⋂
x∈X Bx) = ZG(−p).

(b) If p /∈ R(G), then there exists a probability space on which there can be con-
structed:

(i) A family of events (Bx)x∈X with probabilities P(Bx) = px and strong de-
pendency graph G, satisfying P(

⋂
x∈X Bx) = 0; and

(ii) A family of events (B′
x)x∈X with probabilities P(B′

x) = p′x ≤ px and strong
dependency graph G, satisfying P(B′

x ∩ B′
y) = 0 for all xy ∈ E(G) and

P(
⋂

x∈X B
′
x) = 0.

Remarks. 1. Please note that G is here an arbitrary graph with vertex set X; it
need not be a dependency graph for the events (Ax)x∈X . Rather, given G, we can
regard p as defined by

px = max
Y⊆X\Γ∗(x)

P(Ax|
⋂
y∈Y

Ay) (4.4)
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(this is clearly the minimal choice). There is then a tradeoff in the choice of G: adding
more edges reduces px (since there are fewer conditional probabilities to control) but
also shrinks the set R(G) (by the last sentence of Proposition 2.15).

2. Though (4.1) is the weak hypothesis of the lopsided Lovász local lemma (Theo-
rem 1.2), we will prove in (a) and (b) that the extremal families (Bx)x∈X and (B′

x)x∈X

have G as a strong dependency graph. Therefore, all three dependency hypotheses
lead to the same optimal lower bound on P(

⋂
x∈X Ax).

3. The proofs given here of Theorems 4.1 and 4.2 are logically independent of
nearly all of Theorem 2.10. More precisely, if we define R(G) and R(W ) by condition
(b) of Theorem 2.10, then the only part of Theorem 2.10 that is used in the proofs
of Theorems 4.1 and 4.2 is the (relatively easy) implication (b) =⇒ (f).

Proof. For p ∈ R(G), we wish to define a family of events (Bx)x∈X [on a new prob-
ability space] such that the hypotheses of the theorem are satisfied and P(

⋂
x∈X Bx)

is as small as possible. An intuitively reasonable way to do this is to make the events
Bx as disjoint as possible, consistent with the condition (4.1) [or with either of the
two stronger notions of dependency graph]. With this in mind, for Λ ⊆ X let us
define

P(
⋂
x∈Λ

Bx) =

{ ∏
x∈Λ

px if Λ is independent in G

0 otherwise

(4.5)

This defines a signed measure on the σ-algebra generated by (Bx)x∈X ; indeed, inclusion-
exclusion gives

P(
⋂
x∈Λ

Bx ∩
⋂
x 6∈Λ

Bx) =
∑
I⊇Λ

(−1)|I|−|Λ| P(
⋂
x∈I

Bx) (4.6a)

=
∑

I⊇Λ, I independent

(−1)|I|−|Λ|
∏
x∈I

px (4.6b)

= (−1)|Λ| ZG(−p; Λ) , (4.6c)

where ZG(−p; Λ) is defined as in (2.37). In particular, taking Λ = ∅, we have
P(
⋂

x∈X Bx) = ZG(−p). Theorem 2.10(f) implies that (4.6c) is nonnegative for all Λ,
so that (4.5) defines a probability measure on σ(Bx: x ∈ X). [This is the probability
measure defined in Theorem 2.10(g).]

If Y and Z are disjoint subsets of X such that G contains no edges between Y
and Z, it follows from (4.5) that for Y0 ⊆ Y and Z0 ⊆ Z the events

⋂
x∈Y0

Bx and⋂
x∈Z0

Bx are independent. This implies (see, for instance, [116, Theorem 4.2] or [16,
Theorem 4.2]) that σ(Bx: x ∈ Y ) and σ(Bx: x ∈ Z) are independent, and so G is a
strong dependency graph.

We next show that (Bx)x∈X is a family minimizing P(
⋂

x∈X Bx). For Λ ⊆ X, we
define

PΛ = P(
⋂
x∈Λ

Ax) (4.7)

QΛ = P(
⋂
x∈Λ

Bx). (4.8)
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Let us now prove by induction on |Λ| that PΛ/QΛ is monotone increasing in Λ. Note
first that by inclusion-exclusion,

QΛ =
∑
I⊆Λ

(−1)|I| P(
⋂
x∈I

Bx) (4.9a)

=
∑

I⊆Λ, I independent

(−1)|I|
∏
x∈I

px (4.9b)

= ZG(−p1Λ) . (4.9c)

Thus QΛ > 0 for all Λ, since p ∈ R(G) and R(G) is a down-set. Furthermore, for
y /∈ Λ,

QΛ∪{y} =
∑

I⊆Λ∪{y}, I independent

(−1)|I|
∏
x∈I

px (4.10a)

= QΛ − py

∑
I⊆Λ\Γ(y), I independent

(−1)|I|
∏
x∈I

px (4.10b)

= QΛ − pyQΛ\Γ(y) . (4.10c)

[Note that this is just the fundamental identity (3.5) applied to ZG(−p1Λ).] On the
other hand,

PΛ∪{y} = PΛ − P(Ay ∩
⋂
x∈Λ

Ax) (4.11a)

≥ PΛ − P(Ay ∩
⋂

x∈Λ\Γ(y)

Ax) (4.11b)

≥ PΛ − pyPΛ\Γ(y) (4.11c)

by the hypothesis (4.1). Now we want to show that PΛ∪{y}/QΛ∪{y} ≥ PΛ/QΛ, or
equivalently that PΛ∪{y}QΛ −QΛ∪{y}PΛ ≥ 0. By (4.10) and (4.11) we have

PΛ∪{y}QΛ −QΛ∪{y}PΛ ≥ [PΛ − pyPΛ\Γ(y)]QΛ − [QΛ − pyQΛ\Γ(y)]PΛ (4.12a)

= py [PΛQΛ\Γ(y) −QΛPΛ\Γ(y)] (4.12b)

≥ 0 (4.12c)

since
PΛ

QΛ

≥
PΛ\Γ(y)

QΛ\Γ(y)

(4.13)

by the inductive hypothesis.
Since PΛ/QΛ is monotone increasing in Λ, we have PX/QX ≥ P∅/Q∅ = 1, which

proves (4.2). More generally, for any subsets Y, Z ⊆ X, we have PY ∪Z/QY ∪Z ≥
PZ/QZ and hence PY ∪Z/PZ ≥ QY ∪Z/QZ , which gives (4.3).

For p 6∈ R(G), choose a minimal vector p′ ≤ p such that p′ ≥ 0 and ZG(−p′) = 0
[such a p′ is in general nonunique]. Then the family of events (B′

x)x∈X defined by

(4.5) with px replaced by p′x satisfies P(
⋂

x∈X B
′
x) = ZG(−p′) = 0 [by (4.6c) with

52



Λ = ∅]. Since p′ is in the closure of R(G), it follows by the minimality of p′ and the
continuity of ZG that this is a well-defined probability measure; note that if x and y
are adjacent then P(B′

x ∩B′
y) = 0 by (4.5). Thus we have constructed a collection of

events satisfying part (ii) of the Theorem.
To construct a collection of events satisfying part (i), let (Cx)x∈X be an (indepen-

dent) collection of independent events satisfying

[1− P(B′
x)] [1− P(Cx)] = 1− px . (4.14)

Then the events Bx = B′
x ∪ Cx satisfy P(Bx) = px and P(

⋂
Bx) ≤ P(

⋂
B
′
x) = 0.

Remarks. 1. If (Ax)x∈X is a family of events satisfying (4.2) with equality, then we
have PX = QX in the foregoing proof; and since P∅ = Q∅ = 1, the monotonicity
of PΛ/QΛ implies that we have PΛ = QΛ for every Λ ⊆ X. Thus, if (Ax)x∈X is
an extremal family, the probabilities of all events in σ(Ax: x ∈ X) are completely
determined and are given by (4.5)/(4.6).

2. The Lovász local lemma can be formulated more generally for families of
events with a dependency digraph: each event Ax is independent from the σ-algebra
σ(Ay: y ∈ X \Γ∗+(x)), where Γ∗+(x) = Γ+(x)∪{x} and Γ+(x) is the out-neighborhood
of x. See e.g. [2, Lemma 5.1.1] or [23, Theorem 1.17]. It would be interesting to have
a digraph analogue of Theorem 4.1, but we do not know how to do this.

3. There are other probabilistic inequalities that are expressed in terms of a
dependency graph (see for instance Suen [109] or Janson [68]); it would be interesting
to know if any of these have counterparts in statistical mechanics. One obstacle
here is the need for a counterpart of Theorem 4.1. However, even without such a
result, there may be scope for proving further inequalities in the presence of weak
dependency conditions of the form discussed in the next subsection.

4.2 Soft-core version

Let us now consider how to extend Theorem 4.1 to the more general case of a soft-core
pair interaction, i.e. to allow “soft edges” xy of strength 1−W (x, y) ∈ [0, 1]. The first
step here is to replace the hard-core dependency condition (4.1) by an appropriate
soft-core version.

Let W : X ×X → [0, 1] be symmetric and satisfy W (x, x) = 0 for all x ∈ X; and
let (Ax)x∈X be a collection of events in some probability space. For each x ∈ X, let
Sx be a random subset of X, independent of the σ-algebra σ(Ax: x ∈ X), defined by
the probabilities

P(y ∈ Sx) = W (x, y) (4.15)

independently for each y ∈ X. [Thus in the case of a hard-core pair interaction, we
have Sx = X \ Γ∗(x) with probability 1.] Let (px)x∈X be real numbers in [0, 1]. We
say that (Ax)x∈X satisfies the weak dependency conditions with interaction W and
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probabilities (px)x∈X if, for each x ∈ X and each Y ⊆ X \ x we have

E

(
P(Ax ∩

⋂
y∈Y ∩Sx

Ay)

)
≤ pxE

(
P(

⋂
y∈Y ∩Sx

Ay)

)
. (4.16)

[Note that in the special case of a hard-core pair interaction, we have Y ∩Sx = Y \Γ∗(x)
with probability 1, so that (4.16) reduces to (4.1).] Of course, the reference here to
a random subset Sx can be replaced by an explicit expression for the probabilities
P(Y ∩ Sx = Y ′), so that (4.16) is equivalent to

∑
Y ′⊆Y

(∏
y∈Y ′

W (x, y)

) ∏
y∈Y \Y ′

[1−W (x, y)]

P(Ax ∩
⋂

y∈Y ′

Ay) ≤

px

∑
Y ′⊆Y

(∏
y∈Y ′

W (x, y)

) ∏
y∈Y \Y ′

[1−W (x, y)]

P(
⋂

y∈Y ′

Ay) . (4.17)

We can now state a soft-core version of Theorem 4.1:

Theorem 4.2 Let (Ax)x∈X be a family of events in some probability space, and let
W : X × X → [0, 1] be symmetric and satisfy W (x, x) = 0 for all x ∈ X. Suppose
that (Ax)x∈X satisfies the weak dependency conditions (4.16)/(4.17) with interaction
W and probabilities (px)x∈X .

(a) If p ∈ R(W ), then

P(
⋂
x∈X

Ax) ≥ ZW (−p) > 0 (4.18)

and more generally

P(
⋂
x∈Y

Ax|
⋂
x∈Z

Ax) ≥
ZW (−p1Y ∪Z)

ZW (−p1Z)
> 0 (4.19)

for any subsets Y, Z ⊆ X. Furthermore, this bound is best possible in the sense
that there exists a family (Bx)x∈X with probabilities P(Bx) = px that satisfies the
weak dependency conditions (4.16)/(4.17) with interaction W and probabilities
(px)x∈X , has strong dependency graph GW , and has P(

⋂
x∈X Bx) = ZW (−p).

(b) If p /∈ R(W ), then there exists a probability space on which there can be con-
structed:

(i) A family of events (Bx)x∈X with probabilities P(Bx) = px and satisfying the
weak dependency conditions (4.16)/(4.17) with interaction W , such that
P(
⋂

x∈X Bx) = 0; and

(ii) A family of events (B′
x)x∈X with probabilities P(B′

x) = p′x ≤ px and satisfy-
ing the weak dependency conditions (4.16)/(4.17) with interaction W , such

that P(B′
x ∩B′

y) = W (x, y)P(B′
x)P(B′

y) for all x, y and P(
⋂

x∈X B
′
x) = 0.
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Proof. For p ∈ R(W ), we define a family of events (Bx)x∈X [on a new probability
space] by

P(
⋂
x∈Λ

Bx) =

(∏
x∈Λ

px

) ∏
{x,y}⊆Λ

W (x, y)

 (4.20)

[here the second product runs over all two-element subsets {x, y} ⊆ X (x 6= y)]. As
before, inclusion-exclusion gives

P(
⋂
x∈Λ

Bx ∩
⋂
x 6∈Λ

Bx) =
∑
I⊇Λ

(−1)|I|−|Λ|P(
⋂
x∈I

Bx) (4.21a)

=
∑
I⊇Λ

(−1)|Λ|
∏
x∈I

(−px)
∏

{x,y}⊆I

W (x, y) (4.21b)

= (−1)|Λ|ZW (−p; Λ) . (4.21c)

In particular, we have P(
⋂

x∈X Bx) = ZW (−p) > 0, and more generally for Λ ⊆ X
we have

P(
⋂
x∈Λ

Bx) =
∑
I⊆Λ

(−1)|I|P(
⋂
x∈I

Bx)

=
∑
I⊆Λ

(−1)|I|

(∏
x∈I

px

) ∏
{x,y}⊆Λ

W (x, y)


= ZW (−p1Λ)

> 0.

We define PΛ and QΛ as in (4.7)/(4.8). Note that QΛ = ZW (−p1Λ) > 0, as
QX = ZW (−p) > 0 and R(W ) is a down-set. Let us now prove by induction on |Λ|
that PΛ/QΛ is monotone increasing in Λ. For Λ ⊆ X and y ∈ X \ Λ, we have

QΛ∪{y} = ZW (−p1Λ∪{y}) (4.22a)

= ZW (−p1Λ) − pyZW (−W (y, ·)p1Λ) (4.22b)

= ZW (−p1Λ) − py

∑
Y⊂Λ

(∏
y∈Y

W (x, y)

) ∏
y∈Λ\Y

[1−W (x, y)]

ZW (−p1Y )

(4.22c)

= QΛ − py

∑
Y⊂Λ

(∏
y∈Y

W (x, y)

) ∏
y∈Λ\Y

[1−W (x, y)]

QY (4.22d)

where we have used the fundamental identity (3.3)/(3.6). On the other hand,

PΛ∪{y} = PΛ − P(Ay ∩
⋂
Λ

Ax) (4.23a)
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= PΛ −
∑
Y⊆Λ

(∏
x∈Y

W (x, y)

) ∏
x∈Λ\Y

[1−W (x, y)]

P(Ay ∩
⋂
x∈Λ

Ax)

(4.23b)

≥ PΛ −
∑
Y⊆Λ

(∏
x∈Y

W (x, y)

) ∏
x∈Λ\Y

[1−W (x, y)]

P(Ay ∩
⋂
x∈Y

Ax)

(4.23c)

≥ PΛ − py

∑
Y⊆Λ

(∏
x∈Y

W (x, y)

) ∏
x∈Λ\Y

[1−W (x, y)]

P(
⋂
x∈Y

Ax) .

(4.23d)

where the last line uses the weak dependency condition (4.16)/(4.17). We then have

PΛ

QΛ

QΛ∪{y} = PΛ − py

∑
Y⊆Λ

(∏
x∈Y

W (x, y)

) ∏
x∈Λ\Y

[1−W (x, y)]

 PΛ

QΛ

QY

(4.24a)

≤ PΛ − py

∑
Y⊆Λ

(∏
x∈Y

W (x, y)

) ∏
x∈Λ\Y

[1−W (x, y)]

PY (4.24b)

≤ PΛ∪{y} , (4.24c)

where the first inequality uses the inductive hypothesis and the second inequality uses
(4.23). Hence PΛ∪{y}/QΛ∪{y} ≥ PΛ/QΛ as claimed.

The bounds (4.18) and (4.19) follow as in Theorem 4.1.
Part (b) follows as in Theorem 4.1. For p /∈ R(W ) choose a minimal vector p′

with 0 ≤ p′ ≤ p and ZW (−p′) = 0. The events (B′
x)x∈X defined by (4.20) with px

replaced by p′x satisfy P(
⋂

x∈X B
′
x) = 0 and P(B′

x ∩B′
y) = W (x, y)P(B′

x)P(B′
y) for all

x, y. A collection of events satisfying (i) is constructed as before.

Remark. The uniqueness of a family of events satisfying (4.18) with equality follows
as before: since PX/QX = P∅/Q∅ = 1 and PΛ/QΛ is increasing we have PΛ = QΛ for
all Λ ⊆ X and so the probabilities of events are given by (4.21).

5 Sufficient conditions for ZW 6= 0 in a polydisc

In this section we shall exhibit sufficient conditions on a set of radii R = {Rx}x∈X so
that the partition function ZW (w) is nonvanishing in the closed polydisc |w| ≤ R.
We shall restrict attention to the case of a repulsive lattice gas with hard-core self-
repulsion, i.e. 0 ≤ W (x, y) ≤ 1 for all x, y and W (x, x) = 0 for all x, and we shall
use the notation introduced in Section 3.1. Our main tool will be the fundamental
identity (3.3), applied inductively.
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5.1 Basic bound

Our first (and most basic) bound is due to Dobrushin [37, 38] in the case of a hard-core
interaction; the generalization to a soft repulsive interaction was proven recently by
one of us [101]. The method of proof is, however, already implicit (in more powerful
form) in Shearer [98, Theorem 2].

Theorem 5.1 (Dobrushin [37, 38], Sokal [101]) Let X be a finite set, and let W
satisfy

(a) 0 ≤ W (x, y) ≤ 1 for all x, y ∈ X

(b) W (x, x) = 0 for all x ∈ X

Let R = {Rx}x∈X ≥ 0. Suppose that there exist constants {Kx}x∈X satisfying 0 ≤
Kx < 1/Rx and

Kx ≥
∏
y 6=x

1−W (x, y)KyRy

1−KyRy

(5.1)

for all x ∈ X. Then, for each subset Λ ⊆ X, ZΛ(w) is nonvanishing in the closed
polydisc D̄R = {w ∈ CX : |wx| ≤ Rx for all x} and satisfies there

∣∣∣∣∂ log ZΛ(w)

∂wx

∣∣∣∣ ≤


Kx

1−Kx|wx|
for all x ∈ Λ

0 for all x ∈ X \ Λ

(5.2)

Moreover, if w,w′ ∈ D̄R and w′
x/wx ∈ [0, +∞] for each x ∈ Λ, then∣∣∣∣log

ZΛ(w′)

ZΛ(w)

∣∣∣∣ ≤ ∑
x∈Λ

∣∣∣∣log
1−Kx|w′

x|
1−Kx|wx|

∣∣∣∣ (5.3)

where on the left-hand side we take the standard branch of the log, i.e. | Im log · · · | ≤ π.

Remark. It follows from (5.1) that Kx ≥ 1 and hence that Rx < 1.

Proof. Note first that (5.2) for any given Λ implies (5.3) for the same Λ, by inte-
gration.

The proof is by induction on the cardinality of Λ. If Λ = ∅ the claims are trivial.
So let us assume that (5.2) [and hence also (5.3)] holds for all sets of cardinality < n,
and let a set Λ of cardinality n be given. Let x be any element of Λ. Let us apply
the fundamental identity (3.3), and observe that W (x, ·)w ∈ D̄R since |W (x, y)| ≤ 1.
Therefore, by the inductive hypothesis we have ZΛ\x(w) 6= 0 and ZΛ\x(W (x, ·)w) 6= 0;
and from (3.3) we have

∂

∂wx

log ZΛ(w) =
Kx,Λ(w)

1 +Kx,Λ(w)wx

(5.4)
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where

Kx,Λ(w) =
ZΛ\x(W (x, ·)w)

ZΛ\x(w)
. (5.5)

Now by the inductive hypothesis (5.3) for Λ\x, and using the fact that w′ = W (x, ·)w
satisfies w′

y/wy = W (x, y) ≥ 0, we have

|Kx,Λ(w)| ≤
∏

y∈Λ\x

1−W (x, y)Ky|wy|
1−Ky|wy|

≤
∏

y∈X\x

1−W (x, y)Ky|wy|
1−Ky|wy|

, (5.6)

which is ≤ Kx by the hypothesis (5.1). This proves (5.2) for Λ, and hence completes
the induction.

It is convenient to rewrite Theorem 5.1 in terms of the new variables rx = KxRx:

Corollary 5.2 Let X be a finite set, and let W satisfy 0 ≤ W (x, y) ≤ 1 for all
x, y ∈ X and W (x, x) = 0 for all x ∈ X. Suppose that there exist constants 0 ≤ rx < 1
satisfying

Rx ≤ rx

∏
y 6=x

1− ry

1−W (x, y)ry

(5.7)

for all x ∈ X. Then, for all w satisfying |w| ≤ R, the partition function ZW satisfies

|ZW (w)| ≥ ZW (−R) ≥
∏
x∈X

(1− rx) > 0 (5.8)

and more generally ∣∣∣∣ZW (w1Y ∪Z)

ZW (w1Z)

∣∣∣∣ ≥ ∏
x∈Y

(1− rx) > 0 . (5.9)

In particular, if we define the “maximum weighted degree”

∆W = max
x∈X

∑
y 6=x

[1−W (x, y)] (5.10)

and write

F (∆W ) =
2 + ∆W −

√
∆2

W + 4∆W

2
(5.11)

R(∆W ) = F (∆W ) e−[1−F (∆W )] (5.12)

we have
|ZW (w)| ≥ [1− F (∆W )]|X| > 0 (5.13)

whenever |wx| ≤ R(∆W ) for all x ∈ X.
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Proof. Setting rx = KxRx, we find that (5.1) becomes (5.7), and (5.3) with Λ = X
and w′ = 0 becomes (5.8).

To obtain the last claim, note first that

1− r

1−Wr
=

1− r

1− r + (1−W )r
=

1

1 + (1−W ) r
1−r

≥ e−(1−W )r/(1−r) (5.14)

whenever 0 ≤ W ≤ 1 and 0 ≤ r ≤ 1. Therefore, if we set rx = r for all x ∈ X, we
have

rx

∏
y 6=x

1− ry

1−W (x, y)ry

≥ re−∆W r/(1−r) . (5.15)

We then choose r to maximize the right-hand side of (5.15); simple calculus yields
r = F (∆W ) and ∆W r = (1 − r)2, so that the right-hand side of (5.15) is bounded
below by R(∆W ). It follows that if we define Rx = R(∆W ) and rx = F (∆W ) for all
x ∈ X then (5.7) and so (5.8) are satisfied.

Remarks. 1. The radius R(∆W ) behaves as

R(∆W ) =

 1− 2∆
1/2
W + 5

2
∆W + O(∆

3/2
W ) as ∆W → 0

1
e∆W

[
1− 1

∆W
+ 3

2∆W
+ O(∆−3

W )
]

as ∆W →∞
(5.16)

Example 3.6 (the r-ary rooted tree) shows that this bound is sharp (to leading order)

as ∆W → ∞. At the other extreme, the 1 − const × ∆
1/2
W behavior at small ∆W

is also best possible, since the two-site lattice gas with W (x, x) = W (y, y) = 0
and W (x, y) = 1 − ε has ZW (w) = 1 + 2w + (1 − ε)w2 and hence has a root at

w = −1/(1+
√

ε). [However, the coefficient 2 rather than 1 in the ∆
1/2
W term of (5.16)

may not be best possible.]
2. From Proposition 2.15(c) we know that the set R(W ) is log-convex; it is

therefore natural to ask whether the subset of R(W ) produced by (5.7) is also log-
convex. (If it weren’t, then we could improve Corollary 5.2 by taking the log-convex
hull.) It turns out that the set of vectors satisfying (5.7) is indeed always log-convex:
in fact, if (r,R) and (r′,R′) are two pairs of vectors satisfying (5.7), and 0 ≤ λ ≤ 1,
then (rλr′1−λ,RλR′1−λ) also satisfies (5.7). In the hard-core case this follows from the
inequality 1 − rλ

y (r′y)
1−λ ≥ (1 − ry)

λ(1 − r′y)
1−λ, which is proven by two applications

of the weighted arithmetic-geometric mean inequality as in (3.55). In the general
case it can be shown by a similar argument (using four applications of the weighted
arithmetic-geometric mean inequality!).

Specializing Corollary 5.2 to the case of a hard-core pair interaction for a graph
G,

W (x, y) =

{
0 if x = y or xy ∈ E(G)
1 if x 6= y and xy /∈ E(G)

(5.17)

we have:
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Corollary 5.3 Let G be a finite graph with vertex set X, and let R = {Rx}x∈X ≥ 0.
Suppose that there exist constants 0 ≤ rx < 1 satisfying

Rx ≤ rx

∏
y∈Γ(x)

(1− ry) (5.18)

for all x ∈ X. Then, for all w satisfying |w| ≤ R, the independent-set polynomial
ZG satisfies

|ZG(w)| ≥ ZG(−R) ≥
∏
x∈X

(1− rx) > 0 (5.19)

and more generally ∣∣∣∣ZG(w1Y ∪Z)

ZG(w1Z)

∣∣∣∣ ≥ ∏
x∈Y

(1− rx) > 0 . (5.20)

In particular, if G has maximum degree ∆, then |ZG(w)| ≥ [∆/(∆ + 1)]|X| > 0
whenever |wx| ≤ ∆∆/(∆ + 1)∆+1 for all x ∈ X.

Proof. The last claim is obtained by setting rx = 1/(∆ + 1) for all x ∈ X.

Remark. The radius ∆∆/(∆ + 1)∆+1 behaves for large ∆ as

∆∆

(∆ + 1)∆+1
=

1

e∆

[
1− 1

2∆
+

7

24∆2
− 3

16∆3
+ O(∆−4)

]
, (5.21)

which agrees with (5.16) to leading order in 1/∆ but is slightly larger (hence better)
at order 1/∆2.

Combining Corollary 5.3 with Theorem 4.1, we immediately obtain the lopsided
Lovász local lemma (Theorem 1.2). Combining Corollary 5.2 with Theorem 4.2, we
obtain a “soft-core” version of the lopsided Lovász local lemma:

Theorem 5.4 Let (Ax)x∈X be a family of events in some probability space, and let
W : X × X → [0, 1] be symmetric and satisfy W (x, x) = 0 for all x ∈ X. Suppose
that (Ax)x∈X satisfies the weak dependency conditions (4.16)/(4.17) with interaction
W and probabilities (px)x∈X . Suppose further that (rx)x∈X are real numbers in [0, 1)
satisfying

px ≤ rx

∏
y∈Γ(x)

(1− ry) . (5.22)

Then
P(
⋂
x∈X

Ax) ≥
∏
x∈X

(1− rx) > 0 , (5.23)

and more generally for sets Y, Z ⊆ X, we have

P(
⋂
x∈Y

Ax|
⋂
x∈Z

Ax) ≥
∏

x∈Y \Z

(1− rx) = 0 . (5.24)
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Defining the weighted degree ∆W as in (5.10), we obtain the following:

Lemma 5.5 Let (Ax)x∈X satisfy the weak dependency conditions (4.16)/(4.17) with
interaction W and probabilities (px)x∈X . If px < ∆∆W

W /(∆W + 1)∆W +1 for every
x ∈ X, then P(

⋂
x∈X Ax) > 0.

Proof. As in the proof of Corollary 5.3, set rx = r ≡ 1/(∆W + 1) for all x ∈ X.
Then check (5.7):

rx

∏
y 6=x

1− ry

1−W (x, y)ry

≤ rx

∏
y 6=x

(1− ry)
1−W (x,y)

≤ r(1− r)∆W

≤ ∆∆W
W

(∆W + 1)∆W +1
. (5.25)

In the first inequality we have used the fact that 1 −W (x, y)ry ≤ (1 − ry)
W (x,y) for

0 ≤ W (x, y) ≤ 1.

It would be interesting to see applications of Theorem 5.4 and Lemma 5.5.

5.2 Improved bound

Let us now attempt to improve the bound of Theorem 5.1. Note, first of all, that we
need not insist that the bound (5.2) hold with the same constant Kx for all Λ 3 x;
rather, we can use constants Kx,Λ that depend on Λ. Inspection of the inductive
argument shows that we can define the constants Kx,Λ ∈ [0, +∞] as a function of the
family {Rx} by the recursion

Kx,Λ =


∏

y ∈ Λ \ x

W (x, y) 6= 1

Ry > 0

1−W (x, y)Ky,Λ\xRy

1−Ky,Λ\xRy

if Ky,Λ\xRy < 1 for all terms in the product

+∞ otherwise
(5.26)

[Note that Kx,{x} = 1 for all x, because the product (5.26) is empty.] It follows imme-
diately by induction that each Kx,Λ is an increasing rational function of {Ry}y∈Λ\x up
to the first pole, and +∞ thereafter. More precisely, suppose we define the rational
functions K̂x,Λ(R) by the recursion (5.26) without the restrictions Ky,Λ\xRy < 1; then
it is easy to see that

Kx,Λ(R) =

{
K̂x,Λ(R) if K̂x,Λ(R′) <∞ for 0 ≤ R′ ≤ R

+∞ otherwise
(5.27)

Moreover, it is easily proven by induction that all the partial derivatives of K̂x,Λ are
nonnegative at R = 0; it then follows from Proposition 2.11 that the Taylor series of
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K̂x,Λ(R) about 0 converges throughout the region where the first case in (5.27) holds,

and that all the partial derivatives of Kx,Λ = K̂x,Λ are nonnegative there. Finally, it
is obvious from the definition (5.26) ff. that Kx,Λ is an increasing function of Λ.

Let us now define a graph G with vertex set V = {x ∈ X: Rx > 0} and edge set
E = {x, y ∈ V : W (x, y) 6= 1}; and for each Λ ⊆ X, let GΛ be the subgraph of G
induced by Λ∩V . Then only the connected component of GΛ containing x plays any
role in the definition of Kx,Λ: that is, if GΛ has several connected components with
vertex sets Λ1, . . . , Λk and x ∈ Λi, then Kx,Λ = Kx,Λi

.
Let us now call a pair (x, Λ) “good” if Kx,Λ < ∞ and Kx,ΛRx < 1. It follows

immediately from the definition (5.26) ff. that if (x, Λ) is good, then (y, Λ \ x) is also
good whenever y ∈ Λ \ x with W (x, y) 6= 1 and Ry > 0, i.e. whenever y is a neighbor
of x in GΛ. [Indeed, this follows under the weaker hypothesis that Kx,Λ <∞.]

We then have:

Theorem 5.6 (improved Dobrushin–Shearer bound) Let X be a finite set, and
let W satisfy

(a) 0 ≤ W (x, y) ≤ 1 for all x, y ∈ X

(b) W (x, x) = 0 for all x ∈ X

Let R = {Rx}x∈X ≥ 0. Define the constants Kx,Λ ∈ [0, +∞] as above. Suppose that
in each connected component of GΛ there exists at least one vertex x for which the
pair (x, Λ) is good. Then ZΛ(w) is nonvanishing in the closed polydisc D̄R; and for
every good pair (x, Λ) and every w ∈ D̄R, we have∣∣∣∣∂ log ZΛ(w)

∂wx

∣∣∣∣ ≤ Kx,Λ

1−Kx,Λ|wx|
. (5.28)

Moreover, if w,w′ ∈ D̄R and w′
x/wx ∈ [0, +∞] for each x ∈ Λ, and in addition the

pair (x, Λ) is good whenever w′
x 6= wx, then∣∣∣∣log

ZΛ(w′)

ZΛ(w)

∣∣∣∣ ≤ ∑
x ∈ Λ

w′
x 6= wx

∣∣∣∣log
1−Kx,Λ|w′

x|
1−Kx,Λ|wx|

∣∣∣∣ , (5.29)

where on the left-hand side we take the standard branch of the log, i.e. | Im log · · · | ≤ π.

Proof. Note first that (5.28) for any given Λ implies (5.29) for the same Λ, by
integration.

The proof is by induction on the cardinality of Λ. If Λ = ∅ the claims are trivial.
So let us assume that (5.28) [and hence also (5.29)] holds for all sets of cardinality
< n satisfying the stated hypotheses, and let a set Λ of cardinality n satisfying these
hypotheses be given. If GΛ is not connected, i.e. has components with vertex sets
Λ1, . . . , Λk (k ≥ 2), then ZΛ(w) factorizes as

ZΛ(w) =
k∏

i=1

ZΛi
(w) ; (5.30)
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moreover, each connected component has cardinality < n and satisfies the hypotheses
of the theorem, so it follows immediately from the inductive hypothesis that (5.28)
and (5.29) hold also for Λ. We may therefore assume that GΛ is connected.

Let x be any element of Λ for which the pair (x, Λ) is good. Since GΛ is connected,
the vertex x has at least one neighbor y in each connected component of GΛ\x. More-
over, as noted previously, the pair (y, Λ \ x) is good whenever y is a neighbor of x
in GΛ. Therefore, the inductive hypothesis is applicable to Λ \ x. Let us now apply
the fundamental identity (3.3), and observe that W (x, ·)w ∈ D̄R since |W (x, y)| ≤ 1.
By the inductive hypothesis we have ZΛ\x(w) 6= 0 and ZΛ\x(W (x, ·)w) 6= 0; and from
(3.3) we have

∂

∂wx

log ZΛ(w) =
Kx,Λ(w)

1 +Kx,Λ(w)wx

(5.31)

where

Kx,Λ(w) =
ZΛ\x(W (x, ·)w)

ZΛ\x(w)
. (5.32)

Now each y ∈ Λ \ x with w′
y 6= wy necessarily has W (x, y) 6= 1 and Ry > 0 (i.e.

is a neighbor of x in GΛ), so that the pair (y, Λ \ x) is good. We may therefore
apply the inductive hypothesis (5.29); using the fact that w′ = W (x, ·)w satisfies
w′

y/wy = W (x, y) ≥ 0, we have

|Kx,Λ(w)| ≤
∏

y ∈ Λ \ x

W (x, y) 6= 1

Ry > 0

1−W (x, y)Ky,Λ\x|wy|
1−Ky,Λ\x|wy|

≤ Kx,Λ (5.33)

since |wy| ≤ Ry. This proves (5.28) for (x, Λ), and hence completes the induction.

Remark. It is unclear whether the set of vectors R satisfying the hypotheses of
Theorem 5.6 is log-convex. If it is not, then the conclusion of Theorem 5.6 can be
improved by taking the log-convex hull.

As a corollary of Theorem 5.6, we can deduce a bound due originally (in the Lovász
context) to Shearer [98, Theorem 2], which improves the last sentence of Corollary 5.3
by replacing ∆ by ∆ − 1. Indeed, we can very slightly improve Shearer’s bound by
allowing one vertex x0 to have a larger radius Rx0 :

Corollary 5.7 Let G = (X, E) be a finite graph of maximum degree ∆ ≥ 2, and fix
one vertex x0 ∈ X. Suppose that |wx0 | ≤ (∆−1)∆/∆∆ and that |wx| ≤ (∆−1)∆−1/∆∆

for all x 6= x0. Then ZG(w) 6= 0.

Proof. Since ZG factorizes over connected components, we can assume without loss
of generality that G is connected. (Indeed, if G is disconnected, then we can allow
one “x0-like” vertex in each connected component.) Set Rx0 = (∆ − 1)∆/∆∆ and
Rx = (∆− 1)∆−1/∆∆ for all x 6= x0.
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We first claim that if x0 /∈ Λ, and x ∈ Λ is a vertex with at least one neighbor in
X \ Λ, then

Kx,Λ <

(
∆

∆− 1

)∆−1

(5.34)

(note the strict inequality). The proof is by induction on |Λ|, using the definition
(5.26): it certainly holds if Λ = {x}; since every y appearing in the product on the
right-hand side of (5.26) has at least one neighbor outside of Λ \ x (namely, x itself),
Ky,Λ\x satisfies (5.34) by the inductive hypothesis and so Ky,Λ\xRy < 1/∆; and finally,
since x has at least one neighbor outside Λ, there are at most ∆ − 1 factors in the
product. Thus

Kx,Λ <

(
1

1− 1/∆

)∆−1

=

(
∆

∆− 1

)∆−1

.

It then follows that

Kx0,X <

(
∆

∆− 1

)∆

, (5.35)

since the bound (5.34) applies to all the terms Ky,Λ\x0 appearing on the right-hand
side of (5.26). We therefore have Kx0,XRx0 < 1, and so the pair (x0, X) is good. The
claim then follows from Theorem 5.6.

Replacing ∆∆/(∆+1)∆+1 by (∆−1)∆−1/∆∆ may seem to be a negligible improve-
ment, since both quantities have the same leading behavior ≈ 1/(e∆) as ∆ → ∞,
and differ only at higher order:

(∆− 1)∆−1

∆∆
=

1

e∆

[
1 +

1

2∆
+

7

24∆2
+

3

16∆3
+ O(∆−4)

]
(5.36)

[cf. (5.21)].14 But Shearer’s bound (∆− 1)∆−1/∆∆ has the great merit of being best
possible: for, as he showed [98], if G is the complete rooted tree with branching
factor r = ∆ − 1 and depth n, then ZG(w) has negative real zeros that tend to
w = −(∆− 1)∆−1/∆∆ as n→∞ (see Example 3.6 above).

We remark that Corollary 5.7 does not appear to extend naturally to the soft-core
case (note that having one neighbor outside Λ in the argument around (5.34) need
not reduce the weighted degree of a vertex in Λ by 1).

5.3 Optimal bound

Now let us try to further improve Theorem 5.6. Where in the proof did we lose
equality? This happened only in (5.33), where we applied (5.29), which in turn arose
from integrating (5.28): the point is that the bound (5.28) in general improves as
we pass from w downwards to w′ = W (x, ·)w, but we failed to take advantage of
this fact. The solution is to order (arbitrarily) the vertices y1, . . . , yk arising in the

14The amusing similarity of (5.21) and (5.36) arises from the fact that −(−∆)−∆/(−∆+1)−∆+1 =
(∆− 1)∆−1/∆∆.
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product (5.33) and to write Kx,Λ(w) as a telescoping product; then we will have a
sharp bound, i.e. one that becomes equality when w = −R.

Let us show this first in the special case of a hard-core pair interaction: setting
Γ(x) ∩ Λ = {y1, . . . , yk}, we have

Kx,Λ(w) =
ZΛ\Γ∗(x)(w)

ZΛ\x(w)
=

k∏
i=1

ZΛ\x\{y1,...,yi}(w)

ZΛ\x\{y1,...,yi−1}(w)
. (5.37)

Therefore we can improve (5.33) by writing

|Kx,Λ(w)| ≤
k∏

i=1

1

1−Kyi,Λ\x\{y1,...,yi−1}Ryi

, (5.38)

and so we can replace the definition (5.26) by

Kopt
x,Λ =

k∏
i=1

1

1−Kopt
yi,Λ\x\{y1,...,yi−1}Ryi

(5.39)

if Kopt
yi,Λ\x\{y1,...,yi−1}Ryi

< 1 for all terms in the product, and Kopt
x,Λ = +∞ otherwise

(note that Kopt
x,{x} = 1). Moreover, if we use Kopt

x,Λ, then all the bounds in the proof
become equality when w = −R.

In the general case of a “soft” interaction W (x, y), things become slightly more
complicated, since the vectors w′ = W (x, ·)w have their components depressed but
not set to zero. To handle this case, we need to define the numbers Kopt

x,Λ explicitly as
functions of a vector R 6=x. We begin by writing Kx,Λ(w) as a telescoping product as
in (3.10):

Kx,Λ(w) =
k∏

i=1

ZΛ\x(w̃
(i))

ZΛ\x(w̃(i−1))
(5.40)

where the vectors w̃(i) are defined by

(w̃(i))y =

{
W (x, y)wy if y = yj for some j ≤ i
wy otherwise

(5.41)

Therefore we can improve (5.33) by writing

|Kx,Λ(w)| ≤
k∏

i=1

1−W (x, yi)Kyi,Λ\x(R̃
(i−1)
6=x )Ryi

1−Kyi,Λ\x(R̃
(i−1)
6=x )Ryi

(5.42)

[where R̃
(i)
6=x is defined by the obvious analogue of (5.41)], and so we could have

replaced the definition (5.26) by

Kopt
x,Λ =

k∏
i=1

1−W (x, yi)K
opt
yi,Λ\x(R̃

(i−1)
6=x )Ryi

1−Kopt
yi,Λ\x(R̃

(i−1)
6=x )Ryi

(5.43)
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if Kopt
yi,Λ\x(R̃

(i−1)
6=x )Ryi

< 1 for all terms in the product, and Kopt
x,Λ = +∞ otherwise.

Another way of looking at all this is: We want to choose the constants Kx,Λ so
that the bound (5.28) holds. By (3.8) and (3.9), the optimal choice is manifestly

Kopt
x,Λ = sup

0≤R′≤R
Kx,Λ(−R′) , (5.44)

where Kx,Λ(w) was defined in (3.7). We now claim that (5.44) is identical to (5.43)
et seq. Indeed, the recursion (3.13) shows that the rational function Kx,Λ(−R) is
identical to what one obtains from the recursion (5.43) if one omits the condition
following the equation; and the monotonicity of (5.43) up to the first pole guarantees
that implementing the condition following the equation is equivalent to taking the
supremum over all R′ satisfying 0 ≤ R′ ≤ R.

In summary, this second improvement of Theorem 5.1 is optimal in the sense that
it is equivalent to calculating the exact Kx,Λ(w) and hence [by (3.16)] the exact ZΛ(w).
So this “optimally improved Dobrushin–Shearer theorem” is not usually going to be
useful in practice; but it does give insight into what has been lost in Theorems 5.1
and 5.6.

6 Tree interpretation

Further insight into Theorem 5.6 and its “optimal” improvement à la (5.43)/(5.44)
can be obtained by considering the tree structure underlying the recursions (5.26)
and (5.43).

6.1 Tree interpretation of Theorem 5.6

Let us first consider (5.26), which provides a recursive definition of the functions

Kx,Λ(R) [or K̂x,Λ(R) if we ignore the conditions Ky,Λ\xRy < 1 following (5.26)]. This
recursion can be encoded as a tree: at the top (root) of the tree is the pair (x, Λ);
immediately underneath it are all the pairs (y, Λ \ x) for which W (x, y) 6= 1 [that is,
for which xy is an edge of the support graph G = GW restricted to Λ]; and so on.
Another way of saying this is as follows:

Definition 6.1 (see also [78]) Let G be a simple loopless graph, and let x1 ∈ V (G).
Then the path-tree or self-avoiding-walk tree (SAW-tree) of G rooted at x1 — let us
call it SAW(G, x1) — is the graph whose vertex set is the set of paths in G starting
at x1 [i.e. paths x1x2 · · ·xk in G with k ≥ 1] and whose edges connect P to P ′

whenever P ′ is a one-step extension of P [i.e. whenever P ′ = x1 · · ·xk with k ≥ 2
and P = x1 · · ·xk−1]. The root of SAW(G, x1) is the zero-step path x1. [Note that if
G happens to be a tree, then SAW(G, x1) is isomorphic to G for any x1 ∈ V (G).]

We then associate a path x1 · · ·xk with the pair (xk, Λ) where Λ = V (G)\{x1, . . . , xk−1}.
Note that a given pair (xk, Λ) can correspond to many paths x1 · · ·xk, which arise
from different orderings of the set {x2, . . . , xk−1} = V (G) \ Λ \ x1.
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Given a nonnegative vector R = {Rx}x∈V (G), let us now assign to the vertices of
SAW(G, x1) the fugacities

ŵx1···xk
= −Rxk

, (6.1)

and to the edges of SAW(G, x1) the weights

Ŵ (x1 · · ·xk−1, x1 · · ·xk) = W (xk−1, xk) . (6.2)

We can then apply Algorithm T from Section 3.4 to calculate the effective fugacities
ŵeff

x1···xk
on the tree SAW(G, x1), working upwards from the leaves:

Proposition 6.2 In the foregoing set-up, we have

ŵeff
x1···xk

= −Rxk
K̂xk,V (G)\{x1,...,xk−1}(R) (6.3)

where the rational functions K̂x,Λ(R) are defined by the recursion (5.26) ignoring the
conditions Ky,Λ\xRy < 1.

Proof. The proof runs inductively up from the leaves.
If x1 · · ·xk is a leaf (i.e. a maximal SAW), then ŵeff

x1···xk
= ŵx1···xk

= −Rxk
by

Algorithm T and the definition (6.1); moreover, K̂xk,V (G)\{x1,...,xk−1} ≡ 1 because xk

is an isolated vertex in G \ {x1, . . . , xk−1} [since x1 · · ·xk is a maximal SAW], so that
the product (5.26) is empty.

Let P = x1 · · ·xk be a non-leaf, and suppose that (6.3) holds for all one-step
extensions P ′ = x1 · · ·xkxk+1. Then Algorithm T gives

ŵeff
x1···xk

= ŵx1···xk

∏
xk+1∈V (G)\{x1,...,xk}

1 + W (xk, xk+1)ŵ
eff
x1···xkxk+1

1 + ŵeff
x1···xkxk+1

= −Rxk

∏
xk+1∈V (G)\{x1,...,xk}

1 − W (xk, xk+1)Rxk+1
K̂xk+1,V (G)\{x1,...,xk}

1 − Rxk+1
K̂xk+1,V (G)\{x1,...,xk}

= −Rxk
K̂xk,V (G)\{x1,...,xk−1}, (6.4)

where the second equality uses the inductive hypothesis, and the last equality follows
immediately from (5.26).

Now let us apply Theorem 3.2 to the tree SAW(G, x1) with the fugacities ŵ defined

by (6.1) and edge weights Ŵ defined by (6.2). We conclude that the vector R̂ defined
by

R̂x1···xk
= Rxk

(6.5)

lies in R(Ŵ ) if and only if RxK̂x,Λ < 1 for all Λ ⊆ V (G) and all x ∈ Λ. [By (6.3),

this latter condition is sufficient to have R(Ŵ ); indeed, only certain sets Λ ⊆ V (G)
actually arise. Conversely, given any Λ ⊆ V (G) and any x ∈ Λ, we can choose
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x1 = x and restrict to the subtree of SAW(G, x1) consisting of paths inside Λ. Using

the monotonicity of R(Ŵ ) to restrict to this subtree, we conclude by Algorithm T

that ŵeff
x1
∈ (−1, 0] and hence by (6.3) that RxK̂x,Λ < 1.] On the other hand, by

Theorem 5.6 this is a sufficient condition to have R ∈ R(W ).
In summary, the bounds produced by Theorem 5.6 for the lattice gas on G with

edge weights W correspond to solving exactly (via Algorithm T) the lattice gas on

the tree SAW(G, x1) with edge weights Ŵ [for any x1 ∈ V (G)]. And this produces a
lower bound on the set R(W ).

6.2 Tree interpretation of the “optimal” bound: hard-core
case

Next let us consider the “optimal” recursion (5.43) in the special case of a hard-core
pair interaction, i.e. the independent-set polynomial for the graph G.

For each vertex x1 · · ·xk of the SAW-tree, let us choose (in any way we like) an
ordering of the children x1 · · ·xkxk+1. We then define the pruned SAW-tree corre-
sponding to this ordering to be the subtree of SAW(G, x1) whose vertex set consists
of those paths x1 · · ·xk satisfying the rule that “you can’t use an elder sibling of a
vertex of G that you have previously used”. More precisely, for each path x1 · · ·xi,
let us define the set S(x1 · · ·xi) of “spurned vertices at step i” to be the set of all
x ∈ V (G) such that x1 · · ·xi−1x is a path that precedes x1 · · ·xi−1xi in the ordering of
children of x1 · · ·xi−1. A path x1 · · ·xk then belongs to the pruned SAW-tree if and
only if for all 2 ≤ i < j ≤ k we have xj /∈ S(x1 · · ·xi).

Let us remark that the pruned SAW-tree is in general much smaller than the
full SAW-tree. For example, if G = Kn, then the SAW-tree has (n − 1)! leaves and
(n − 1)!

∑n−1
i=0 1/i! vertices, while the pruned SAW-tree (for any choice of ordering)

has 2n−2 leaves and 2n−1 vertices.
Having defined the pruned SAW-tree, we then identify a path x1 · · ·xk in the

pruned SAW-tree with the pair (xk, Λ) where

Λ ≡ Λ(x1, . . . , xk) = V (G) \ {x1, . . . , xk−1} \
k⋃

i=2

S(x1 · · ·xi) , (6.6)

that is, V (G) minus the vertices already visited or already spurned. [Note that this
differs from the definition Λ = V (G)\{x1, . . . , xk−1} used in the preceding subsection.]

Given a vector w = {wx}x∈V (G) of fugacities on G, let us now assign to the vertices
of the pruned SAW-tree the fugacities

ŵx1···xk
= wxk

(6.7)

and, as before, assign to the edges the weights

Ŵ (x1 · · ·xk−1, x1 · · ·xk) = W (xk−1, xk) (6.8)

(which, in the hard-core case currently under consideration, takes the value 0 for each
edge of the pruned SAW-tree). We can then apply Algorithm T from Section 3.4 to
the pruned SAW-tree to calculate the effective fugacities ŵeff

x1···xk
:
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Proposition 6.3 For all x1 · · ·xk belonging to the pruned SAW-tree, we have

ŵeff
x1···xk

= wxk
Kxk,Λ(x1,...,xk)(w) . (6.9)

Proof. The proof runs inductively up from the leaves.
If x1 · · ·xk is a leaf (i.e. a maximal pruned SAW), then ŵeff

x1···xk
= ŵx1···xk

= wxk

by Algorithm T and the definition (6.7); moreover, Kxk,Λ(x1,...,xk) ≡ 1 because xk is
an isolated vertex in the subgraph of G induced by Λ(x1, . . . , xk) [since x1 · · ·xk is a
maximal pruned SAW], so that all factors in the product (3.14) are 1.

Let P = x1 · · ·xk be a non-leaf, and suppose that (6.9) holds for all one-step
extensions P ′ = x1 · · ·xkxk+1 that are pruned SAWs. These one-step extensions are
children of x1 · · ·xk, hence are ordered: let the ith such walk in order be x1 · · ·xkyi

(1 ≤ i ≤ l for some l ≥ 1). Note that {y1, . . . , yl} = Γ(xk) ∩ Λ(x1, . . . , xk) and that

Λ(x1, . . . , xk, yi) = Λ(x1, . . . , xk) \ {xk, y1, . . . , yi−1} . (6.10)

Then Algorithm T gives

ŵeff
x1···xk

= ŵx1···xk

l∏
i=1

1 + W (xk, yi)ŵ
eff
x1···xkyi

1 + ŵeff
x1···xkyi

= ŵx1···xk

l∏
i=1

1

1 + wyi
Kyi,Λ(x1,...,xk,yi)(w)

= ŵx1···xk

l∏
i=1

1

1 + wyi
Kyi,Λ(x1,...,xk)\{xk,y1,...,yi−1}(w)

= ŵx1···xk
Kxk,Λ(x1,...,xk)(w) (6.11)

where the second equality uses the inductive hypothesis and the fact that W (xk, yi) =
0, the third equality uses (6.10), and the final equality uses (3.14).

Now let us apply Theorem 3.2 to the pruned SAW-tree with the fugacities ŵ
defined by (6.7) with w = −R, and edge weights Ŵ defined by (6.8). We conclude

that the vector R̂ defined by
R̂x1···xk

= Rxk
(6.12)

lies in R(Ŵ ) if and only if RxKx,Λ(−R) < 1 for all Λ ⊆ V (G) and all x ∈ Λ; and by
the discussion surrounding (5.43)/(5.44), this is a necessary and sufficient condition
to have R ∈ R(W ).

Therefore, we have shown that the “optimal” Dobrushin–Shearer bound à la
(5.43)/(5.44) for the independent-set polynomial (= hard-core lattice gas) on G cor-
responds to computing exactly (via Algorithm T) the independent-set polynomial for
the pruned SAW-tree [for any x1 ∈ V (G) and any choice of orderings of children].
And this produces an exact computation of the set R(W ).

69



6.3 Tree interpretation of the “optimal” bound: general case

Finally, let us consider the “optimal” recursion (5.43) in the general case of a soft-
core pair interaction W . Here we work again on the full SAW-tree SAW(G, x1), where
G = GW is the support graph of W ; “pruning” will be replaced by a “soft suppression
of spurned vertices”. As before, we begin by choosing (in any way we like) an ordering
on the children of each vertex in the SAW-tree, and we use this ordering to define the
set S(x1 · · ·xi) of “spurned vertices at step i”. Then, given a vector w = {wx}x∈V (G)

of fugacities on G, we assign to the vertices of the SAW-tree the modified fugacities

ŵx1···xk
= wxk

∏
2 ≤ i ≤ k

xk ∈ S(x1 · · ·xi)

W (xi−1, xk) . (6.13)

[Note that the product in (6.13) could equally well be written 2 ≤ i < k, since
xk /∈ S(x1 · · ·xk).] As before, we assign to the edges the weights

Ŵ (x1 · · ·xk−1, x1 · · ·xk) = W (xk−1, xk) . (6.14)

We can then apply Algorithm T to calculate the effective fugacities ŵeff
x1···xk

on the
tree SAW(G, x1). We obtain:

Proposition 6.4 In the foregoing set-up, we have

ŵeff
x1···xk

= w̃[x1···xk]
xk

Kxk,V (G)\{x1,...,xk−1}(w̃
[x1···xk]) (6.15)

where w̃[x1···xk] is defined by

w̃[x1···xk]
y = wy

∏
2 ≤ i ≤ k

y ∈ S(x1 · · ·xi)

W (xi−1, y) . (6.16)

Proof. The proof runs inductively up from the leaves.
If x1 · · ·xk is a leaf (i.e. a maximal SAW), then

ŵeff
x1···xk

= ŵx1···xk
= wxk

∏
2 ≤ i ≤ k

xk ∈ S(x1 · · ·xi)

W (xi−1, xk) = w̃[x1···xk]
xk

, (6.17)

where the first equality uses Algorithm T and the subsequent equalities are the defini-
tions (6.13) and (6.16). On the other hand, Kxk,V (G)\{x1,...,xk−1} ≡ 1 because x1 · · ·xk

is a maximal SAW, so that the product (3.14) is empty.
Let P = x1 · · ·xk be a non-leaf, and suppose that (6.15) holds for all one-step

extensions P ′ = x1 · · ·xkxk+1. These one-step extensions are children of x1 · · ·xk,
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hence are ordered: let the ith such walk in order be x1 · · ·xkyi (1 ≤ i ≤ l for some
l ≥ 1). Note that {y1, . . . , yl} = Γ(xk) ∩ {x1, . . . , xk−1}. Then Algorithm T gives

ŵeff
x1···xk

= ŵx1···xk

l∏
i=1

1 + W (xk, yi)ŵ
eff
x1···xkyi

1 + ŵeff
x1···xkyi

= w̃[x1···xk]
xk

l∏
i=1

1 + W (xk, yi)w̃
[x1···xkyi]
yi Kyi,V (G)\{x1,...,xk}(w̃

[x1···xkyi])

1 + w̃
[x1···xkyi]
yi Kyi,V (G)\{x1,...,xk}(w̃

[x1···xkyi])
. (6.18)

Note now that from (6.16) we have

w̃[x1···xkyi]
y =

{
W (xk, y)w̃

[x1···xk]
y if y = yj for some j < i

w̃
[x1···xk]
y otherwise

(6.19)

Therefore, the product on the right-hand side of (6.18) is identical to (3.13) if we set
x = xk and Λ = V (G) \ {x1, . . . , xk−1} and w is replaced by w̃[x1···xk], for then (6.19)
becomes precisely the vector w̃(i−1) defined in (3.11). Therefore, (6.18) equals the
right-hand side of (6.15), as claimed.

7 Unfolding

In Section 6.2 we showed that the “optimal” Dobrushin–Shearer bound à la (5.43)/(5.44)
can be interpreted, in the special case of the independent-set polynomial (= hard-
core lattice gas) for a graph G, as an exact computation of the set R(G) based on
computing exactly (via Algorithm T) the independent-set polynomial of the pruned
SAW-tree of G. In this section we would like to show how this tree bound can be
understood as arising from the repeated application of a single “unfolding” step.

Let G = (V, E) be a graph, and let us select a pair of adjacent vertices x, y. As
previously, G \ x (resp. G \ y) denotes the graph obtained from G by deleting the

vertex x (resp. y) and all edges incident with it. We then define Ĝxy to be the graph
obtained from the disjoint union of G′ ≡ G \ y and G′′ ≡ G \ x by adjoining an extra
edge connecting the vertex x in G′ to the vertex y in G′′ (Figure 1). To each vertex
z in G \ x \ y ≡ (G \ x) \ y, there corresponds a vertex z′ in G′ and a vertex z′′ in
G′′. Given a vector w with index set V (G), we define the corresponding “diagonal”

vector ŵ with index set V (Ĝxy) by

ŵx = wx (7.1a)

ŵy = wy (7.1b)

ŵz′ = wz (7.1c)

ŵz′′ = wz (7.1d)

By considering the occupation of sites x and y, it is easily seen that

ZG(w) = ZG\x\y(w) + wxZG\Γ∗(x)(w) + wyZG\Γ∗(y)(w) (7.2)
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and

ZĜxy(ŵ) = ZG\x\y(w)2 + wxZG\x\y(w)ZG\Γ∗(x)(w) + wyZG\x\y(w)ZG\Γ∗(y)(w)

(7.3a)

= ZG\x\y(w) ZG(w) . (7.3b)

We have the following fundamental result:

Theorem 7.1 R ∈ R(G) if and only if R̂ ∈ R(Ĝxy). In other words, R(G) is

(isomorphic to) the “diagonal cross section” of R(Ĝxy).

Proof. Suppose first that R ∈ R(G). Then we also have R ∈ R(G \ x \ y) by the
monotonicity statement at the end of Proposition 2.15. Therefore, if −R ≤ w ≤ 0 we
have ZG(w) > 0 and ZG\x\y(w) > 0, and hence deduce by (7.3b) that ZĜxy(ŵ) > 0.

In particular, ZĜxy(−λR̂) > 0 for 0 ≤ λ ≤ 1. Applying Theorem 2.10(a) =⇒ (b)

to the line segment connecting 0 to −R̂, we conclude that ZĜxy(w′) > 0 whenever

−R̂ ≤ w′ ≤ 0 (whether or not w′ lies “on the diagonal”). Hence R̂ ∈ R(Ĝxy).

Conversely, suppose that R̂ ∈ R(Ĝxy). If −R ≤ w ≤ 0 we have −R̂ ≤ ŵ ≤ 0
and hence ZĜxy(ŵ) > 0; by (7.3b) this implies ZG(w) 6= 0.

Assume now that G is connected. Let G̃xy be the component of Ĝxy containing x
and y. Any other component of Ĝxy must be contained either in G′ \ x or in G′′ \ y;
either way, it corresponds to some component of G \ x \ y. Now, for any component
H of G \ x \ y, there are three possibilities: either H is adjacent to x in G, or H is
adjacent to y in G, or both. In the first case, the copy H ′ of H in G′ is contained
in G̃xy, while the copy H ′′ of H in G′′ is disjoint from G̃xy; in the second case, the
reverse holds; in the third case, both copies of H are contained in G̃xy. Therefore, any
component of Ĝxy other than G̃xy has a mirror image contained in G̃xy, and hence is
isomorphic to a subgraph of G̃xy (with the same weights when we are “on-diagonal”).

Given a vector w with index set V (G), let us define the vector w̃ with index set

G̃xy by restricting ŵ from V (Ĝxy) to V (G̃xy).

Lemma 7.2 Let H be a subgraph of G, and let R = {Rx}x∈V (G) ∈ R(G). Then
RH ≡ {Rx}x∈V (H) ∈ R(H).

Proof. Define first R1V (H) [with index set V (G)] by

(R1V (H))x =

{
Rx if x ∈ V (H)
0 if x /∈ V (H)

(7.4)

Since R1V (H) ≤ R, we have R1V (H) ∈ R(G) because R(G) is a down-set. Equiva-
lently, RH ∈ R(G[V (H)]), where G[V (H)] is the induced subgraph of G with vertex
set V (H). But R(H) ⊇ R(G[V (H)]) by the monotonicity statement at the end of
Proposition 2.15.
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Corollary 7.3 Assume that G is connected. Then R ∈ R(G) if and only if R̃ ∈
R(G̃xy).

Proof. If R ∈ R(G), then R̂ ∈ R(Ĝxy) by Theorem 7.1. Then R̃ ∈ R(G̃xy) by

Lemma 7.2, because G̃xy is a subgraph of Ĝxy.
Conversely, suppose that R̃ ∈ R(G̃xy). Let H1, . . . , Hk be the components of Ĝxy

other than G̃xy. Then

ZĜxy(ŵ) = ZG̃xy(w̃)
k∏

i=1

ZHi
(ŵ � Hi) (7.5)

If −R ≤ w ≤ 0, then −R̃ ≤ w̃ ≤ 0 and hence ZG̃xy(w̃) > 0. But since each

component of Hi is isomorphic to a subgraph of G̃xy (with the same weights in the
mirror copy), Lemma 7.2 implies that ZHi

(ŵ � Hi) > 0 as well. Hence ZĜxy(ŵ) > 0
by (7.5), so that ZG(w) 6= 0 by (7.3b). This shows that R ∈ R(G).

Remark. It would be interesting to know whether there is a version of unfolding in
the case of soft-core interaction.

8 Infinite graphs

In this section we discuss briefly the repulsive lattice gas on a countably infinite graph.
We begin by deriving some general properties valid on an arbitrary countably infinite
graph (Section 8.1). Next we discuss two cases of special interest: trees (Section 8.2)
and regular lattices (Section 8.3). Finally we show how quantitative bounds on R(W )
can be obtained, using as an example the square lattice Z2 (Section 8.4).

8.1 General properties

Let X be a countably infinite set, and let W : X×X → [0, 1] be symmetric. For every
nonempty finite subset Λ ⊂ X we can consider the partition function ZΛ(w) defined
for w ∈ CΛ in the obvious way, i.e. by considering the lattice gas on Λ with interaction
W � Λ. Then, to each such Λ there corresponds a set R(W � Λ) ⊆ [0,∞)Λ. From the
Remark after Proposition 2.15, we observe that if Λ′ ⊆ Λ and R ∈ [0,∞)Λ′ , then

R ∈ R(W � Λ′) ⇐⇒ (R,0) ∈ R(W � Λ) (8.1)

(here 0 has index set Λ \ Λ′).
Now let us define, for each finite Λ ⊂ X, the set

RΛ(W ) = R(W � Λ) × [0,∞)X\Λ (8.2)

in the infinite-dimensional space [0,∞)X . Otherwise put, a vector R ∈ [0,∞)X

belongs to RΛ(W ) if and only if R � Λ lies in R(W � Λ). Note that

∂RΛ(W ) = ∂R(W � Λ) × [0,∞)X\Λ . (8.3)
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Clearly RΛ(W ) is open (in the product topology) and is a down-set. Moreover, it
follows immediately from (8.1) and the fact that R(W � Λ) is a down-set that if
Λ′ ⊆ Λ, then RΛ′(W ) ⊇ RΛ(W ). In other words, the {RΛ(W )} form a decreasing
family of sets in [0,∞)X [when Λ runs over the collection of finite subsets of X ordered
by inclusion]. We define the limiting set

R(W ) =
⋂
Λ

RΛ(W ) . (8.4)

Note that, because {RΛ(W )} is a decreasing family, we also have

R(W ) =
∞⋂

n=1

RΛn(W ) (8.5)

for any increasing sequence Λ1 ⊆ Λ2 ⊆ . . . whose union is all of X.

Remark. If W (x, x) < 1 for all x ∈ X, then it follows from Proposition 2.16 that
there exist constants Cx < ∞ such that R(W ) ⊆

∏
x∈X [0, Cx], so that R(W ) is

relatively compact in the product topology.

In view of the fact that each set RΛ(W ) is open, it is perhaps surprising that the
limiting set R(W ) is “almost” closed:

Theorem 8.1 Let X be countably infinite, and let R ∈ R(W ) (where the closure is
taken in the product topology). If every component of GW [suppR] is infinite, then
R ∈ R(W ).

Corollary 8.2 Let X be countably infinite, let r ∈ [0,∞)X , and suppose that every
component of GW [supp r] is infinite. Then {λ ≥ 0: λr ∈ R(W )} is a closed interval
of [0,∞) (which may reduce to {0} or to all of [0,∞) ).

Remark. If W (x, y) < 1 for some x, y ∈ supp r, then it follows from Proposition 2.16
that the interval {λ ≥ 0: λr ∈ R(W )} is bounded, i.e. not all of [0,∞).

Proof of Theorem 8.1. By hypothesis we have

R ∈
⋂
Λ

RΛ(W ) ⊆
⋂
Λ

RΛ(W ) . (8.6)

If R ∈ RΛ(W ) for all Λ, we are done. So assume that R ∈ ∂RΛ(W ) for some Λ,
i.e. R � Λ ∈ ∂R(W � Λ) and in particular ZΛ(−R) = 0 by Proposition 2.17(b). Let
Λ1, . . . , Λk be the vertex sets of the components of GW [suppR ∩ Λ]. Since ZΛ(w) =∏k

i=1 ZΛi
(w) whenever suppw ⊆ suppR, there must be at least one index i for which

ZΛi
(−R) = 0, so that R � Λi ∈ ∂R(W � Λi) [recalling that R � Λi ∈ R(W � Λi) by

(8.6)]. Now choose a vertex x ∈ (suppR) \ Λi that is adjacent to Λi in GW [this is

possible since each component of GW [suppR] is infinite]; and define Λ̃i = Λi ∪ {x}.
By (8.6) we have R � Λ̃i ∈ R(W � Λ̃i); and hence by Corollary 2.19 we have (R �
Λi, 0) ∈ R(W � Λ̃i) [where 0 corresponds to the xth entry], i.e. R � Λi ∈ R(W � Λi).
But this contradicts R � Λi ∈ ∂R(W � Λi) since R(W � Λi) is open.
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8.2 Infinite trees

In Example 3.6 we considered the complete r-ary rooted tree and showed, following
Shearer [98], that there are negative real roots of the univariate polynomial ZG(w)
that tend to w∞ = −rr/(r + 1)r+1 as the number of levels tends to infinity. Let us
now use the “homogenization” ideas of Section 3.5 to extend this result to trees that
are not complete.

Proposition 8.3 Let G be an infinite tree with (arbitrarily chosen) root vertex x0,
and let Xi = {x: dist(x, x0) = i}. Let b̄ = lim sup

i→∞
|Xi|1/i. If R > b̄b̄/(b̄ + 1)b̄+1, then

any vector R ≥ 0 satisfying

( ∏
x∈Xi

Rx

)1/|Xi|

≥ R for all i does not lie in R(G). In

particular, R1 /∈ R(G).

Proof. Let R ≥ 0 be a vector satisfying R̃i ≡ (
∏

x∈Xi
Rx)

1/|Xi| ≥ R for all i, and
suppose that R ∈ R(G). Then by definition we have R ∈ R(GD) for every D, where
GD = G[

⋃
i≤D Xi] is the subtree consisting of the first D + 1 levels of G.

Let us fix D, and apply Algorithm T of Section 3.4 to the tree GD with w = −R.
For 0 ≤ i ≤ D, define p̃i as in (3.52). Let bi = |Xi+1|/|Xi| and define p̂i by the
recursion (3.57). Then it follows from Proposition 3.3 [or the discussion after (3.57)]
that p̃i ≥ p̂i for 0 ≤ i ≤ D, since by hypothesis R ∈ R(GD). By monotonicity of

(3.57) in the R̃i, it follows that the sequence (q
(D)
i )∞i=1 defined by the recursion

q
(D)
i =

R

(1− q
(D)
i+1)

bi

, (8.7)

with initial condition q
(D)
i = 0 for i ≥ D + 1 satisfies 0 ≤ q

(D)
i ≤ p̃i for 0 ≤ i ≤ D. In

particular, we have 0 ≤ q
(D)
i < 1 for every i.

Now let D → ∞. Monotonicity of (8.7) in q
(D)
i+1 implies that, for each i, q

(D)
i is

increasing in D. Since q
(D)
i is bounded above by 1, taking qi = limD→∞ q

(D)
i gives a

sequence (qi)
∞
i=0 satisfying

qi =
R

(1− qi+1)bi
(8.8)

for every i. Furthermore, 0 ≤ qi ≤ 1 for every i, and so (8.8) implies that 0 ≤ qi < 1
for i ≥ 1.

The proposition is then a consequence of the following lemma.

Lemma 8.4 Let (bi)
∞
i=1 be a sequence of positive real numbers, let b̄ = lim sup

i→∞
(b1b2 · · · bi−1)

1/i,

and let R ≥ 0. Suppose that there exists a sequence (qi)
∞
i=1 satisfying 0 ≤ qi < 1 and

qi ≥
R

(1− qi+1)bi
(8.9)

for all i ≥ 1. Then R ≤ b̄b̄/(b̄ + 1)b̄+1.
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As preparation for proving Lemma 8.4, let us prove an analogous result for finite
sequences.

Lemma 8.5 Let k ≥ 1, let b0, b1, . . . , bk−1 > 0, and define b̄ =

(
k∏

i=0

bi

)1/k

. Let

R ≥ 0. Suppose that there exist q0, q1, . . . , qk ∈ [0, 1) satisfying

qi ≥
R

(1− qi+1)bi
for i = 0, 1, . . . , k − 1 (8.10)

and
q0 ≤ qk . (8.11)

Then R ≤ b̄b̄/(b̄ + 1)b̄+1.

Proof. When k = 1, the lemma is proved by straightforward calculus. So let us
treat the case k > 1. Define weights

γi =

(
i−1∏
j=0

bj

)/
b̄i (8.12)

for i = 0, 1, . . . , k and note that γ0 = γk = 1. Let Γ =
∑k

i=1 γi. Now define

q̃0 =

(
k−1∏
i=0

qγi

i

)1/Γ

(8.13a)

q̃1 =

(
k∏

i=1

qγi

i

)1/Γ

(8.13b)

The argument at (3.65)–(3.73) shows that

q̃0 ≥
R

(1− q̃1)b̄
. (8.14)

If q0 ≤ qk, then q̃0 ≤ q̃1; it then follows from the k = 1 case of the lemma that
R ≤ b̄b̄/(b̄ + 1)b̄+1.

Proof of Lemma 8.4. If R > b̄b̄/(b̄ + 1)b̄+1, let us choose ε > 0 and c̄ < b̄ such
that

R

1 + ε
>

c̄c̄

(c̄ + 1)c̄+1
>

b̄b̄

(b̄ + 1)b̄+1
. (8.15)

Since lim supi→∞(b1b2 · · · bi−1)
1/i > c̄, we can find integers 1 < j1 < j2 < . . . with

jt+1∏
i=jt+1

bi > c̄jt+1−jt (8.16)
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for t = 1, 2, . . . . Since the sequence (qjt)
∞
t=1 lies in the interval [R, 1) and R > 0,

there must exist t such that qjt ≤ (1 + ε)qjt+1 . To simplify the notation, let us set
k = jt+1 − jt and q̂i = qjt+i for i = 0, . . . , k. By hypothesis we have

q̂i ≥
R

(1− q̂i+1)bi
for i = 0, 1, . . . , k − 1 (8.17)

and q̂0 ≤ (1 + ε)q̂k. It follows that if we set S = R/(1 + ε), ̂̂qi = q̂i for i = 1, . . . , k,

and ̂̂q0 = q̂0/(1 + ε), we have

̂̂qi ≥
S

(1− ̂̂qi+1)
bi

for i = 0, 1, . . . , k − 1 (8.18)

and ̂̂q0 ≤ ̂̂qk. Lemma 8.5 together with (8.16) then imply that S ≤ c̄c̄/(c̄ + 1)c̄+1,
which is a contradiction.

8.3 Regular lattices

The most important situation in statistical mechanics is that of a model defined on
a regular lattice (which we take for simplicity to be Zd) with a translation-invariant
interaction [100]. In this case one expects to be able to prove that the free energy per
site (or “pressure”) FΛ ≡ |Λ|−1 log ZΛ converges to an infinite-volume limit

F∞ ≡ lim
Λ↗∞

FΛ , (8.19)

where Λ ↗ ∞ denotes convergence in the Følner–van Hove sense, i.e. |Λ| → ∞ in
such a way that the surface-to-volume ratio tends to zero (see [113, Section 2.4.1
and Appendix A.3.1] for a variety of equivalent conditions). Indeed, there are several
standard arguments for proving such convergence:

1) Almost additivity. A large volume Λ is subdivided into smaller (but still large)
cubes Λi separated by wide “corridors”, and | log ZΛ−

∑
i log ZΛi

| is shown to be
suitably small [67, Section I.2]. This method applies to all models with bounded
interaction energies, and yields Følner–van Hove convergence [67, Theorems
I.2.3–I.2.5].

2) Superadditivity. In some cases it can be shown that log ZΛ∪Λ′ ≥ log ZΛ +log ZΛ′

whenever Λ and Λ′ are disjoint. This occurs, in particular, for systems with
certain symmetries, for ferromagnets, and for systems with negative interac-
tion energies. Moreover, arbitrary models with bounded interaction energies
can be reduced to the case of negative interaction energies simply by adding
suitable constants to the interaction terms [100, Theorem II.2.4 and Examples
1–4 following it; see also Section II.4]. However, this method does not yield
Følner–van Hove convergence, but only a slightly weaker convergence in which
|Λ|/diam(Λ)d must be bounded below away from zero [113, Appendix A.3.3].
Moreover, the limiting free energy F∞ could be +∞; a separate argument is
needed to exclude this possibility.
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3) Subadditivity. In some cases it can be shown that log ZΛ∪Λ′ ≤ log ZΛ + log ZΛ′

whenever Λ and Λ′ are disjoint. This occurs, in particular, for systems with pos-
itive interaction energies. Moreover, arbitrary models with bounded interaction
energies can be reduced to the case of positive interaction energies by adding
suitable constants to the interaction terms. Like superadditivity, this method
does not yield Følner–van Hove convergence, but only the slightly weaker con-
vergence in which |Λ|/diam(Λ)d is bounded below away from zero. Moreover,
the limiting free energy F∞ could be −∞; a separate argument is needed to
exclude this possibility.

Remark. Although we shall concentrate here on the case of a regular lattice
(namely, Zd), arguments of the foregoing types can usually be generalized to handle
arbitrary quasi-transitive amenable infinite graphs [69, 91]; we expect that the same
should be true for our results.

Let us therefore consider the lattice gas on X = Zd with a translation-invariant
interaction W (x, y) = W (x − y) satisfying 0 ≤ W (x, y) ≤ 1. Let us place the
same fugacity w ≥ 0 at each site. [More generally, we could consider a periodic
or quasiperiodic fugacity w = {wx}x∈Zd ; but let us stick to a constant fugacity for
simplicity.] Under these assumptions we can prove that the infinite-volume limit of
the free energy exists. Indeed, the subadditivity argument applies immediately to our
model, thanks to the hypothesis of repulsive interactions; moreover, since ZΛ ≥ 1 for
all Λ (thanks to the contribution of the empty configuration), it follows that F∞ ≥ 0
and in particular that F∞ 6= −∞. But this method does not yield Følner–van Hove
convergence.

To prove Følner–van Hove convergence, we use the almost-additivity argument.
The standard theorems [67, Theorems I.2.3–I.2.5] do not apply to our model, because
the interaction energies can be unbounded, indeed for either of two reasons:

(a) the infinite interaction energy when W (x, y) = 0 for some x 6= y; and/or

(b) the unboundedness of the interaction energies in the absence of hard-core self-
repulsion [i.e. for W (x, x) 6= 0], arising from the fact that the occupation number
nx at a site can be arbitrary large.

We can nevertheless make slight adaptations in the standard almost-additivity argu-
ment so as to make the proof go through. We assume that the total interaction of
any site with the rest of the world is finite, i.e.∑

y∈Zd

[1−W (x, y)] < ∞ . (8.20)

In particular, there is a number R <∞ such that W (x, y) > 0 whenever |x− y| > R.
Let us begin with the case of hard-core self-repulsion, so that we need only deal

with problem (a). This is handled by the following lemma:
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Lemma 8.6 Consider any repulsive lattice gas with hard-core self-repulsion and fu-

gacities wx ≥ 0. Suppose that Λ =
n⋃

i=1

Λi ∪ Λ0 (disjoint union). Then

(
n∏

i=1

ZΛi

)


∏
1 ≤ i < j ≤ n

x ∈ Λi

y ∈ Λj

W (x, y)

 ≤ ZΛ ≤

(
n∏

i=1

ZΛi

)(∏
x∈Λ0

(1 + wx)

)
. (8.21)

Proof. We make use of the definition

ZΛ =
∑

X′⊆Λ

∏
x∈X′

wx

∏
{x,y}⊆X′

W (x, y) . (8.22)

The lower bound is on ZΛ is obtained by considering only those configurations in
which Λ0 is empty (i.e. X ′ ∩ Λ0 = ∅) and writing

∏
{x,y}⊆X′

W (x, y) ≥

 n∏
i=1

∏
{x,y}⊆X′∩Xi

W (x, y)


 ∏

1≤i<j≤n

∏
x ∈ Λi

y ∈ Λj

W (x, y)

 , (8.23)

which is valid since 0 ≤ W (x, y) ≤ 1. The upper bound on ZΛ is obtained by writing

∏
{x,y}⊆X′

W (x, y) ≤
n∏

i=1

∏
{x,y}⊆X′∩Xi

W (x, y) . (8.24)

We then have:

Theorem 8.7 (infinite-volume limit, hard-core case) Consider a translation-invariant
repulsive lattice gas on Zd, with hard-core self-repulsion, satisfying

∑
y∈Zd [1−W (x, y)] <

∞, with the same fugacity w ≥ 0 at each site. Then F∞(w) ≡ limΛ↗∞ |Λ|−1 log ZΛ(w)
exists in Følner–van Hove sense and satisfies 0 ≤ F∞(w) ≤ log(1 + w). Moreover,
F∞(w) is an increasing and convex function of log w; in particular, it is continuous
on 0 ≤ w <∞.

Proof. Fix integers a, c > 0 and consider the paving of Zd by disjoint cubes of side
a+c with corners located at (a+c)Zd, i.e. cubes Cn = [0, a+c)d +(a+c)n for n ∈ Zd.
Consider also the subcubes C ′

n ⊂ Cn of side a with the same lowermost corner, i.e.
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C ′
n = [0, a)d + (a + c)n. For any finite subset Λ ⊂ Zd, let CΛ be the collection of all

cubes Cn that are contained in Λ, and let C ′Λ = {C ′
n: Cn ∈ CΛ}. By Lemma 8.6,∣∣∣∣∣∣log ZΛ −

∑
C′∈C′Λ

log ZC′

∣∣∣∣∣∣ ≤ α(c)|Λ| + β

∣∣∣∣∣∣Λ \
⋃

C′∈C′Λ

C ′

∣∣∣∣∣∣ , (8.25)

where α(c) = −
∑

x ∈ Zd

|x| > c

log W (x) and β = log(1 + w). By translation invariance,

log ZC′ = log ZC′
0

for all C ′ ∈ C ′Λ. Moreover, |C ′Λ| = |CΛ| by construction. Dividing
(8.25) by |Λ|, we get∣∣∣∣ 1

|Λ|
log ZΛ −

ad|C ′Λ|
|Λ|

1

ad
log ZC′

0

∣∣∣∣ ≤ α(c) + β

(
1− ad|CΛ|

|Λ|

)
(8.26)

and hence

|FΛ − FC′
0
| ≤ α(c) +

(
1− ad|CΛ|

|Λ|

)(
β +

1

ad
| log ZC′

0
|
)

(8.27a)

≤ α(c) + 2β

(
1− ad|CΛ|

|Λ|

)
(8.27b)

since 1 ≤ ZC′
0
≤ (1 + w)ad

. Taking (8.27b) for two finite subsets Λ, Λ̃ ⊂ Zd and
subtracting, we get

|FΛ − FΛ̃| ≤ 2α(c) + 2β

(
1− ad|CΛ|

|Λ|

)
+ 2β

(
1−

ad|CΛ̃|
|Λ̃|

)
. (8.28)

Now let (Λn) ↗ ∞ in Følner–van Hove sense; this implies that the fraction of
volume of Λn contained in the cubes CΛn tends to 1, i.e. limn→∞(a+c)d|CΛn|/|Λn| = 1.
Therefore,

lim sup
m,n→∞

|FΛm − FΛn| ≤ 2α(c) + 4β

[
1−

(
a

a + c

)
d

]
. (8.29)

Now, given any ε > 0, we can [by (8.20)] choose c large enough so that α(c) ≤ ε; and
we can then choose a large enough so that 1− [a/(a + c)]d ≤ ε. Hence

lim sup
m,n→∞

|FΛm − FΛn| ≤ 2ε + 4βε . (8.30)

Since ε is arbitrary, we have lim supm,n→∞ |FΛm−FΛn| = 0, so that (|Λn|−1 log ZΛn)∞n=1

is a Cauchy sequence and hence converges. (The limit is the same for all Følner–van
Hove sequences, since interleaving two Følner–van Hove sequences yields another one.)

The bounds 0 ≤ F∞(w) ≤ log(1+w) follow immediately from 1 ≤ ZΛ ≤ (1+w)|Λ|.
Finally, each FΛ(w) is manifestly increasing, and by Lemma 2.32 it is a convex function
of log w; and these properties are preserved under pointwise limits.

Now let us turn to problem (b), arising from the unboundedness of the occupation
number nx when W (x, x) 6= 0. We begin with a well-known fact about positive
correlation of increasing functions on a totally ordered space:
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Lemma 8.8 Let µ 6≡ 0 be a nonnegative measure on a totally ordered space Ω, and
let f and g be increasing functions on Ω. Then (provided the functions concerned are
integrable):

(a)
(∫

fg dµ
) (∫

1 dµ
)
≥
(∫

f dµ
) (∫

g dµ
)

.

(b)

∫
feαg dµ∫
eαg dµ

is an increasing function of α ∈ R.

Proof. (a) We have(∫
fg dµ

) (∫
1 dµ

)
−
(∫

f dµ
) (∫

g dµ
)

=
1

2

∫
[f(x)− f(y)] [g(x)− g(y)] dµ(x) dµ(y) ,

(8.31)
and the integrand on the right-hand side is nonnegative both when x ≤ y and when
x ≥ y.

(b) We have

d

dα

(∫
feαg dµ∫
eαg dµ

)
=

(
∫

fgeαg dµ)(
∫

eαg dµ) − (
∫

feαg dµ)(
∫

geαg dµ)

(
∫

eαg dµ)2
. (8.32)

Now apply part (a) with µ replaced by eαgµ.

Now let Λ be a finite set; for each x ∈ Λ, let Ωx be a totally ordered space; and
let Ω =

∏
x∈X Ωx. For each x ∈ Λ, let µx 6≡ 0 be a nonnegative measure on Ωx and

let Fx be a nonnegative decreasing function on Ωx. Finally, let H be an increasing
function on Ω and let α ≥ 0. Define

Z
({Fx},α,H)
Λ =

∫ (∏
x∈Λ

Fx(ϕx)

)
exp[−αH(ϕ)]

∏
x∈Λ

dµx(ϕx) . (8.33)

Lemma 8.9 Under the above hypotheses,

Z
({Fx},α,H)
Λ ≥

(∏
x∈Λ

∫
Fx dµx∫
1 dµx

)
× Z

({1},α,H)
Λ . (8.34)

Proof. Choose one site z ∈ Λ, and let us study the integral over ϕz with ϕ 6=z held
fixed. By Lemma 8.8(b), the quantity∫

Fz(ϕz) exp[−αH(ϕz, ϕ 6=z)] dµz(ϕz)∫
exp[−αH(ϕz, ϕ 6=z)] dµz(ϕz)

(8.35)

is an increasing function of α ∈ R, so its value at α ≥ 0 is bounded below by its value
at α = 0, which is ∫

Fz(ϕz) dµz(ϕz)∫
dµz(ϕz)

. (8.36)
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Therefore,∫
Fz(ϕz) exp[−αH(ϕz, ϕ 6=z)] dµz(ϕz) ≥

(∫
Fz dµz∫
1 dµz

)
×
∫

exp[−αH(ϕz, ϕ 6=z)] dµz(ϕz) .

(8.37)
Now multiply both sides by

∏
x∈Λ\z Fx(ϕx) and integrate with respect to

∏
x∈Λ\z dµx(ϕx);

we obtain

Z
({Fx},α,H)
Λ ≥

(∫
Fz dµz∫
1 dµz

)
× Z

({1x,F 6=x},α,H)
Λ . (8.38)

Applying the same argument successively to each site in Λ, we obtain (8.34).

Let us now specialize these results to the repulsive lattice gas, by taking Ωx = N,
dµx(nx) = wnx

x /nx!,

H(n) =
∑
x∈Λ

[− log W (x, x)]
nx(nx − 1)

2
+

∑
{x,y}⊆Λ

[− log W (x, y)]nxny , (8.39)

and Fx(nx) = 1(nx ≤ Kx) for arbitrarily chosen positive constants Kx. We then have

Z
(K)
Λ

ZΛ

≥
∏
x∈Λ

[1− γ(Kx, wx)] , (8.40)

where Z
(K)
Λ denotes the sum (1.1b) restricted to the configurations satisfying nx ≤ Kx

for all x, and

γ(K, w) = e−w

∞∑
n=K

wn

n!
. (8.41)

We can now prove a variant of Lemma 8.6:

Lemma 8.10 Consider any repulsive lattice gas with fugacities wx ≥ 0, and let

(Kx)x∈Λ be arbitrary positive constants. Suppose that Λ =
n⋃

i=1

Λi ∪Λ0 (disjoint union).

Then

(
n∏

i=1

ZΛi

) ∏
1 ≤ i ≤ n

x ∈ Λi

[1− γ(Kx, wx)]




∏
1 ≤ i < j ≤ n

x ∈ Λi

y ∈ Λj

W (x, y)KxKy



≤ ZΛ ≤

(
n∏

i=1

ZΛi

)(∏
x∈Λ0

ewx

)
. (8.42)
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Proof. The upper bound is proved exactly as in Lemma 8.6. For the lower bound,
we begin from the trivial fact that ZΛ ≥ Z

(K)
Λ . Now consider only those configurations

satisfying n ≤ K and, in addition, nx = 0 for all x ∈ Λ0; for such configurations we
have

∏
{x,y}⊆Λ\Λ0

W (x, y)nxny ≥

 n∏
i=1

∏
{x,y}⊆Xi

W (x, y)nxny


 ∏

1≤i<j≤n

∏
x ∈ Λi

y ∈ Λj

W (x, y)KxKy

 .

(8.43)
It follows that

Z
(K)
Λ ≥

(
n∏

i=1

Z
(K�Λi)
Λi

) ∏
1≤i<j≤n

∏
x ∈ Λi

y ∈ Λj

W (x, y)KxKy

 . (8.44)

Now use (8.40) for each set Λi.

Theorem 8.11 (infinite-volume limit, general case) Consider a translation-invariant
repulsive lattice gas on Zd, satisfying

∑
y∈Zd [1−W (x, y)] <∞, with the same fugacity

w ≥ 0 at each site. Then F∞(w) ≡ limΛ↗∞ |Λ|−1 log ZΛ(w) exists in Følner–van Hove
sense and satisfies 0 ≤ F∞(w) ≤ w. Moreover, F∞(w) is an increasing and convex
function of log w; in particular, it is continuous on 0 ≤ w <∞.

Proof. We begin by defining families of cubes CΛ and C ′Λ as in the proof of Theo-
rem 8.7. By Lemma 8.10 with Kx = K for all x, we have∣∣∣∣∣∣log ZΛ −

∑
C′∈C′Λ

log ZC′

∣∣∣∣∣∣ ≤ α(c)K2|Λ| + w

∣∣∣∣∣∣Λ \
⋃

C′∈C′Λ

C ′

∣∣∣∣∣∣ + |Λ| | log[1− γ(K, w)]|

(8.45)
where α(c) = −

∑
x ∈ Zd

|x| > c

log W (x). By the same arguments as before, we have

|FΛ − FC′
0
| ≤ α(c)K2 + 2w

(
1− ad|CΛ|

|Λ|

)
+ | log[1− γ(K, w)]| . (8.46)

Taking (8.46) for two finite subsets Λ, Λ̃ ⊂ Zd and subtracting, we get

|FΛ−FΛ̃| ≤ 2α(c)K2 + 2w

(
1− ad|CΛ|

|Λ|

)
+ 2w

(
1−

ad|CΛ̃|
|Λ̃|

)
+ 2| log[1−γ(K, w)]| .

(8.47)
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Now let (Λn)↗∞ in Følner–van Hove sense, so that limn→∞(a+ c)d|CΛn|/|Λn| =
1. It follows that

lim sup
m,n→∞

|FΛm−FΛn| ≤ 2α(c)K2 + 4w

[
1−

(
a

a + c

)
d

]
+ 2| log[1−γ(K, w)]| . (8.48)

Now, given any ε > 0, we first choose K large enough so that | log[1− γ(K, w)]| ≤ ε;
then we choose c large enough so that α(c)K2 ≤ ε; and finally we choose a large
enough so that 1− [a/(a + c)]d ≤ ε. Therefore,

lim sup
m,n→∞

|FΛm − FΛn| ≤ 4ε + 4εw . (8.49)

The remainder of the argument is exactly as in Theorem 8.7.

Historical remark. Results like Theorem 8.11 have been proven in the vastly more
general context of “unbounded spin systems” by Lebowitz and Presutti [75], based
on superstability estimates due to Ruelle [93]. See also [74, 9] for related work. We
think that it is nevertheless useful to give an elementary and self-contained proof for
our special case.

Let us now return to the case of hard-core self-repulsion, and consider the conver-
gence of the finite-volume free energies FΛ(w) for complex fugacities w. By hypothesis
(8.20) we have

∆W ≡
∑
y 6=0

[1−W (0, y)] < ∞ . (8.50)

Therefore, by Corollary 5.2, all of the partition functions ZΛ(w) are nonvanishing
in the disc |w| < R(∆W ) where R(∆W ) is defined by (5.12). Moreover, they sat-
isfy the trivial bounds |ZΛ(w)| ≤ e|Λ| |w|. It follows that the free energies FΛ(w) ≡
|Λ|−1 log ZΛ(w) are analytic in the disc |w| < R(∆W ) and satisfy there Re FΛ(w) ≤
|w| ≤ R(∆W ). Finally, Theorem 8.11 shows that the FΛ(w) converge to a limit when
w lies in the real interval [0, R(∆W )). These three facts are sufficient to imply the
convergence of FΛ(w) to an analytic limit F∞(w) everywhere in the disc |w| < R(∆W ),
using the following standard result on normal families of analytic functions:

Proposition 8.12 (exp log Vitali) Let D be a domain in C, let S be a subset of D
having at least one accumulation point in D, let M <∞, and let (fn)∞n=1 be analytic
functions in D satisfying:

(a) Re fn(z) ≤M for all n and all z ∈ D; and

(b) lim
n→∞

fn(z) exists (and is finite) for all z ∈ S.

Then there exists an analytic function f∞ on D such that fn(z) → f∞(z) uniformly
for z in compact subsets of D.

For a proof of Proposition 8.12, see e.g. [99, p. 343].
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Corollary 8.13 Consider a translation-invariant repulsive lattice gas on Zd, with
hard-core self-repulsion, with∑

y 6=0

[1−W (0, y)] ≡ ∆W < ∞ . (8.51)

Then:

(a) Each function FΛ(w) ≡ |Λ|−1 log ZΛ(w) is analytic in the disc |w| < R(∆W )
and satisfies there Re FΛ(w) ≤ |w|.

(b) There exists an analytic function F∞(w) on the disc |w| < R(∆W ) such that
limΛ↗∞ FΛ(w) = F∞(w) uniformly for w in compact subsets of |w| < R(∆W ).

Remark. Proposition 8.12 is a very special case of a much more general “Vitali–
Porter–type” theorem for normal families of analytic functions [103, Lemma 3.5], in
which condition (a) can be weakened to “there exists a nonempty disc ∆ ⊂ C such
that fn(z) /∈ ∆ for all z ∈ D” [96, Example 2.3.9] or even to “there exist w1, w2 ∈ C
with w1 6= w2 such that fn(z) /∈ {w1, w2} for all z ∈ D” [96, Section 2.7]. Moreover,
it is sufficient for this hypothesis to hold locally in D. Detailed accounts of these
results can be found in [84, 96].

8.4 Quantitative bounds for the lattice Zd

By Corollary 8.2, the set {λ ≥ 0: λ1 ∈ R(W )} is a closed interval [0, λc] provided
that each component of GW is infinite. In this section we sketch briefly some methods
for finding reasonably sharp upper and lower bounds on λc. We shall illustrate these
examples with reference to the hard-core lattice gas on Zd with nearest-neighbor
edges, paying particular attention to the case of the square lattice Z2.

8.4.1 Upper bounds on λc

Let G be any finite subgraph of Zd, and let w? = −λ? be the negative real root of
ZG of smallest magnitude. Then, by the definition of R(W ) for an infinite graph
[cf. (8.4)] together with the monotonicity of R(G) in G [Proposition 2.15], we can
conclude immediately that λc(Zd) ≤ λ?. Moreover, these bounds converge to the
exact value λc if we take any increasing sequence G1 ⊆ G2 ⊆ . . . whose union is all
of Zd.

More generally, as a consequence of the discussion in Section 6.2, we can take any
finite subtree T of the pruned SAW-tree for Zd, and let w? = −λ? be the negative
real root of ZT of smallest magnitude; we again have λc(Zd) ≤ λ?.

Example 8.1. Clearly Zd contains finite paths of all lengths. By Example 3.2
(or alternatively Example 3.6 with r = 1), these give bounds λ? tending to 1/4 as the
path length tends to infinity. Thus λc(Zd) ≤ 1/4.
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Example 8.2. Now consider a finite subgraph G ⊆ Zd consisting of a long path
P along one axis (the spine) and, radiating from each vertex of P , 2d − 2 disjoint
long paths perpendicular to P (the antennae). Let us assign fugacity w ≤ 0 to every
vertex of G. Using Algorithm T on the antennae, we must first iterate the recursion
weff 7→ w/(1+weff). If the antennae were infinitely long, we would approach the fixed

point w′ = −1
2

+
√

w + 1
4

[provided that −1/4 ≤ w ≤ 0; otherwise we are outside

R(G)]. By taking the antennae sufficiently long, we can get as close to this value as
we wish. We are now left with a “caterpillar” consisting of the spine (with fugacity w
on each vertex) along with 2d− 2 pendant vertices (each with fugacity w′) attached
to each vertex of the spine. Applying Algorithm T to this graph, we get the recursion
weff 7→ w/[(1 + weff)(1 + w′)2d−2] ≡ w?/(1 + weff), where

w? ≡
w

(1 + w′)2d−2
=

w(
1
2

+
√

w + 1
4

)2d−2
. (8.52)

We require −1
4
≤ w? ≤ 0 in order to stay within R(G). For d = 2 this yields the

bound λc(Z2) ≤ 4/25. For d→∞ it yields λc(Zd) ≤ (log d)/(2d) + O((log log d)/d).

Example 8.3. To get the correct bound λc(Zd) = O(1/d), one can argue using
a subtree of the pruned SAW-tree. Note first that any walk using only steps in the
positive coordinate directions is guaranteed to be self-avoiding. Moreover, if we define
the pruning such that at each vertex all steps in the positive coordinate directions are
preferred to all steps in the negative coordinate directions, then every walk using only
positive coordinate steps appears as a vertex in the pruned SAW-tree of Zd. Thus,
the complete d-ary rooted tree (consisting of these walks) is a subtree of the pruned
SAW-tree of Zd, and so by Example 3.6 we have

λc(Zd) ≤ dd

(d + 1)d+1
∼ 1

ed
. (8.53)

Example 8.4. Asymptotically correct upper bounds on λc(Zd) can be obtained by
using large cylinders, for which λc can be computed by the transfer-matrix method.15

Let us illustrate the method for Z2. Consider the strip SL = {(x, y) ∈ Z2: 0 ≤
x < L}. Since S1 ⊆ S2 ⊆ . . . ⊆ Z2, we have λc(S1) ≥ λc(S2) ≥ . . . ≥ λc(Z2).
[In particular, limL→∞ λc(SL) exists.] On the other hand, since each finite subgraph
of Z2 is contained (modulo translation) in SL for all sufficiently large L, we have
limL→∞ λc(SL) ≤ λc(Z2). It follows that λc(SL) ↓ λc(Z2) as L→∞.

An analogous argument can also be made using strips with periodic boundary
conditions, which are more convenient for computation [110]. To see this, let S̃L be
the strip SL with an extra edge added from (L− 1, y) to (0, y) for each y. As before,

each finite subgraph of Z2 is contained (modulo translation) in S̃L for all sufficiently

15See e.g. [110] for a brief discussion of transfer matrices for the hard-core lattice gas.
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large L, so that lim supL→∞ λc(S̃L) ≤ λc(Z2). On the other hand, the pruned SAW-

tree of S̃L (for any given choice of ordering) is a subtree of the pruned SAW-tree
of Z2 (provided we make an appropriately compatible choice of ordering): just map

each path in S̃L to its “universal cover” in Z2, i.e. to the path in Z2 obtained by
making the same sequence of north, south, east or west steps. Thus λc(S̃L) ≥ λc(Z2)
for every L (though we do not necessarily have monotonicity in L). It follows that
λc(SL)→ λc(Z2) as L→∞.

Example 8.5. Let us also remark that λc(Zd) is strictly decreasing in d; indeed,
we can derive an inequality bounding λc(Zd+1) above in terms of λc(Zd). To see this,
note that Zd+1 contains a copy of the graph Gd obtained from Zd by attaching two
semi-infinite paths (“antennae”) to every vertex. If we place fugacity w ≤ 0 on every
vertex of Gd and integrate out the antennae as in Example 8.2, we are left with a
copy of Zd with effective fugacities

weff =
w

(1 + w′)2
=

w

w + 1
2

+
√

w + 1
4

. (8.54)

If w ∈ (−λc(Zd+1), 0], then weff must be in (−λc(Zd), 0]. It follows that

λc(Zd) ≥ λc(Zd+1)

1
2
− λc(Zd+1) +

√
1
4
− λc(Zd+1)

, (8.55)

or equivalently

λc(Zd+1) ≤ λc(Zd)

[1 + λc(Zd)]2
, (8.56)

which is the desired bound.
Using (8.56) together with the initial condition λc(Z1) = 1/4, it is easy to show

by induction that λc(Zd) ≤ 1/(2d + 2). However, this bound is less sharp than the
bound (8.53) obtained in Example 8.3.

8.4.2 Lower bounds on λc

We now turn to proving lower bounds on λc. Corollary 5.3 gives

λc(Zd) ≥ ∆∆

(∆ + 1)∆+1
=

(2d)2d

(2d + 1)2d+1
∼ 1

2ed
, (8.57)

while Corollary 5.7 gives the slightly better bound

λc(Z2) ≥ (∆− 1)∆−1

∆∆
=

(2d− 1)2d−1

(2d)2d
∼ 1

2ed
. (8.58)

For d = 2 the latter bound yields λc(Z2) ≥ 27/256. Either of these bounds shows,
when combined with Example 8.3, that λc(Zd) = Θ(1/d) as d→∞.
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To get quantitatively better bounds, we can take a supertree of the pruned SAW-
tree of Zd and calculate exactly for it. In particular, if we choose a supertree that is
eventually periodic, the computation reduces to finding the fixed point of a recursion.

Example 8.6. The pruned SAW-tree of Zd is obviously contained in the 2d-
branching tree, for which the computation has been performed in Example 3.6. This
yields the bound (8.57). [This argument obviously works for any infinite graph of
maximum degree ∆, not just Zd.]

Example 8.7. A smaller supertree of the pruned SAW-tree is obtained by giving
the root 2d children and every other vertex 2d− 1 children. Applying Algorithm T,
the recursion (until we reach children of the root) is w′ 7→ w/(1+w′)∆−1. We end up
with the bound (8.58). [The argument again works for any infinite graph of maximum
degree ∆.]

Example 8.8. Another possibility (not the only one) is to take a large finite
piece T of the pruned SAW-tree of Z2, and then repeat it periodically (attaching to
each leaf of T a copy of T starting at the root, and repeating this). It is easily seen
that this gives a supertree of the pruned SAW-tree. We therefore use the recursion
weff,leaves 7→ weff,root and demand that there exist an attractive fixed point in (−1, 0].
We have various choices about how to order the edges to define the pruning. For
instance, we can choose an ordering of the edges at each vertex in a translation-
invariant way, find the first k levels of the pruned SAW-tree, and then repeat these
periodically. Alternatively, we can order the vertices arbitrarily at the root of the
SAW-tree, and at all other vertices of the SAW-tree order the edges according to the
angle the path turns through (e.g. 0, +π/2,−π/2) in taking the step. This defines a
pruned SAW-tree, and we can take the first k levels and repeat periodically as before.
We conjecture that either method gives bounds converging to λc(Z2) as k grows, but
we do not know how to prove this.

Remark. In Examples 8.2 and 8.7, we have proven for Z2 the rigorous bounds

0.105468 . . . =
27

256
≤ λc(Z2) ≤ 4

25
= 0.16 . (8.59)

By extensions of those arguments and with a little calculation, these bounds can be
narrowed further; it would be interesting to see how far one can go. It is worth noting
that Todo [110] has given the extraordinarily precise numerical estimate

λc(Z2) = 0.119 338 881 88(1) , (8.60)

obtained by using transfer matrices and the phenomenological-renormalization method
(a variant of finite-size scaling). Furthermore, his computations up to L = 38 show
[111] that16

λc(S̃38) = 0.119 365(1) , (8.61)

which by Example 8.4 provides an upper bound on λc(Z2). See also Guttmann [54] for
an earlier and only slightly less precise estimate of λc(Z2), obtained by series analysis.

16What Todo [111] actually computed is the number λ×L for which
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(a) the transfer matrix has a unique eigenvalue of largest modulus for w ∈ (−λ×L , 0], and

(b) the transfer matrix has two dominant eigenvalues of largest modulus for w = −λ×L .

Let us show that λ×L = λc(S̃L). Let S̃
(n)
L be the cylinder of width L and length n. By monotonicity,

λc(S̃
(n)
L ) decreases in n and hence has a limit as n → ∞; it is easy to see that this limit is λc(S̃L).

Now, the Beraha–Kahane–Weiss theorem [10, 103] tells us that

(a′) for every ε > 0, there exist δ > 0 and n0 <∞ such that Z
S̃

(n)
L

has no (real or complex) zeros

within a distance δ from the interval [−λ×L + ε, 0] when n ≥ n0; and

(b′) there exist (possibly complex) zeros of Z
S̃

(n)
L

tending to −λ×L as n→∞.

Since −λc(S̃
(n)
L ) is the closest zero to the origin of Z

S̃
(n)
L

, it follows easily from (a′) and (b′) that

λ×L = λc(S̃L).
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[74] H. Künsch, Almost sure entropy and the variational principle for random fields

with unbounded state space, Z. Wahrsch. verw. Gebiete 58 (1981), 69–85.

[75] J.L. Lebowitz and E. Presutti, Statistical mechanics of systems of unbounded

spins, Commun. Math. Phys. 50 (1976), 195–218; erratum 78 (1980/81), 151.

[76] B.Ja. Levin, Distribution of Zeros of Entire Functions (American Mathematical

Society, Providence, 1964).

[77] V.E. Levit and E. Mandrescu, On the roots of independence polynomials

of almost all very well-covered graphs, preprint (2003), math.CO/0305227 at

arXiv.org.

[78] L. Lovász and M.D. Plummer, Matching Theory , North-Holland Mathemat-

ics Studies #121 / Annals of Discrete Mathematics #29 (North-Holland,

Amsterdam-New York / Akadémiai Kiadó, Budapest, 1986).
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Figure 1: The graphs G and Ĝxy.
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