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Abstract

Fix k ≥ 2 and let H be a graph with χ(H) = k + 1 containing a critical edge.
We show that for sufficiently large n, the unique n-vertex H-free graph containing the
maximum number of cycles is Tk(n). This resolves both a question and a conjecture
of Arman, Gunderson and Tsaturian [4].

1 Introduction

For a graph G, let c(G) be the number of cycles in G. The problem of bounding c(G) for
various classes of graph has a long history: for example, an upper bound on c(G) in terms of
the cyclomatic number of G was given by Ahrens [1] in 1897; while a lower bound is implicit
in work of Kirchhoff [19] from fifty years earlier.

For graphs on n vertices, the number of cycles is clearly maximized by the complete
graph, which has

∑n
i=3(i!/2i)

(
n
i

)
cycles. But what happens if we constrain the structure

of G by forbidding some subgraph? In other words, what is the maximal number of cycles
in an H-free graph on n vertices (here a graph is H-free if it does not contain a subgraph
isomorphic to H)? For graphs G and H, let c(G) be the number of cycles in G and let

m(n;H) := max{c(G) : |V (G)| = n,H 6⊆ G}.

The problem of determining m(n,H) was introduced by Durocher, Gunderson, Li and Skala
[9] (who studied m(n,K3)) and will be the focus of this paper.
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The problem of maximizing the number of edges in an H-free graph has been extensively
studied. Indeed, Turán [23] proved that the unique n-vertex Kk+1-free graph with the maxi-
mum number of edges is the complete k-partite graph with all classes of size bn/kc or dn/ke,
which is known as the Turán graph Tk(n). More generally, the classical Turán problem asks
for the maximum number of edges in an H-free graph: this is the extremal number ex(n;H)
and the extremal graphs are EX(n;H) = {G : |V (G)| = n,H 6⊆ G}, that is the H-free graphs
on n vertices with ex(n;H) edges. For further detail, we refer to [7].

Much less is known about maximizing the number of cycles in H-free graphs. Durocher,
Gunderson, Li and Skala [9] investigated m(n,K3), and conjectured that the maximum
is attained by the Turán graph T2(n). This conjecture was proved for large n by Arman,
Gunderson and Tsaturian [4], who showed that, for n ≥ 141, T2(n) is the unique triangle-free
graph containing m(n;K3) cycles. They made the following natural further conjecture.

Conjecture 1.1 (Arman, Gunderson and Tsaturian [4]). For any k > 1, for sufficiently
large n, T2(n) is the unique n-vertex C2k+1-free graph containing m(n;C2k+1) cycles.

A partial result towards this conjecture is given in [4], where it is shown thatm(n;C2k+1) =
O(c(T2(n))). They also ask about a different generalisation.

Question 1.2 (Arman, Gunderson and Tsaturian [4]). For k ≥ 4, what is m(n;Kk)? Is
Tk−1(n) the Kk-free graph containing m(n;Kk) cycles?

In this paper we prove Conjecture 1.1 for any fixed k and sufficiently large n and answer
Question 1.2 affirmatively for sufficiently large n. In fact we prove a much more general result.
In what follows we say that an edge e of a graph H is critical if χ(H\{e}) = χ(H)− 1. Our
main result is the following.

Theorem 1.3. Let k ≥ 2 and let H be a graph with χ(H) = k+ 1 containing a critical edge.
Then for sufficiently large n, the unique n-vertex H-free graph containing the maximum
number of cycles is the Turán graph Tk(n).

The condition that H has a critical edge is necessary, since if H does not have a critical
edge we can add an edge to the relevant Turán graph without creating a copy of H (and
the addition of this edge will increase the number of cycles). Conjecture 1.1 follows from
Theorem 1.3 as an odd cycle contains a critical edge.

By using the same techniques as in the proof of Theorem 1.3, we are able to obtain a
bound on the number of cycles in an H-free graph for any fixed graph H (not just critical
ones).

Theorem 1.4. Let k ≥ 2 and let H be a fixed graph with χ(H) = k + 1. Then

m(n;H) ≤
(
k − 1

k

)n
nne−(1−o(1))n.
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The Turán graph gives a lower bound showing that this bound is tight up to the o(1)
term in the exponent.

In this paper we concern ourselves with maximising cycles of any length in a graph with
a forbidden subgraph. The related problem of maximising copies of a single graph in a
graph with a collection of forbidden subgraphs has received a great deal of attention. For a
graph G and family of graphs F , define ex(n,G,F) to be the maximum possible number of
copies of G in a graph containing no member of F . The value of ex(n,G,F) is of particular
interest when the graphs being studied are cycles (see [2, 6, 10] for results concerning other
graphs). Improving on earlier work of Bollobás and Győri [8] and Győri and Li [16], Alon and
Shikhelman [2] gave bounds for ex(n,K3, C2k+1), when k ≥ 2. Using flag algebras, Hatami,
Hladký, Král’, Norine, and Razborov [17] showed that the unique triangle-free graph with
maximum number of copies of C5 is the balanced blow up of C5. Also using flag algebras,
Grzesik [14] determined ex(n,C5, K3). More recently, Grzesik and Kielak [15] determined
ex(n,C2k+1,F), where k ≥ 3 and F is the family of odd cycles of length at most 2k − 1.
They also asymptotically determine ex(n,C2k+1, C2k−1).

The rest of paper is organised as follows. Section 2 contains a number of lemmas about
counting cycles in complete k-partite graphs (Lemmas 2.1-2.6). These will be used in Sec-
tion 4 for the proof of Theorem 1.3. The statements are very natural but our proofs are
unfortunately technical, so we defer these to Section 5. In Section 3 we prove Lemma 3.2
and use similar techniques to prove Theorem 1.4. The proof of Theorem 1.3 is completed
in Section 4. We conclude the paper in Section 6 with some related problems and open
questions. We conclude the current section with a sketch of the proof of Theorem 1.3.

1.1 Outline of Proof

In what follows we fix H to be a graph with χ(H) = k + 1 that contains a critical edge and
assume that n is sufficiently large. As usual, for a graph F we will write e(F ) := |E(F )|
and in the particular case of the Turán graph, we will write tk(n) := |E(Tk(n))|. Let
G be an n-vertex H-free graph with c(G) = m(n;H). As Tk(n) is H-free, we have that
m(n;H) ≥ c(Tk(n)). We will suppose that G is not Tk(n) and obtain a contradiction by
showing that c(G) < c(Tk(n)).

The first step in the proof (Lemma 4.1) is to show that G with c(G) ≥ c(Tk(n)) contains
at least e(Tk(n)) − O(n log2 n) edges. In order to prove this, we will need a bound on the
number of cycles an n-vertex H-free graph with m ≥ β(H) · n edges can contain, where β is
some constant depending on H. Such a bound is provided by Lemma 3.2.

Given Lemma 4.1, we are able to apply the following stability result from [21].

Theorem 1.5 (Theorem 1.4 [21]). Let H be a graph with a critical edge and χ(H) = k +
1 ≥ 3, and let f(n) = o(n2) be a function. If G is an H-free graph with n vertices and
e(G) ≥ tk(n)− f(n) then G can be made k-partite by deleting O(n−1f(n)3/2) edges.

Since we have f(n) = O(n log2 n), this will imply that G is a sublinear number of edges
away from being k-partite. We then take a k-partition of G which minimises the number of
edges within classes and carefully bound (given that G is not Tk(n)) the number of cycles
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G can contain that do not use edges within classes (Lemma 4.2). We conclude the proof
by separately counting the cycles in G that use edges within classes and observing that the
total number of cycles in G is not large enough, a contradiction.

2 Counting Cycles in Complete k-partite Graphs

In this section we state some results about the number of cycles in complete k-partite graphs.
These are needed in Section 4 for the proof of Theorem 1.3, but may be of independent
interest. Despite the simplicity of the statements, the proofs are annoyingly technical, and
so we will give them later in Section 5.

The first gives a bound on the number of cycles in Tk(n). In what follows we write h(G)
for the number of Hamiltonian cycles in G (a Hamiltonian cycle of a graph is a cycle covering
all of the vertices). We also define cr(G) to be the number of cycles of length r in G.

Lemma 2.1.
c2bn/2c (T2(n)) ∼ π2−nnne−n,

and for fixed k ≥ 3,

h(Tk(n)) = Ω

((
k − 1

k

)n
nn−

1
2 e−n

)
.

Since c(G) ≥ h(G) for all G, if follows that c(Tk(n)) = Ω
((

k−1
k

)n
nn−

1
2 e−n

)
. Arman [3,

Theorems 5.22 and 5.26] proves similar results here and also provides an upper bound for
c(Tk(n)).

Lemma 2.2. Let k ≥ 2 and G be an n-vertex k-partite graph. Then for any r, cr(Tk(n)) ≥
cr(G). Furthermore, when n ≥ 5, c(Tk(n)) > c(G) for any n-vertex k-partite graph G not
isomorphic to Tk(n).

In particular, Lemma 2.2 implies that the Turán graph Tk(n) has the most Hamilton
cycles amongst all k-partite graphs on n vertices.

In order to state the next few lemmas we require some more technical definitions. For
a = (a1, . . . , ak) ∈ Nk, we define Ka to be the complete k-partite graph with vertex classes
V1, . . . , Vk, where |Vi| = ai. Let v be some vertex in V (Ka). We define hv(j,Ka) to be
the number of permutations v1 · · · vn of the vertices of Ka, such that v1 = v, v2 ∈ Vj and
v1 · · · vn is a Hamilton cycle (we count permutations rather than cycles, so that we count
a cycle v1 · · · vn with v2 and vn from the same vertex class twice). Note that if we count
the Hamilton cycles by considering v1 · · · vn with v1 fixed, by counting the number of cycles
visiting each other vertex class first, then each cycle will be counted twice due to the choice
of orientation. So for v ∈ Vi, we have

h(Ka) =
1

2

∑
j 6=i

hv(j,Ka). (2.1)

The next lemma will allow us to count cycles more accurately in complete k-partite
graphs that are not balanced.
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Lemma 2.3. Let k ≥ 3. Let b = (b1, . . . , bk), c = (c1, . . . , ck) ∈ Nk be such that bi ≥ bj if
and only if ci ≥ cj, and that Kb

∼= Tk(n). Denote the vertex classes of Kc by V1, . . . , Vk, and
vertex classes of Kb by V ′1 , . . . , V

′
k. Then if v ∈ V1, w ∈ V ′1 , then

hv(2, Kc) ≤ hw(2, Tk(n))
k∏
i=1

e

∣∣∣log( bici )∣∣∣.
We now bound the proportion of Hamilton cycles starting from a fixed vertex that imme-

diately pass through a fixed vertex class. This will be important when we bound the cycles
in a non-complete k-partite graph.

Lemma 2.4. Let k ≥ 3, and suppose Tk(n) has vertex classes V1, . . . , Vk (arbitrarily ordered
independently of class size). Then for n sufficiently large, if v ∈ V1,

hv(2, Tk(n)) ≥ 2

3k
h(Tk(n)).

The next two lemmas give a recursive bound on the number of Hamilton cycles in Tk(n).
This will allow us to bound the number of cycles in the Turán graph in terms of the number
of Hamilton cycles it contains. Throughout the chapter we will make use of the notation
(n)i := n · (n− 1) · · · (n− (i− 1)).

Lemma 2.5. For k, n ∈ N, k ≥ 3 and i ∈ [n],

h(Tk(n)) ≥ (n− 1)i

(
k − 2

k

)i
h(Tk(n− i)).

Lemma 2.6. For k, n ∈ N, k ≥ 3:

c(Tk(n)) ≤ e
2k
k−2h(Tk(n)).

Finally, we have similar results when k = 2. This case is slightly different to when k ≥ 3
as T2(n) only contains even cycles.

Lemma 2.7. For n ∈ N and i = o(n), we have

c(T2(n− i)) ≤ 2e

(
4

n

)i
c2bn2 c(T2(n)).

3 Counting Cycles in H-free Graphs

Fix H to be a graph with χ(H) = k + 1 containing a critical edge. The first aim of this
section is to prove a lemma bounding the number of cycles in an n-vertex H-free graph
containing a fixed number of edges. We will need the following theorem of Simonovits [22].
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Theorem 3.1 (Simonovits [22, Theorem 2.3]). Let H be a graph with χ(H) = k + 1 ≥ 3
that contains a critical edge. Then there exists some n0 such that, for all n ≥ n0, we have
EX(n;H) = {Tk(n)}.

Given H, define n′0(H) to be the smallest value of n0 such that Theorem 3.1 holds and
choose n0(H) ≥ n′0(H) such that ex(n;H) ≥ 10n for each n ≥ n0. We define β(H) := 10n0.

In a recent paper, Arman and Tsaturian [5] consider the maximum number of cycles in
a graph with a fixed number of edges: They show that if G is an n-vertex graph with m
edges, then

c(G) ≤

{
3
4
∆(G)

(
m
n−1

)n−1
for m

n−1 ≥ 3,
3
4
∆(G) ·

( 3
√

3
)m

, otherwise.

This general bound is not strong enough for us: comparing this bound with the bounds
given in Lemma 2.1, we see that a graph with at least as many cycles as Tk(n) has at least
(1 + o(1)) e−1tk(n) edges. However under the additional assumption that our graph does not
contain a forbidden subgraph H, we are able to prove the following lemma which we will
later use to show that an H-free graph with at least as many cycles as Tk(n) has at least
(1 + o(1)) tk(n) edges. We remark that when m is close to tk(n), the bound we gives beats
the general bound of Arman and Tsaturian by an exponential factor.

Lemma 3.2. Let H be a fixed graph with χ(H) = k + 1 ≥ 3 containing a critical edge.
For n sufficiently large, let G be an H-free graph with n vertices and m edges where tk(n)−
10n ≥ m ≥ β(H) · n (recall the definition of β(H) from just after Theorem 3.1). Then

c(G) = O
(
λnnn+2

(
k−1
k

)n
e

2k−1
(k−1)λ

−λn
)

, where

λ := 1−
(

1− 2k

k − 1

m

(n− 3)2

) 1
2

. (3.1)

The next lemma bounds the maximum number of paths that an H-free graph G can
contain between two fixed vertices. For x, y ∈ V (G), define px,y to be the number of paths
between x and y in G.

Lemma 3.3. Let H be a graph with χ(H) = k + 1 ≥ 3 that contains a critical edge. For n
sufficiently large, let G be an H-free graph with n vertices and m edges where tk(n)− 10n ≥
m ≥ β(H) · n (recall the definition of β(H) from just after Theorem 3.1). Then for any
x, y ∈ V (G),

px,y(G) = O

(
λnnn

(
k − 1

k

)n
e

2k−1
(k−1)λ

−λn
)
,

where λ is as defined in (3.1).

Lemma 3.2 follows easily from Lemma 3.3.
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Proof of Lemma 3.2. Observe that for each edge e = xy inG, the number of cycles containing
e is at most px,y. Thus, by Lemma 3.3

c(G) ≤
∑

xy∈E(G)

px,y(G)

= O

(
mλnnn

(
k − 1

k

)n
e

2k−1
(k−1)λ

−λn
)

= O

(
λnnn+2

(
k − 1

k

)n
e

2k−1
(k−1)λ

−λn
)
,

as required.

Before proving Lemma 3.3, we prove the following Lemma which allows us to consider
an integer valued linear optimisation problem to find upper bounds for the number of paths
between vertices in graphs with a forbidden subgraph.

Lemma 3.4. Let H be a graph with χ(H) ≥ 3. Let G be an H-free graph with n vertices
and m edges, and let x, y be vertices of G. Then px,y(G) is bounded by the maximum value
of the product

n∏
i=2

max{ri, 1} (3.2)

under the following set of constraints:

(i) ri ∈ Z≥0, for 2 ≤ i ≤ n,

(ii)
∑n

i=2 ri ≤ m, and

(iii)
∑t

i=2 ri ≤ ex(t;H), for 2 ≤ t ≤ n.

Proof of Lemma 3.4. Fix x, y ∈ V (G). We define a sequence of vertices (xi)i∈[n] and a
sequence of graphs (Gi)i∈[n] as follows. Let x1 = x and G1 = G. For i ≥ 2, given xi−1 and
Gi−1, let Gi = Gi−1 \ xi−1 and choose xi with pxi,y(Gi) as large as possible.

We count the number of paths between x and y by summing over possibilities for the
second vertex in a path. We get the following inequality

px,y(G) =
∑

z∈N(x)

pz,y(G \ {x})

≤ dG(x1) ·max{pz,y(G2) : z ∈ N(x1)}
= dG(x1)px2,y(G2).

Repeating this process gives

px1,y(G) ≤
∏̀
i=1

dGi(xi),
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where ` is minimal such that max{px`+1,y(G`+1) : x`+1 ∈ NG`(x`)} = 1.

For 1 ≤ i ≤ `, let di := dGi(xi). Note that the di are positive integers and that
∑`

i=1 di ≤
m. Also note that for any t ∈ {1, . . . , `}, we have

∑̀
i=t

di ≤ e(Gt).

Therefore, as Gt is an (n− t+ 1)-vertex H-free graph,
∑`

i=t di ≤ ex(n− t+ 1;H). The result
follows by letting ri = 0 for i = 2, . . . , n− ` and ri = dn+1−i for i = n+ 1− `, . . . , n.

We now prove Lemma 3.3.

Proof of Lemma 3.3. Following on from the proof of Lemma 3.4, we consider a relaxation of
the constraints given in the statement of Lemma 3.4. Recall that n0 := n0(H) is such that
ex(s;H) = tk(s) and ex(s;H) ≥ 10s for all s ≥ n0. We look to maximise

n∏
i=2

max{ri, 1}, (3.3)

under the following relaxed constraints:

(a) ri ∈ Z≥0, for i > n0,

(b) ri ∈ R≥0, for i ≤ n0,

(c)
∑n

i=2 ri ≤ m, and

(d)
∑t

i=2 ri ≤ ex(t;H), for each n0 ≤ t ≤ n.

Since m ≥ β(H)n, we have m
n
≥ 10tk(n0)

n0−1 . Now let (ri)
n
i=2 be a sequence maximising (3.3)

subject to (a)-(d). We may assume that r2, . . . , rn0 and rn0+1, . . . , rn are in increasing order
as this will not violate (a)-(d).

Claim 3.5. There is some I ∈ [n0 + 1, n− 2] such that:

(i) ri = tk(n0)
n0−1 , for i ≤ n0,

(ii) ri = tk(i)− tk(i− 1), for n0 + 1 ≤ i ≤ I, and

(iii) ri ∈ {rI , rI + 1}, for i > I.

Proof of Claim. Let T =
∑n0

i=2 ri. Then (r2, . . . , rn0) = (0, . . . , 0, T
S
, . . . , T

S
) for some S ∈

[n0 − 1] (or else we can increase
∏n0

i=2 ri). We may assume that T is an integer as we can
replace T by dT e and still satisfy (a)-(d). Differentiation of the function j(x) =

(
T
x

)x
shows

that if T ≥ en0, then S = n0 − 1 and so ri = T
n0−1 for each i ∈ [n0].

Suppose that T < e · n0. Then since m
n
≥ β(H) ≥ 10tk(n0)

n0−1 , there must be a j > n0 such

that rj ≥ tk(n0)
n0−1 ≥ 10. Choose j to be minimal with this property. It can easily be verified
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that increasing r2 by 2 and decreasing rj by 2 gives a sequence which satisfies (a)-(d) but
gives a larger product. Therefore it must be the case that T ≥ e · n0 and so S = n0 − 1.

Now suppose that (i) doesn’t hold and so e · n0 ≤ T < tk(n0). Since m
n
≥ 10tk(n0)

n0−1 , there

exists some j > n0 such that rj >
5tk(n0)
n0−1 . Choose j to be minimal with this property and

define (si)
n
i=2 by si = T+1

n0−1 for i ≤ n0, sj = rj − 1 and si = ri otherwise. Then (si)
n
i=2

is a sequence satisfying (a)-(d) which gives a larger product, a contradiction. Therefore
T = tk(n0) and (i) holds.

Now suppose that (ii) does not hold and so rn0+1 < tk(n0 + 1) − tk(n0). Since m
n
≥

2(tk(n0 + 1)− tk(n0)), there must be a j > n0 such that rj > tk(n0 + 1)− tk(n0). Choose j
to be minimal with this property and define (si)

n
i=2 by sn0+1 = rn0+1 + 1, sj = rj − 1 and

si = ri otherwise. Then (si)
n
i=2 is a sequence satisfying (a)-(d) which gives a larger product,

a contradiction. Therefore rn0+1 = tk(n0 + 1)− tk(n0) and (ii) holds.
Let j > n0 + 1 be minimal such that

∑j
i=1 ri ≤ tk(j) − 1 (such a j must exist since

m < tk(n)) and set I = j − 1. If (iii) does not hold then there exists some t ≥ j such that
rj + 1 < rt. Let t be minimal with this property, and define sj := rj + 1, st := rt − 1, and
si := ri for all i 6∈ {j, t}. The sequence (si)i∈[n] satisfies (a)-(d) but

n∏
i=2

max{ri, 1} <
n∏
i=2

max{si, 1},

a contradiction. Therefore (ri)
n
i=1 satisfies properties (i)-(iii), completing the proof of the

claim.
Finally note that I ≤ n− 2 follows from m ≤ tk(n)− 10n.

Putting the values for ri from the claim into (3.3), we see that

px,y ≤
(
tk(n0)

n0 − 1

)n0−1 I∏
i=n0+1

[tk(i)− tk(i− 1)]
n∏

i=I+1

ri

= O

(
n∏
i=2

si

)
, (3.4)

where (si) is some sequence such that si = tk(i)− tk(i−1) for i ∈ {2, . . . , I}, si ∈ {sI , sI +1}
for i > I, and m =

∑n
i=2 si.

Note that si = tk(i)− tk(i− 1) = (i− 1)−
⌊
i−1
k

⌋
for i ≤ I. Then the sequence (si)

I
i=2 is

just the natural numbers up to I − 1−
⌊
I−1
k

⌋
with a repetition at each multiple of k− 1. In

other words,{
si : i ∈ {2, . . . , I} \

{
`k + 1 : ` ≤ I − 1

k

}}
=

[
I − 1−

⌊
I − 1

k

⌋]
and s`k+1 = `(k − 1) for each ` ≤ I−1

k
. Letting b =

⌊
I−1
k

⌋
we have

I∏
i=2

si = (sI)!
b∏

j=1

j(k − 1) = sI !b!(k − 1)b. (3.5)
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The remaining n − I elements of the product
∏n

i=2 si are all at most sI + 1. Therefore,
by (3.4) and (3.5) we have

px,y = O

(
n∏
i=2

si

)
= O

(
sI !b!(k − 1)b(sI + 1)n−I

)
= O

(
sI !b!(k − 1)bsn−II e

n
sI

)
. (3.6)

Applying Stirling’s approximation and simplifying, (3.6) yields

px,y = O

(
s
n+sI+1/2−I
I bb+1/2(k − 1)b exp

{
n

sI
− I
})

.

Since sI = I − 1−
⌊
I−1
k

⌋
≥ (k− 1) I−1

k
and b =

⌊
I−1
k

⌋
≤ I−1

k
, we have b ≤ sI

k−1 . Therefore

px,y = O

(
s
n−b−1/2
I

(
sI

k − 1

)b+1/2

(k − 1)b exp

{
n

sI
− I
})

= O

(
snI exp

{
n

sI
− I
})

.

Note that sI ∈
[
k−1
k

(I − 1), k−1
k
I
]

and so

px,y = O

(
(I − 1)n

(
k − 1

k

)n(
1 +

1

I − 1

)n
exp

{
kn

(k − 1)(I − 1)
− (I − 1)

})
= O

(
(I − 1)n

(
k − 1

k

)n
exp

{
(2k − 1)n

(k − 1)(I − 1)
− (I − 1)

})
.

Substituting I − 1 = αn gives

px,y = O

(
αnnn

(
k − 1

k

)n
e

2k−1
(k−1)α

−αn
)
. (3.7)

It remains to determine the value of α. We do this by counting edges. Since m =
∑

i si,
we see that

m ≥ tk(I) + sI (n− I) . (3.8)

Arguing as for (3.5), we see that

tk(I) =

sI∑
i=1

i+ (k − 1)
b∑

j=1

j

=
1

2
(s2I + sI + (k − 1)(b2 + b)).

10



If we put this value for tk(I) into (3.8) we see that

m ≥ 1

2
(s2I + sI + (k − 1)(b2 + b)) + sI (n− (I − 1))− sI

=
1

2

(
s2I − sI + (k − 1)(b2 + b)

)
+ sI (n− (I − 1)) .

Now consider that b =
⌊
I−1
k

⌋
≥ I−1

k
− 1, so that b2 + b ≥

(
I−1
k

)2 − I−1
k
. Recall also that

sI ≥ k−1
k

(I − 1) and so

m ≥ 1

2

((
k − 1

k

)2

(I − 1)2 − k − 1

k
(I − 1) +

k − 1

k2
(I − 1)2 − k − 1

k
(I − 1)

)
+
k − 1

k
(I − 1)n− k − 1

k
(I − 1)2

≥ k − 1

k
n(I − 1)− k − 1

2k
(I − 1)2 − 3

k − 1

k
(I − 1).

Substituting (I − 1) = αn and rearranging gives

((
1− 3

n

)
− α

)2

≥
(

1− 3

n

)2

− 2k

k − 1

m

n2
.

Recall that I ≤ n−2 and so α ≤
(
1− 3

n

)
. On the other side of the inequality,

(
1− 3

n

)2−
2k
k−1

m
n2 is positive since m ≤ tk(n)− 10n. Therefore we can take square roots and rearrange

to get

α ≤
(

1− 3

n

)
−

((
1− 3

n

)2

− 2k

k − 1

m

n2

) 1
2

=

(
1− 3

n

)
λ.

Since the expression αnnn
(
k−1
k

)n
e

2k−1
(k−1)α

−αn is increasing in α when α ≤ 1 − 2
n
, (3.7) is

maximised by setting α =
(
1− 3

n

)
λ. We are then done since

(
1− 3

n

)n
λnnn

(
k − 1

k

)n
e

2k−1

(k−1)(1− 3
n)λ
−(1− 3

n)λn
= O

(
λnnn

(
k − 1

k

)n
e

2k−1
(k−1)λ

−λn
)
.

Theorem 1.4 follows easily from the idea of this proof by applying the following theorem
of Erdős and Simonovits.

11



Theorem 3.6 (Erdős and Simonovits [11, Theorem 1]). Let H be a graph with χ(H) = k+1.
Then,

lim
n→∞

ex(n;H)(
n
2

) = 1− 1

k
.

Proof of Theorem 1.4. Let ε > 0. By Theorem 3.6 and the fact that tk(n) ∼
(
1− 1

k

) (
n
2

)
,

we know that for n sufficiently large, ex(n;H) ≤ (1 + ε)tk(n). Thus, for n sufficiently large,

ex(s;H) ≤ (1 + ε)tk(s) for all n
1
2 ≤ s ≤ n. For ease of notation, let n1 := n

1
2 .

To bound the number of cycles in the graph, we wish to bound px,y(G) for x, y ∈ V (G).
From Lemma 3.4, we see that it is enough to bound the product

n∏
i=2

max{ri, 1},

where (ri) satisfies the relaxed conditions:

(i) ri ∈ R+, for all i, and

(ii)
∑t

i=2 ri ≤ (1 + ε)tk(t), for each n1 ≤ t ≤ n.

It is easily seen that this expression is maximised when ri := (1+ε)tk(n1)
n1−1 for i = 2, . . . , n1

and ri = (1 + ε)(tk(i)− tk(i− 1)) otherwise. Therefore, we arrive at the following bound:

n∏
i=2

ri ≤
(

(1 + ε)tk(n1)

n1 − 1

)n1−1 n∏
i=n1+1

(1 + ε)(tk(i)− tk(i− 1))

= O

(
en1

n∏
i=2

(1 + ε)(tk(i)− tk(i− 1))

)

= O

(
eεn+n1

n∏
i=2

(tk(i)− tk(i− 1))

)
. (3.9)

Recall from (3.5) that, defining b =
⌊
n−1
k

⌋
, we have

n∏
i=2

(tk(i)− tk(i− 1)) = (n− 1− b)!b!(k − 1)b.

Applying Stirling’s approximation and simplifying gives

n∏
i=2

(tk(i)− tk(i− 1)) = O
(
(n− 1− b)n−1−b+1/2bb+1/2e−n(k − 1)b

)
= O

((
k − 1

k

)n
nn+1e−n

)
.

12



Putting this into (3.9) gives

px,y = O

((
k − 1

k

)n
nn+1eεn+n1−n

)
. (3.10)

Now, as in the proof of Lemma 3.2, we see that by (3.10) and the fact that n1 = o(n),

c(G) ≤
∑

xy∈E(G)

px,y

= O

(
n2

(
k − 1

k

)n
nn+1eεn+n1−n

)
= O

((
k − 1

k

)n
nne−(1−2ε)n

)
.

Since ε is arbitrary, we have our result.

4 Proof of Theorem 1.3

Here we complete the proof of Theorem 1.3. This will follow from the next two lemmas.
The first gives a lower bound on the number of edges in an extremal graph. (See also [3,

Theorem 5.3.2] for a Kk+1 version.)

Lemma 4.1. Let H be a graph χ(H) = k+ 1 ≥ 3 containing a critical edge. For sufficiently
large n, let G be an n-vertex H-free graph with m edges and c(G) ≥ c(Tk(n)). Then m ≥
n2(k−1)

2k
−O

(
n log2(n)

)
.

Given this lemma, we can apply Theorem 1.5 to show that any extremal graph G is close
to being k-partite. We then carefully count the number of cycles in such a graph. In what
follows, for a graph G and a k-partition of its vertices, we call edges within a vertex class
irregular and those between vertex classes regular. Define a best k-partition of a graph G to
be one which minimises the number of irregular edges contained within G. The next lemma
counts the cycles using only regular edges if G is not Tk(n). Recall that cr(G) is the number
of cycles of length r in G.

Lemma 4.2. Let H be a graph with χ(H) = k + 1 ≥ 3 containing a critical edge. Suppose
G 6∼= Tk(n) is an n-vertex H-free graph with c(G) ≥ c(Tk(n)). Then for sufficiently large n,
the number of cycles using only regular edges in the best k-partition of G is at most:{

c(Tk(n))− 1
16k
h(Tk(n)) for k ≥ 3,

c(T2(n))− 1
8
c2bn

2
c(T2(n)) for k = 2.

Given Lemmas 4.1 and 4.2, we now complete the proof of Theorem 1.3. We will then
prove the lemmas themselves. The main work remaining for Theorem 1.3 is to count the
number of cycles using irregular edges.
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Proof of Theorem 1.3. Let H be a graph with a critical edge with chromatic number χ(H) =
k + 1 ≥ 3, and suppose G is an n-vertex H-free graph with c(G) = m(n;H). Then, in
particular, c(G) ≥ c(Tk(n)). Suppose for a contradiction that G is not isomorphic to Tk(n).
Fix a best k-partition of G: by Lemma 4.1 and Theorem 1.5, we know that for sufficiently
large n, the graph G has at most n0.55 irregular edges in its best k-partition.

Let cI(G) be the number of cycles in G containing at least one irregular edge and let
cR(G) be the number of cycles in G using only regular edges. If cI(G) = o(h(Tk(n)), then
by applying Lemma 4.2 and taking n sufficiently large, we have c(G) = cR(G) + cI(G) <
c(Tk(n)). Thus cI(G) = Ω(h(Tk(n))).

Let EI be the set of irregular edges in G. For each non-empty A ⊆ EI , let CA be the set
of cycles C in G such that E(C) ∩ EI = A and such that C contains at least one regular
edge. Fix A such that CA is non-empty and fix an edge a1a2 ∈ A. (Note that A must be a
vertex-disjoint union of paths or else it would not be possible to have a cycle using all edges
in A.) For any cycle C = x1x2 · · ·xj in CA, with x1 = a1 and x2 = a2, define S(C) to be the
directed cycle x1x2 · · ·xj (so for all i, the edge xixi+1 is directed towards xi+1, where indices
are taken modulo j).

For each C ∈ CA, the orientation of S(C) induces an orientation fC on the edges of A.
Given a fixed orientation f of A, we write

CA(f) := {C ∈ CA : fC = f} .

We will bound the size of each CA(f). A bound on cI(G) will then follow by summing over
all possible A and f .

Let G/A be the graph obtained by contracting every edge in A. Then remove the re-
maining irregular edges to form J (so J is an H-free k-partite graph with n−|A| vertices, as
A is a vertex-disjoint union of paths, and each edge of A lies inside some vertex class of our
k-partition). For each cycle C in CA(f), we obtain an oriented cycle g(C) in J by replacing
each maximal path u1 · · ·uj in E(C) ∩ A oriented from u1 to uj by u1. As C contains at
least one regular edge, g(C) is either an edge or cycle in J .

We claim that g is injective on CA(f). Indeed suppose that there exists a cycle C ∈ CA(f).
Recall that A is a vertex-disjoint union of paths and furthermore that f orients the paths of
A. Denote these oriented paths (u1i )i∈[`1] , . . . , (u

t
i)i∈[`t]. Each cycle C ∈ CA(f) must contain

these oriented paths as segments (each edge of A must be contained in C and it is not
possible to break up a path or else a vertex must be adjacent to more than two edges in the
cycle). Therefore we have an inverse of g which takes a cycle from g (CA(f)) and replaces
each instance of uj1 with the path uj1 · · ·u

j
`j

.

As J is a k-partite graph on n− |A| vertices, by Lemma 2.2 we have

c(J) ≤ c(Tk(n− |A|)).

Recall that for each C ∈ CA(f), g(C) is either an edge or a cycle in J . We therefore have

|CA(f)| ≤ 2 · c(Tk(n− |A|)) + 2|E(Tk(n))| ≤ 4 · c(Tk(n− |A|)),
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for sufficiently large n by applying Lemma 2.1 and recalling that |A| ≤ n0.55. Let FA be the
set of all possible orientations f of A. We have

cI(G) ≤ |EI ||EI | +
∑
A⊆EI

∑
f∈FA

|CA(f)|, (4.1)

where the first term counts cycles that contain only irregular edges and the second term
counts cycles in cI(G) that contain both a regular and irregular edge.

We will bound the second term of this expression. Recalling that there are at most n0.55

irregular edges, we get that∑
A⊆EI

∑
f∈FA

|CA(f)| ≤
n0.55∑
i=1

(
n0.55

i

)
2i · 4 · c(Tk(n− i)).

For k ≥ 3, we now apply Lemma 2.6 and Lemma 2.5 for each i in the sum,∑
A⊆EI

∑
f∈FA

|CA(f)| ≤
n0.55∑
i=1

(
n0.55

i

)
e

2k
k−2 2i+2h(Tk(n− i))

≤ 4e
2k
k−2

n0.55∑
i=1

(
n0.55

i

)(
2k

k − 2

)i
h(Tk(n))

(n− 1)i

≤ 4e6h(Tk(n))
∑
i≥1

n0.55i

(
6

n− n0.55

)i
= o (h(Tk(n))) .

We have |EI ||EI | ≤ (n0.55)n
0.55

which is o(h(Tk(n))) by Lemma 2.1. Therefore, using (4.1) we
see that cI(G) = o(h(Tk(n)), a contradiction. Therefore G is isomorphic to Tk(n).

Similarly for k = 2, we apply Lemma 2.7 to get∑
A⊆EI

∑
f∈FA

|CA(f)| ≤
n0.55∑
i=1

(
n0.55

i

)
2i · 8e ·

(
4

n

)i
c2bn/2c(T2(n))

≤ 8e · c2bn/2c(T2(n))
n0.55∑
i=1

n0.55i

(
8

n

)i
= o

(
c2bn/2c (T2(n))

)
,

and we conclude as before.

We now present the proofs of Lemmas 4.1 and 4.2.

Proof of Lemma 4.1. First suppose that m = O(n). We can then crudely bound px,y(G) by
Lemma 3.4. By (3.2) and constraints (i) and (ii) above we have

px1,y(G) ≤ max
`

∏̀
i=1

ri ≤ max
`

(m
`

)`
.
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The function f(x) =
(
m
x

)x
is maximised at x = m

e
and so px1,y(G) ≤ e

m
e = eO(n). This is

asymptotically smaller than c(Tk(n)) by Lemma 2.1.
So m 6= O(n). Suppose that m ≤ tk(n) − 10n (otherwise we are done so assume) so

that we obtain a bound for c(G) from Corollary 3.2. Dividing this bound by c(Tk(n)) =

Ω((k−1
k

)nnn−
1
2 e−n) gives

c(G)

c(Tk(n))
= O

(
λnn2.5e

2k−1
(k−1)λ

+(1−λ)n
)
, (4.2)

where λ is defined in (3.1).
If we take the logarithm of the right hand side and call it R for ease of notation, we get

R ≤ 2.5 log(n) + n(log(λ) + (1− λ)) +
2k − 1

(k − 1)λ
+O(1)

≤ 2.5 log(n) + n(log(λ) + (1− λ)) + 3λ−1 +O(1).

First assume that λ ≤ 1 − n− 1
2 log(n): we will show that then R → −∞ and so (4.2) is

o(1).

If λ ≤ e−2, then log(λ) + (1−λ) ≤ log(λ)
2

. Furthermore we see from (3.1) that λ = Ω
(
m
n2

)
and so λ−1 = o(n). Therefore

R ≤ 2.5 log(n) +
n

2
log(λ) + o(n)

≤ 2.5 log(n)− n+ o(n)→ −∞,

as n tends to infinity.
Otherwise, λ−1 ≤ e2 and since (by assumption) λ ≤ 1−n− 1

2 log(n), we may apply Taylor’s
theorem to see

R ≤ 2.5 log(n)− n(1− λ)2 + 3e2

≤ 2.5 log(n)− log2(n) + 3e2 → −∞,

as n tends to infinity.
In either case R tends to −∞ for sufficiently large n, and we must have that c(G) <

c(Tk(n)), a contradiction.

Therefore λ > 1 − log(n)n−
1
2 . Equation (3.1) now allows us to conclude that m ≥

tk(n)−O
(
n log2(n)

)
, as required.

For the proof of Lemma 4.2 we require the Erdős-Stone Theorem [12].

Theorem 4.3 (Erdős-Stone [12]). Let k ≥ 2, t ≥ 1, and ε > 0. Then for n sufficiently
large, if G is a graph on n vertices with

e(G) ≥
(

1− 1

k − 1
+ ε

)(
n

2

)
,

then G must contain a copy of Tk(kt).
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We now apply this theorem to complete the proof of Lemma 4.2.

Proof of Lemma 4.2. Let the best k-partition of G, be V1, . . . , Vk. By Lemma 4.1, e(G) >
tk(n)−O

(
n log2 n

)
, and so Theorem 1.5 tells us that G contains tk(n)(1−o(1)) edges between

its vertex classes V1, . . . , Vk. We therefore have |Vi| = n
k
(1 + o(1)) for each i. Also note that

G cannot be k-partite (else c(G) < c(Tk(n)) by Lemma 2.2). Therefore G must contain an
irregular edge. Now we count the cycles in G which contain only regular edges. Note that
if we define GR to be G\EI , where EI is the set of irregular edges, then GR is k-partite;
GR ⊆ Ka for some a = (a1, . . . , ak) ∈ Nk.

Let t be such that H ⊆ Tk(tk)+e, where e is any edge inside a vertex class of Tk(tk). Pick
an irregular edge uv: without loss of generality we may assume uv ∈ V1. We first show that
u and v cannot have n

10k
common neighbours in every other vertex class. Suppose otherwise

and form a set Q by picking n
10k

vertices in N(u)∩N(v)∩Vi for i = 2, . . . , k and picking n
10k

vertices in V1 to be in Q.
The graph GR[Q] does not contain a copy of Tk(tk): if it did, it would contain a copy

of Tk(tk) + e and hence a copy of H. So then applying Theorem 4.3, there are Ω(n2)
regular edges that are not present in G, a contradiction. Thus, without loss of generality,
|N(u) ∩ N(v) ∩ V2| < n

10k
and, again without loss of generality, |N(v) ∩ V2| ≤ 5n

8k
(since

|V2| = n
k
(1 + o(1)) and we may assume that n is large).

When k ≥ 3, this means that G cannot contain at least 3
8

of the Hamilton cycles contained
in Ka which start from v and then go to vertex class V2. Recall that hv(i,Ka) is the number of
permutations of V (Ka) = {v1, . . . , vn} such that v1 = v, v2 ∈ Vi and v1 · · · vn is a Hamilton
cycle. Since cycles may be counted at most twice due to orientation when considering
permutations, the number of Hamilton cycles in Ka which start from v and then go to
vertex class V2 is at least 1

2
hv(2, Ka). By applying (2.1), we get

c(GR) ≤ c(Ka)−
3

8
· 1

2
hv(2, Ka)

=
n−1∑
r=3

cr(Ka) +
1

2

k∑
i=3

hv(i,Ka) +

(
1

2
− 3

16

)
hv(2, Ka).

Let b = (b1, . . . , bn), be such that bi ≥ bj if and only if ai ≥ aj, and that Kb
∼= Tk(n).

Recall that ai = n
k
(1 + o(1)) and so

∏k
i=1 e

∣∣∣log( biai )∣∣∣ = (1 + o(1)). Therefore by applying
Lemmas 2.3 and 2.4 we get

c(GR) ≤
n−1∑
r=3

cr(Ka) +
k∏
i=1

e

∣∣∣log( biai )∣∣∣
[

1

2

k∑
i=3

hv(i, Tk(n)) +

(
1

2
− 3

16

)
hv(2, Tk(n))

]

=
n−1∑
r=3

cr(Ka) + (1 + o(1))

(
cn(Tk(n))− 3

16
hv(2, Tk(n))

)
≤ (1 + o(1))

(
c(Tk(n))− 1

8k
h(Tk(n))

)
.
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Finally, we can apply Lemma 2.6 to get

c(GR) ≤ (1 + o(1))

(
c(Tk(n))− 1

24k
h(Tk(n))− 1

12k
h(Tk(n))

)
≤ (1 + o(1))

(
c(Tk(n))

(
1− e−

2k
k−2

24k

)
− 1

12k
h(Tk(n))

)
,

and so for n sufficiently large, c(GR) ≤ c(Tk(n))− 1
16k
h(Tk(n)).

For k = 2, first consider that if |V1| and |V2| differ in size by more than 1, then GR

contains no cycle of length 2bn/2c. Counting cycles by length and applying Lemma 2.2 gives

c(GR) =

bn/2c−1∑
r=2

c2r(G
R)

≤
bn/2c−1∑
r=2

c2r(T2(n))

= c(T2(n))− c2bn/2c(T2(n)).

Therefore assume that |V1| and |V2| differ in size by at most 1 (so GR is a subgraph of
T2(n)). Recall (from the third paragraph of this proof) that GR contains a vertex v with
degree at most 5n/16. Therefore, when applying the argument for k ≥ 3, we lose at least a
quarter of the cycles of length 2bn/2c which contain v from T2(n). Note that v is present in at
least half of the cycles of length 2bn/2c in T2(n) and so c(GR) ≤ c(T2(n))− 1

8
c2bn2 c(Tk(n)).

5 Counting Cycles in Complete multi-partite Graphs

In this section we present the proofs for the lemmas concerning counting cycles in complete
multi-partite graphs that we stated in Section 2. We start with some preliminary lemmas.
In order to state these we require some technical definitions.

Define a code on an alphabet A to be a string of letters a1 · · · an where each ai is in A.
For k ≥ 3, we now discuss a way to count the number of Hamilton cycles in a k-partite
graph G. Suppose each vertex class Vi of G is ordered. Consider a code a1 · · · an, where
each ai ∈ [k]. From such a code, we attempt to construct a Hamilton cycle v1 · · · vn in G
as follows: for j = 1, . . . , n let p(j) := |{` ≤ j : a` = aj}|. Define vj to be the p(j)-th vertex
in Vaj . For v1 · · · vn to be a Hamilton cycle, each letter must appear in the code a1 · · · an
the correct number of times (|{j : aj = i}| = |Vi|, for each i ∈ [k]) and any two consecutive
letters of the code must be distinct (aj 6= aj+1 for each j ∈ [n− 1], and a1 6= an).

For a code a1 · · · an, with each ai ∈ [k], we say that the code is in Q if ai 6= ai+1 for each
i, where indices are taken modulo n (so each pair of consecutive letters are distinct). For
c = (c1, . . . , ck) ∈ Nk, we say that the code is in Pc if there are ci copies of i, for each i ∈ [k].
Finally we say that a code is in Pn,k if it is in Pd, where d = (d1, . . . , dk) ∈ Nk is such that
d1 ≤ d2 ≤ . . . ≤ dk ≤ d1 + 1 and

∑
i di = n.
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In what follows it will be useful to consider a random code, so let Cn,k denote the random
code Cn,k = a1 · · · an, where each ai is independently and uniformly distributed on [k].

Enumerate the vertex set V (Kc) = {v1, . . . , vn}. We can count the number of Hamilton
cycles in Kc by considering the probability that a permutation σ of [n] picked uniformly gives
a Hamilton cycle vπ(1) . . . vπ(n). Since we have a choice of orientation and starting vertex, each
Hamilton cycle will be counted 2n times, and so

h(Kc) =
n!

2n
P
[
vπ(1) . . . vπ(n) is a Hamilton cycle

]
. (5.1)

For i ∈ [n], define bi ∈ [k] such that vπ(i) ∈ Vbi . Then b1 · · · bn has the same distribution
as Cn,k conditioned on the event {Cn,k ∈ Pc} . Note further that vπ(1) . . . vπ(n) is a Hamilton
cycle if and only if b1 · · · bn ∈ Q. Putting these into (5.1) gives

h(Kc) =
n!

2n
P[b1 · · · bn ∈ Q]

=
n!

2n
P[Cn,k ∈ Q|Cn,k ∈ Pc]. (5.2)

Obtaining good bounds on the probability that a random code is in Q (and similarly
in Pc) is relatively easy but approximating the probability of the intersection of the events
proves more tricky. The following lemma will help us bound (5.2) from below, in order to
prove Lemma 2.1.

Lemma 5.1. Let k ≥ 2 and suppose Cn,k = a1 · · · an where the ai are independent and
identically uniformly distributed on [k]. If c = (c1, . . . , ck) ∈ Nk is such that

∑
i ci = n, then

P[Cn,k ∈ Q|Cn,k ∈ Pn,k] ≥ P[Cn,k ∈ Q|Cn,k ∈ Pc],

and in particular,

P[Cn,k ∈ Q|Cn,k ∈ Pn,k] ≥ P[Cn,k ∈ Q].

Proof. Let k ≥ 2 and suppose c = (c1, . . . , ck) ∈ Nk is such that
∑

i ci = n. Suppose
that there exist some i and j such that ci ≤ cj − 2, and let c′ = (c′1, . . . , c

′
k) be such that

c′i = ci + 1, c′j = cj − 1 and c′t = ct for t 6= i, j. It is sufficient to show that P[Cn,k ∈ Q|Cn,k ∈
Pc′ ] ≥ P[Cn,k ∈ Q|Cn,k ∈ Pc] – we may inductively find an i and j until the ca differ by at
most one and c corresponds to the vertex class sizes of a Turán graph.

Fix a subset A of [n] with |A| = n − (ci + cj) and let RA,c be the event that Cn,k is in
Pc, that A = {` : a` 6= i, j}, and that a` 6= a`+1 for all ` in A and an 6= a1 if both n and 1
are in A. RA,c can be thought of as the event that everything in the code except the letters
with values i and j behave well. Now note that we can partition over all the sets of size
n− (ci + cj) in [n], and get the expression

P[Cn,k ∈ Q|Cn,k ∈ Pc] =
∑

A∈( [n]
n−(ci+cj)

)

P[Cn,k ∈ Q|RA,c] · P[RA,c|Cn,k ∈ Pc].
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Note that given Pc holds, we may as well identify i and j when considering whether RA,c

holds. As such, P[RA,c|Cn,k ∈ Pc] is constant with respect to ci and cj with fixed ci + cj.
This in turn, means that P[RA,c|Cn,k ∈ Pc] = P[RA,c′|Cn,k ∈ Pc′ ] and so to prove the first
statement of the lemma, it is sufficient to show that

P[Cn,k ∈ Q|RA,c] ≤ P[Cn,k ∈ Q|RA,c′ ], (5.3)

for each A ⊆ [n], with |A| = n− (ci + cj).
Let A ⊆ [n], with |A| = n− (ci + cj) and condition on the event RA,c (note that we may

assume that this event is not null else we have nothing to prove). If we consider Cn,k as a
code that is a cycle (imagine joining a1 to an), then the occurrences of i, j form a collection
of segments of total length ci + cj with ci copies of i and cj copies of j. Conditioning just
on RA,c, we have choice over where we place the i and j letters in the segments. Since we
must have ci total copies of i in the segments, there are

(
ci+cj
ci

)
such choices of placement of

the i and j letters. Conditional on RA,c, the i and j placements are uniformly distributed
on these

(
ci+cj
ci

)
choices. Conditional on RA,c, for the code Cn,k to be in Q, the segments

all have to be a string of letters alternating between i and j. As such the first letter of a
segment dictates the remainder of that segment.

Let the lengths of the {i, j}-segments of Cn,k be r1, . . . , rm and let sodd and seven be
the number of odd length {i, j}-segments and even length {i, j}-segments respectively. We
are then able to compute P[Cn,k ∈ Q|RA,c] by considering the starting letter of each {i, j}-
segment. Suppose that t of the sodd {i, j}-segments with odd length start with i. Then in
the code, there will be sodd−2t more appearances of j, than of i. Therefore, since Cn,k ∈ Pc,
we must have 2t − sodd = ci − cj and so t =

sodd+ci−cj
2

. Note that if sodd + ci − cj is odd,
then P[Cn,k ∈ Q|RA,c] = 0 since t must be an integer (and so we have nothing to prove).
Therefore we assume that sodd + ci − cj is even in what follows.

We can specify such a code by choosing the starting letter of each even interval arbitrarily
and choosing exactly t odd intervals to start with i. Comparing this with all possible choices
of placements of i and j letters, we obtain

P[Cn,k ∈ Q|RA,c] =
2seven

(
sodd
t

)(
ci+cj
ci

) , (5.4)

P[Cn,k ∈ Q|RA,c′ ] =
2seven

(
sodd
t+1

)(c′i+c′j
c′i

)
=

2seven
(
sodd
t+1

)(
ci+cj
ci+1

) . (5.5)

Writing b = cj − ci and dividing (5.4) by (5.5), we get
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P[Cn,k ∈ Q|RA,c]

P[Cn,k ∈ Q|RA,c′ ]
=

cj(sodd + ci − cj + 2)

(ci + 1)(sodd + cj − ci)

=
(ci + b)(sodd − b+ 2)

(ci + 1)(sodd + b)

=
cisodd + 2ci − bci + bsodd + 2b− b2

cisodd + bci + b+ sodd

= 1− (b− 1)
2ci + b− sodd

cisodd + bci + b+ sodd
. (5.6)

Since there can be at most ci+cj = 2ci+b odd length {i, j}-segments, we have 2ci+b ≥ sodd,
and b ≥ 2. The right hand side of (5.6) must be less than or equal to 1 and so

P[Cn,k ∈ Q|RA,c] ≤ P[Cn,k ∈ Q|RA,c′ ],

as required for (5.3). This completes the proof of the first statement of the lemma. For the
second statement we partition P[Cn,k ∈ Q] over the Pc to give

P[Cn,k ∈ Q] =
∑
c

P[Cn,k ∈ Q ∩ Pc]

=
∑
c

P[Cn,k ∈ Q|Cn,k ∈ Pc]P[Cn,k ∈ Pc]

≤
∑
c

P[Cn,k ∈ Q|Cn,k ∈ Pn,k]P[Cn,k ∈ Pc]

= P[Cn,k ∈ Q|Cn,k ∈ Pn,k],

as required.

We now use Lemma 5.1 to bound from below the number of Hamilton cycles in Tk(n)
and in turn prove Lemma 2.1.

Proof of Lemma 2.1. Let k ≥ 3 and suppose c = (c1, . . . , ck) ∈ Nk is such that
∑

i ci = n.
Recalling (5.2), we note that if ci ≤ cj − 2 and we let c′ = (c′1, . . . , c

′
k) be such that c′i =

ci + 1, c′j = cj − 1 and c′t = ct otherwise, then applying Lemma 5.1 gives

h(Kc′) ≥ h(Kc). (5.7)
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Furthermore, we have

h(Tk(n)) =
n!

2n
P[Cn,k ∈ Q|Cn,k ∈ Pn,k]

≥ n!

2n
P[Cn,k ∈ Q]

=
n!

2n
P[an 6= a1, an−1|an−1 6= · · · 6= a1]

n−1∏
i=2

P[ai 6= ai−1|ai−1 6= · · · 6= a1]

≥ n!

2n

(
k − 2

k

)(
k − 1

k

)n−2
= Ω

(
nn−

1
2 e−n

(
k − 1

k

)n)
,

as required.
For k = 2 we apply a simple counting argument. The number of cycles of length t = 2

⌊
n
2

⌋
in T2(n) this is easily counted by ordering both colour classes and accounting for starting
vertex and orientation. Therefore we get

ct(T2(n)) =

(⌊
n
2

⌋)
t
2

(⌈
n
2

⌉)
t
2

2t
=

⌊
n
2

⌋
!
⌈
n
2

⌉
!

4
⌊
n
2

⌋ ,

and the result follows by applying Stirling’s approximation.

We now use a counting argument to prove Lemma 2.2.

Proof of Lemma 2.2. As before, let c = (c1, . . . , ck) ∈ Nk be such that
∑

i ci = n. If there
exists i and j such that ci ≤ cj − 2, and we let c′ = (c′1, . . . , c

′
k) be such that c′i = ci + 1, c′j =

cj − 1 and c′` = c` otherwise. We are going to show that cr(Kc′) ≥ cr(Kc), for all r.
Without loss of generality, we may assume that i = 2 and j = 1. We can count the

number of cycles of a given length, r, by choosing r vertices and then counting the number
of Hamilton cycles in graph induced by this cycle and then summing over all choices of r
vertices:

cr(Kc) =
∑

a∈
∏k
i=1{0,...,ci}:∑k
i=1 ai=r

[( k∏
i=1

(
ci
ai

))
· h
(
Ka

)]
.

Fix a copy K of Kc with vertex classes V1, . . . , Vk and choose v ∈ V1; then define K ′ to be
K \ v with a vertex v′ added to V2 which is a neighbour of all vertices not in V2. We can see
that K ′ is a copy of Kc′ . Using this coupling to compare cr(Kc) and cr(Kc′), we only need
to consider cycles in K containing v and the cycles in K ′ containing v′. We write cr,v(G) to
be the number of cycles of length r in G containing vertex v. In what follows we denote the
unit vector in direction m by em = (y1, . . . , yk), where ym = 1 and y` = 0 otherwise. Since
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we already assume that v is in our cycle, we then choose r − 1 other vertices and count the
number of Hamilton cycles on the induced subgraph to express cr,v(K) as

∑
a∈{0,...,c1−1}×

∏k
i=2{0,...,ci}:∑k

i=1 ai=r−1

[(
c1 − 1

a1

)
·
( k∏
i=2

(
ci
ai

))
· h
(
Ka+e1

)]

=
∑

a1∈{0,...,c1−1}
a2∈{0,...,c2}

[(
c1 − 1

a1

)(
c2
a2

) ∑
(a3,...,ak)∈

∏k
i=3{0,...,ci}:∑k

i=1 ai=r−1

[( k∏
i=3

(
ci
ai

))
· h
(
Ka+e1

)]]

and similarly we may express cr,v′(K
′) as

∑
a1∈{0,...,c1−1}
a2∈{0,...,c2}

[(
c1 − 1

a1

)(
c2
a2

) ∑
(a3,...,ak)∈

∏k
i=3{0,...,ci}:∑k

i=1 ai=r−1

[( k∏
i=3

(
ci
ai

))
· h
(
Ka+e2

)]]

=
∑

a1∈{0,...,c1−1}
a2∈{0,...,c2}

[(
c1 − 1

a1

)(
c2
a2

) ∑
(a3,...,ak)∈

∏k
i=3{0,...,ci}:∑k

i=1 ai=r−1

[( k∏
i=3

(
ci
ai

))
· h
(
Ka′+e1

)]]
,

where a′ = (a2, a1, a3, a4, . . . , ak) is the vector a with the first two values switched.
Define:

η(a1, a2, c, r) :=
∑

(a3,...,an)∈
∏k
i=3{0,...,ci}:∑k

i=1 ai=r−1

[( k∏
i=3

(
ci
ai

))
h
(
Ka+e1

)]
.

Then

cr,v(K) =
∑

a1∈{0,...,c1−1}
a2∈{0,...,c2}

(
c1 − 1

a1

)(
c2
a2

)
η(a1, a2, c, r) (5.8)

and

cr,v′(K
′) =

∑
a1∈{0,...,c1−1}
a2∈{0,...,c2}

(
c1 − 1

a1

)(
c2
a2

)
η(a2, a1, c, r). (5.9)

If we subtract (5.9) from (5.8) and split the sums depending on the values of a1 and a2,
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we get

cr,v′(K
′)− cr,v(K) =

∑
0≤a2<a1≤c2

(
c1 − 1

a1

)(
c2
a2

)
(η(a2, a1, c, r)− η(a1, a2, c, r))

+
∑

0≤a1<a2≤c2

(
c1 − 1

a1

)(
c2
a2

)
(η(a2, a1, c, r)− η(a1, a2, c, r))

+
∑

0≤a2≤c2<a1≤c1−1

(
c1 − 1

a1

)(
c2
a2

)
(η(a2, a1, c, r)− η(a1, a2, c, r)) .

If we swap around the values of a1 and a2 in the second line of this expression, we get

cr,v′(K
′)− cr,v(K)

=
∑

0≤a2<a1≤c2

((
c1 − 1

a1

)(
c2
a2

)
−
(
c1 − 1

a2

)(
c2
a1

))(
η(a2, a1, c, r)− η(a1, a2, c, r)

)
+

∑
a1∈{c2+1,...,c1−1}

a2∈{0,...,c2}

(
c1 − 1

a1

)(
c2
a2

)
(η(a2, a1, c, r)− η(a1, a2, c, r)). (5.10)

From (5.7), we obtain that if x > y, then we have η(x, y, c, r) ≤ η(y, x, c, r). Thus in the
first sum of (5.10), when a1 > a2, we have η(a2, a1, c, r) − η(a1, a2, c, r) ≥ 0. At the same
time, note that since c1 − 1 > c2,(

c1 − 1

x

)(
c2
y

)
−
(
c1 − 1

y

)(
c2
x

)
> 0

if and only if x > y. Combining these, we must have that for all 0 ≤ a2 < a1 ≤ c2((
c1 − 1

a1

)(
c2
a2

)
−
(
c1 − 1

a2

)(
c2
a1

))(
η(a2, a1, c, r)− η(a1, a2, c, r)

)
≥ 0

and so the first sum is positive.
In the second sum of (5.10), a1 > a2 and (5.7) tells us η(a2, a1, c, r)− η(a1, a2, c, r) ≥ 0.

Thus the second sum is positive as well. We are then able to conclude that cr,v′(K
′) ≥ cr,v(K)

as required.
All that remains is to prove that c(Tk(n)) > c(G) for any k-partite graph G. Suppose

that G = Kc0 where c0 = (c01, . . . , c
0
k) ∈ Nk is such that

∑k
i=1 c

0
i = n. While there exist some

i and j such that c`i ≤ c`j − 2, define c`+1 = (c`+1
1 , . . . , c`+1

k ) by c`+1
i = c`i + 1, c`+1

j = c`+1
j − 1

and c`+1
r = c`r otherwise. Suppose that this process terminates with cI , so Tk(n) ' KcI . Note

that by successive applications of (5.7), we have h(G) ≤ h(KcI−1).
We will now show that h(G) < h(KcI−1). In order to do this, we have to consider (5.6) a

bit more closely. If h(G) = h(KcI−1), then at each application of (5.7), we have equality. So
let us suppose, in order to obtain a contradiction, that h(KcI−1) = h(KcI ), for some I. In

this case, we must have that sodd = cI−1i + cI−1j for all A ∈
( [n]

n−(cIi+cIj )

)
.
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Say that a code a1, . . . , an has an ij transition if there exists some s such that {as, as+1} =
{i, j} where indices are taken modulo n. For a fixed A, if sodd = cI−1i + cI−1j then there can
be no ij in any code in Q conditional on RA,cI . Therefore if h(KcI−1) = h(KcI ) then there
are no codes in Q ∩ PcI with an ij transition. However we will show that we can construct
such a code with an ij transition, and hence obtain our contradiction. We now split into
two cases dependent on whether cIi = cIj − 1 or cIi = cIj .

First suppose that the cIi = cIj − 1. Since KcI is balanced, all vertex classes are of size cIi
or cIj . In any Hamilton cycle of KcI , there must be a transition from a vertex class of size
cIi to a vertex class of size cIj and so by symmetry there must be a Hamilton cycle with a ij
transition.

Now suppose that cIi = cIj . If all the vertex class sizes of KcI are the same, then we
are done by symmetry. Similarly if the vertex class sizes of KcI are cIi − 1 and cIi , then
there must be a transition between two classes of size cIi and so we are done by symmetry.
Finally it remains to consider when cIi = cIj and the vertex class sizes of KcI are cIi and
cI + 1. Consider a permutation π = π1 · · · πk such that πk−1 = i, πk = j and {π1, . . . , πr} =
{l : cIl = cIi + 1}. If r = 1 and k = 3, then cIi ≥ 2 (else there are only four vertices)
and so the code π1π2π1π3(π1π2π3) · · · (π1π2π3) is sufficient. If r = 1 and k ≥ 4, then the
code π1π2π1π3π4 · · · πk(π1 · · · πk) · · · (π1 · · · πk) is sufficient. Finally, if r ≥ 2, then the code
π1 · · · πr(π1 · · · πk) · · · (π1 · · · πk) is sufficient.

We have shown that there must be an instance of a strict inequality at (5.7) in the
comparison of h(KcI−1) with h(KcI ). It then follows immediately that c(Tk(n)) = c(KcI ) >
c(KcI−1) ≥ c(G).

The proof of Lemma 2.3 has a similar flavour to that of Lemma 5.1. We first prove
a preliminary lemma where we evaluate hv(2, Kc) by considering random codes and then
compare hv(2, Kc) with hv(2, Kc′). Lemma 2.3 will follow directly from this next lemma.
(For what follows we define RA,b as in the proof of Lemma 5.1.)

Lemma 5.2. For k ≥ 3, suppose c = (c1, . . . , ck) ∈ Nk is such that
∑

i ci = n with 0 6= ci ≤
cj−2. Let c′ = (c′1, . . . , c

′
k) be such that c′i = ci+1, c′j = cj−1 and c′` = c` otherwise. Suppose

V1, . . . , Vk and V ′1 , . . . , V
′
k are the vertex classes of Kc and Kc′ and pick some v ∈ V1, v′ ∈ V ′1 .

Then

hv(2, Kc) ≤
(ci + 1)cj
ci(cj − 1)

hv′(2, Kc′).

Proof. Recall that hv(2, Kc) counts orderings v1, . . . , vn of V (Kc) where v1 = v, v2 ∈ V2,
and v1 · · · vn is a Hamilton cycle. There is a bijection between such an ordering and the
pair (C, (πi)i∈[k]) where: C is a code a1 · · · an on [k] with a1 = 1, a2 = 2 that is in both Q
and Pc; and πi is an ordering of Vi for each i and v is the first vertex in π1. So if we let
Cn,k = a1 · · · an be a random code where each ai is independently and identically uniformly
distributed on [k], we have an expression for hv(2, Kc):

hv(2, Kc) = kn(c1 − 1)!

( k∏
l=2

(cl!)

)
P[Cn,k ∈ Q ∩ Pc, (a1, a2) = (1, 2)].
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By considering the multinomial distribution with parameters n and
(
1
k
, . . . , 1

k

)
we have

P [Cn,k ∈ Pc] =
n!∏k

i=1 (ci!)
k−n, (5.11)

and so

hv(2, Kc) =
n!

c1
P[Cn,k ∈ Q, (a1, a2) = (1, 2)|Cn,k ∈ Pc]

=
n!

c1

∑
A

P[Cn,k ∈ Q, (a1, a2) = (1, 2)|RA,c]P[RA,c|Cn,k ∈ Pc] (5.12)

where RA,c is defined as in the proof of Lemma 5.1, and the sum is taken over all A ∈(
[n]

n−(ci+cj)

)
.

For what follows, we only consider A ∈
(

[n]
n−(ci+cj)

)
such that RA,c∩{(a1, a2) = (1, 2)} 6= ∅

as these are the only ones that contribute to (5.12) when considering either c and c′. As in the
proof of Lemma 5.1, conditioning on RA,c, let sodd and seven be the number of {i, j} subcodes
with respectively odd and even lengths, where we consider the code cyclically. Unlike before,
we now require (a1, a2) = (1, 2) and so if one of i and j is 1 or 2, one of the subcodes will
have a fixed value at a1 and so a fixed starting letter. Let χeven be the indicator that there
is an even length subcode with a fixed first letter. Similarly let χodd be the indicator that
there is an odd length subcode with a fixed first letter and further let χodd(i) and χodd(j)
be the indicator that there is an odd length subcode with the first letter having fixed value
i and j respectively.

As in Lemma 5.1, by letting t =
sodd+ci−cj

2
we can now compute P[Cn,k ∈ Q, (a1, a2) =

(1, 2)|RA,c]:

P[Cn,k ∈ Q, (a1, a2) = (1, 2)|RA,c] =
2seven−χeven

(
sodd−χodd

t−χodd(i)

)(
ci+cj
ci

) , (5.13)

P[Cn,k ∈ Q, (a1, a2) = (1, 2)|RA,c′ ] =
2seven−χeven

(
sodd−χodd

t+1−χodd(i)

)(
ci+cj
ci+1

) . (5.14)

Let b = cj − ci ≥ 2. Note that the χ values will be the same when considering both c
and c′ and so dividing (5.13) by (5.14) gives

P[Cn,k ∈ Q, (a1, a2) = (1, 2)|RA,c]

P[Cn,k ∈ Q, (a1, a2) = (1, 2)|RA,c′ ]
=

cj(t+ 1− χodd(i))

(ci + 1)(sodd − t− χodd(j))

=
cj

ci + 1
· sodd − b+ 2− 2χodd(i)

sodd + b− 2χodd(j)

≤ cj
ci + 1

· sodd − b+ 2

sodd + b− 2
. (5.15)
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Note that sodd−b+2
sodd+b−2

is non decreasing in sodd and sodd ≤ 2ci+ b = 2cj− b, so we can bound

(5.15) by taking sodd = 2ci + b = 2cj − b to get:

P[Cn,k ∈ Q, (a1, a2) = (1, 2)|RA,c]

P[Cn,k ∈ Q, (a1, a2) = (1, 2)|RA,c′ ]
≤ cj
ci + 1

· 2ci + b− b+ 2

2ci + b− b− 2

=
cj(ci + 1)

(ci + 1)(cj − 1)

=
cj

cj − 1
. (5.16)

If we apply inequality (5.16) to (5.12):

hv(2, Kc) ≤
cj

cj − 1

∑
A

[
n!

c1
P[Cn,k ∈ Q, (a1, a2) = (1, 2)|RA,c′ ] · P[RA,c|Cn,k ∈ Pc]

]
.

Recall that P[RA,c|Cn,k ∈ Pc] = P[RA,c′ |Cn,k ∈ Pc′ ], so:

hv(2, Kc) ≤
cj

cj − 1

∑
A

[
n!

c1
P[Cn,k ∈ Q, (a1, a2) = (1, 2)|RA,c′ ] · P[RA,c|Cn,k ∈ Pc]

]
=

c′1cj
c1(cj − 1)

∑
A

[
n!

c′1
P[Cn,k ∈ Q, (a1, a2) = (1, 2)|RA,c′ ] · P[RA,c′|Cn,k ∈ Pc′ ]

]
=

c′1cj
c1(cj − 1)

hv′(2, Kc′).

Noting that
c′`
c`

is maximised by ` = i, we get

hv(2, Kc) ≤
(ci + 1)cj
ci(cj − 1)

hv′(2, Kc′),

as required.

We now apply this result to prove Lemma 2.3.

Proof of Lemma 2.3. Let k ≥ 3 and c = (c1, . . . , cn) ∈ Nk and suppose Kc has vertex classes
V1, . . . , Vk. Further suppose Tk(n) has vertex classes V ′1 , . . . , V

′
k with bi = |V ′i | < |V ′j | = bj only

if ci ≤ cj and suppose that v ∈ V1 ∩ V ′1 . We will prove by induction on f(c, b) =
∑

i |ci − bi|
that

hv(2, Kc) ≤ hv(2, Tk(n))
k∏
i=1

e

∣∣∣log( bici )∣∣∣.
The base case of f(c, b) = 0 follows since Kc is Tk(n). Suppose that f(c, b) ≥ 1 and the

result holds for smaller values of f(c, b). Note that if f(c, b) 6= 0, then since
∑

i(ci − bi) = 0,
there must be i, j such that ci ≤ bi − 1 and cj ≥ bj + 1. Let i and j be such that bi − ci and
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cj − bj are maximised. If bi = bj + 1, we have a contradiction since then ci < cj, but bi > bj.
This means that cj ≥ ci+2 and so if we let c′ = (c′1, . . . , c

′
k) be such that c′i = ci+1, c′j = cj−1

and c′` = c` otherwise, we may apply Lemma 5.2 to get that

hv(2, Kc) ≤
(ci + 1)cj
ci(cj − 1)

hv(2, Kc′)

= exp

{∣∣∣∣log

(
c′i
ci

)∣∣∣∣+

∣∣∣∣log

(
c′j
cj

)∣∣∣∣}hv(2, Kc′). (5.17)

To proceed by induction, we first observe that f(c′, b) < f(c, b) and secondly we must
check that if br < bs, then c′r ≤ c′s. Note that this still holds for r = i and s = j and will
still hold if neither r = i nor s = j. If r = i and bi < bs but c′i > c′s, then it must be the case
that bs − cs > bi − ci, which contradicts our choice of i. Similarly if we have s = j, br < bj
and c′r > cj, then we arrive at the similar contradiction that cr − br > cj − bj. Therefore we
may apply the inductive hypothesis to (5.17) to conclude that

hv(2, Kc) ≤ exp

{∣∣∣∣log

(
c′i
ci

)∣∣∣∣+

∣∣∣∣log

(
c′j
cj

)∣∣∣∣}hv(2, Tk(n))
k∏
l=1

e

∣∣∣∣log( blc′
l

)∣∣∣∣

= hv(2, Tk(n))
∏
l 6=i,j

e

∣∣∣log( blcl )∣∣∣∏
l=i,j

exp

{∣∣∣∣log

(
bl
c′l

)∣∣∣∣+

∣∣∣∣log

(
c′l
cl

)∣∣∣∣}

= hv(2, Tk(n))
k∏
i=1

e

∣∣∣log( bici )∣∣∣.

We use a more complicated probabilistic argument for the proof of Lemma 2.4. We
consider a different version of the random codes we have previously considered.

Proof of Lemma 2.4. LetK be a copy of the Turán graph Tk(n) with vertex classes V1, . . . , Vk,
and fix bi = |Vi| for each i ∈ [k]. (Note we do not order the sizes of the vertex classes.) Fix
a1 = 1, then given ai−1 for i ≥ 2, let ai be uniformly distributed on [k] \ {ai−1}. Define the
code C2(b1, k) = a1 · · · am, where m = max{j : |{i ≤ j : ai = 1}| = b1} (in other words, keep
track of a random walk on Kk and stop just before the (b1 + 1)-th appearance of 1).

Conditional on m = n, the code C2(b1, k) is uniformly distributed on codes f1 · · · fn in Q
that contain b1 copies of 1 and satisfy f1 = 1. This is equal in distribution to Cn,k = d1 · · · dn,
where each di is independently uniformly distributed on [k], conditional on Cn,k being in Q,
having b1 copies of 1 and starting with d1 = 1. This conditional equivalence between the
two random codes allows us to compute bounds in new ways.

LetW be the number of transitions from 1 to 2 in C2(b1, k) – that isW = |{j : (aj, aj+1) =
(1, 2)}|. Note that any shift of a code in Q ∩ Pb (aM+1 · · · ana1 · · · aM for example) will also
be in Q ∩ Pb. This means that we can shift the code C2(b1, k) to each appearance of 1 to
get another instance of a code f1 · · · fn in Q, with f1 = 1 containing b1 appearances of 1.
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Thus by symmetry, given W , the probability that C2(b1, k) starts with (a1, a2) = (1, 2) is
W
b1

. We seek to show that W is at most b1
2k

with probability asymptotically smaller than

the probability that C2(b1, k) is in Pb. With this we know that, conditional on the event
{C2(b1, k) ∈ Pb}, with high probability W ≥ b1

2k
and hence by symmetry

P
[
a2 = 2|C2(b1, k) ∈ Pb

]
= E

[
W

b1

∣∣∣∣C2(b1, k) ∈ Pb
]
≥ 1

2k
(1− o(1)).

Since each letter after a copy of 1 is independently and uniformly distributed on {2, . . . , k}
and there are b1 copies of 1, W is distributed like a Binomial random variable Bin(b1,

1
k−1).

Applying a Chernoff bounds gives:

P
[
W ≤ n

2k2

]
≤ e−

n
8k2 . (5.18)

Now consider the probability that the code C2(b1, k) is of the correct length. Note that
the letter directly after a 1 cannot be a 1 but (until the next copy of 1), each subsequent
letter is a 1 with probability 1

k−1 and so removing the letter after each 1 and considering an
appearance of a 1 as a failure, the variable m − 2b1 is distributed like a Negative Binomial
random variable, NB(b1,

k−2
k−1).

P[m = n] = P
[
NB

(
b1,

k − 2

k − 1

)
= n− b1

]
=

(
n− (b1 + 1)

n− 2b1

)(
k − 2

k − 1

)n−2b1 ( 1

k − 1

)b1
.

Now an application of de Moivre-Laplace (see [13, VII.3]) tells us that

P[m = n] = Θ

(
n−

1
2 exp

{
−

(b1 − n−b1
k−1 )2

2(n− b1) k−2
(k−1)2

})
. (5.19)

Note that |b1 − n
k
| < 1, as the size of a vertex class of a copy of the Turán graph Tk(n)

and so |b1 − n−b1
k−1 | = |

k
k−1(b1 − n

k
)| < 2. Putting this into (5.19), we see that

P[m = n] = Θ

(
n−

1
2 exp

{
−O
(
n−1
)})

= Θ
(
n−

1
2

)
. (5.20)

Next, consider P [C2(b1, k) ∈ Pb|m = n]. As mentioned above, conditional on m = n,
C2(b1, k) is distributed like Cn,k conditional on being in Q, starting with d1 = 1 and having
b1 copies of 1. By Lemma 5.1, the events {Cn,k ∈ Pb} and {Cn,k ∈ Q} are positively correlated
and so

P[C2(b1, k) ∈ Pb|m = n] = P[Cn,k ∈ Pb|Cn,k ∈ Q, d1 = 1, b1 copies of 1]

≥ P[Cn,k ∈ Pb|Cn,k ∈ Q]

≥ P[Cn,k ∈ Pb].
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Recalling (5.11) and that
∣∣bi − n

k

∣∣ < 1 for all i, Stirling’s approximation gives

P[C2(b1, k) ∈ Pb|m = n] = Ω(n−
k
2 ). (5.21)

So combining (5.20) and (5.21) we can conclude

P
[
C2(b1, k) ∈ Q ∩ Pb

]
= P

[
C2(b1, k) ∈ Pb|m = n

]
P[m = n]

= Ω
(
n−

k+1
2

)
. (5.22)

We can now complete our proof. We have

hv
(
2, Tk(n)

)
= kn(b1 − 1)!

( k∏
l=2

(bl!)

)
P[Cn,k ∈ Q ∩ Pb, (d1, d2) = (1, 2)]

= kn(b1 − 1)!

( k∏
l=2

(bl!)

)
P[Cn,k ∈ Q, d1 = 1, |{j : dj = 1]| = b1}

· P[Cn,k ∈ Pb, d2 = 2|Cn,k ∈ Q, d1 = 1, |{j : dj = 1}| = b1].

Recall that Cn,k = d1 · · · dn given that Cn,k ∈ Q and d1 = 1 and |{j : dj = 1}| = b1 is
equal in distribution to C2(b1, k) = a1 · · · am given m = n and so

hv
(
2, Tk(n)

)
= kn(b1 − 1)!

( k∏
l=2

(bl!)

)
P[Cn,k ∈ Q, d1 = 1, |{j : dj = 1}| = b1]

· P[C2(b1, k) ∈ Pb, a2 = 2|m = n]

= kn(b1 − 1)!

( k∏
l=2

(bl!)

)
P[Cn,k ∈ Q, d1 = 1, |{j : dj = 1}| = b1]

· P[a2 = 2|C2(b1, k) ∈ Pb,m = n] · P[C2(b1, k) ∈ Pb|m = n]. (5.23)

We can bound P[d2 = 2|C2(b1, k) ∈ Pb,m = n] by conditioning on the value of W as
follows:

P[a2 = 2|C2(b1, k) ∈ Pb,m = n] ≥ P
[
a2 = 2

∣∣∣∣C2(b1, k) ∈ Pb,m = n,W >
n

2k2

]
− P

[
W ≤ n

2k2

∣∣∣∣C2(b1, k) ∈ Pb,m = n

]
≥ n

2k2b1
−

P[W ≤ n
2k2

]

P[C2(b1, k) ∈ Pb,m = n]
.

By applying (5.18) and (5.22) we get

P[a2 = 2|C2(b1, k) ∈ Pb,m = n] ≥ n

2k2b1
−O

(
e−

n
8k2

n−
k+1
2

)
=

n

2k2b1
− o(1).
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This means that for sufficiently large n, P[a2 = 2|C2(b1, k) ∈ Pb,m = n] ≥ 1
3k

. Putting
this into (5.23), we see

hv
(
2, Tk(n)

)
≥ kn(b1 − 1)!

3k

( k∏
l=2

(bl!)

)
P[Cn,k ∈ Q, d1 = 1, |{j : dj = 1}| = b1]

· P[C2(b1, k) ∈ Pb|m = n]

=
kn(b1 − 1)!

3k

( k∏
l=2

(bl!)

)
P[Cn,k ∈ Q, d1 = 1, |{j : dj = 1}| = b1]

· P[Cn,k ∈ Pb|Cn,k ∈ Q, d1 = 1, |{j : dj = 1}| = b1]

=
kn(b1 − 1)!

3k

( k∏
l=2

(bl!)

)
P[Cn,k ∈ Q ∩ Pb, d1 = 1]

=
kn

2n

[ k∏
i=1

(bi!)

]
· P[Cn,k ∈ Q ∩ Pb] ·

2n · P[d1 = 1|Cn,k ∈ Q ∩ Pb]
3kb1

= h
(
Tk(n)

)
·

2n · P[d1 = 1|Cn,k ∈ Q ∩ Pb]
3kb1

.

By symmetry, P[d1 = 1|Cn,k ∈ Q ∩ Pb] = b1
n

. This completes the proof of the lemma.

Now we bound below the number of Hamilton cycles in Tk(n) by the number of Hamilton
cycles in Tk(m), where m < n.

Proof of Lemma 2.5. Let v be a vertex contained in the largest vertex class Vi in Tk(n).
Removing v gives Tk(n− 1). For each Hamilton cycle v1 · · · vn−1 in Tk(n− 1), we can form a
Hamilton cycle in Tk(n) by inserting v between two vertices vj and vj+1, both not in Vi. For
each Hamilton cycle in Tk(n − 1), there are at least (n − 1)k−2

k
spaces where we can insert

v and under this construction each Hamilton cycle in Tk(n) will be formed in at most one
way. Counting over all Hamilton cycles in Tk(n− 1), we get that

h(Tk(n)) ≥ (n− 1)
k − 2

k
h(Tk(n− 1)). (5.24)

We can apply equation (5.24) inductively to get that for any i ∈ [n],

h(Tk(n)) ≥ (n− 1)i

(
k − 2

k

)i
h(Tk(n− i)).

We now bound the number of cycles in Tk(n) in terms of the number of Hamilton cycles.
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Proof of Lemma 2.6. Let I be a subset of [n] with |I| = r. Then by Lemma 2.2 and Lemma
2.5, we have

h(G[I]) ≤ h(Tk(r))

≤
(

k

k − 2

)n−r
h(Tk(n))

(n− 1)n−r

≤
(

2k

k − 2

)n−r
h(Tk(n))

(n)n−r
.

Summing over all subsets I, we have

c(Tk(n)) ≤
n−3∑
i=0

(
n

i

)(
2k

k − 2

)i
h(Tk(n))

(n)i

= h(Tk(n))
n−3∑
i=0

1

i!

(
2k

k − 2

)i
≤ e

2k
k−2h(Tk(n)),

as required.

Finally, we prove Lemma 2.7.

Proof of Lemma 2.7. Let n ∈ N and denote
⌊
n
2

⌋
by t and

⌈
n
2

⌉
by t′. For r ≥ 2, the number

of cycles of length 2r in T2(n) is
(t)r (t′)r

2r
.

Summing over r = 2, . . . , t gives

c(T2(n)) =
t∑

r=2

(t)r (t′)r
2r

=
t!t′!

2t

t∑
r=2

t

r(t− r)!(t′ − r)!

≤ t!t′!

2t

t−2∑
r′=0

t

(t− r′)r′!r′!
,

where we substituted r′ = t− r to obtain the second equality. As c2t(T2(n)) = t!t′!
2t

and t
(t−s)s!

is easily bounded by 2, we have

c(T2(n)) ≤ 2c2t(T2(n))
t−2∑
r′=0

1

r′!

≤ 2c2t(T2(n))
∑
r′≥0

1

r′!
= 2e · c2t(T2(n)). (5.25)
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Let s =
⌊
n−1
2

⌋
and s′ =

⌈
n
2

⌉
. Note that t = s′ and t′ = s+ 1, and so

n− 2

2

s′!s!

2s
≤ s

t
· s
′!s!t′

2s
=
t!t′!

2t
. (5.26)

Using (5.26) gives

c2bn−1
2 c(T2(n− 1)) =

s′!s!

2s
≤ 2

n− 2
· t!t

′!

2t
=

2

n− 2
c2bn2 c(T2(n)).

As i = o(n), repeatedly applying this bound along with (5.25) gives

c(T2(n− i)) ≤ 2e · c2bn−i2 c(T2(n− i))

≤ 2e

(
i∏

j=1

2

n− j − 1

)
c2bn2 c(T2(n))

≤ 2e

(
4

n

)i
c2bn2 c(T2(n)),

as required.

6 Conclusion and Open Questions

In this paper we resolve Conjecture 1.1 for sufficiently large n (we do not optimise the
value of n given by our approach, as it would still be very large). For triangle-free graphs,
Arman, Gunderson and Tsaturian [4] (see also [9]) show that the Turán graph T2(n) uniquely
maximises the number of cycles when n ≥ 141, but it seems likely that this should hold for
all values of n.

Theorem 1.3 only deals with H such that χ(H) ≥ 3 and H contains a critical edge. When
H does not satisfy these properties, our approach is not feasible as the extremal H-free graph
is no longer Tk(n). It is interesting to consider what could be true for such H. For example,
it is natural to ask whether it is possible to maximize the number of edges and the number
of cycles simulateously (as in Theorem 1.3).

Question 6.1. Let H be a fixed graph. Does EX(n;H) contain a graph with m(n;H) cycles
for sufficiently large n?

As T2(n) does not contain any odd cycle, Theorem 1.3 implies that for any odd k, T2(n) is
the n-vertex graph with odd girth at least k containing the most cycles. Arman, Gunderson
and Tsaturian [4] ask a more general question.

Question 6.2 (Arman, Gunderson, Tsaturian [4]). What is the maximum number of cycles
in an n-vertex graph, with girth at least g?

33



This question seems difficult since comparatively little is known about the maximum
number of edges in an graph with girth at least g ≥ 4.

Another interesting problem was raised by Király [18] who asked for the maximum num-
ber of cycles in a graph with m edges can contain (without constraining the number of
vertices); he conjectured an upper bound of 1.4m cycles. In a recent paper Arman and Tsa-
turian [5] give an upper bound of 8.25 × 3m/3 and a lower bound of 1.37m, and conjecture
that their upper bound is correct to within a (1 + o(1))m factor. It would be interesting to
consider the effect of adding the additional constraint of forbidding a subgraph. In particular
what is the maximum number of cycles that a triangle-free graph with m edges can contain?

A similar problem to that of Király is to maximise the number of cycles in a graph with
n vertices and m edges. For m = Ω(n2) and n sufficiently large, Arman and Tsaturian [5,
Conjecture 6.1] conjecture a maximum of (1 + o(1))n

(
2m
en

)n
cycles. The current best upper

bound is (1 + o(1))n
(
2m
2n

)n
given in the same paper. We believe that the method used to

prove Lemma 3.2 improves this upper bound but does not prove the conjecture.
Another direction of research is to maximise the number of induced cycles. Given a graph

G, let mI(G) denote the number of induced cycles in G and let mI(n) := max{mI(G) :
|V (G)| = n}. Morrison and Scott [20] recently determined mI(n) for n sufficiently large and
proved that the extremal graphs are unique. The extremal graphs in question are essentially
blow-ups of Cn/3 and contain many copies of C4.

It would be interesting to consider what happens to the extremal graphs when we forbid
C4.

Question 6.3. What is mI(n;C4) := max{mI(G) : |V (G)| = n,G is C4-free}?
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[12] P. Erdős and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52
(1946), 1087–1091.

[13] W. Feller, Introduction to Probability Theory and its Applications, 3rd ed., vol. I, New
York: John Wiley & Sons, 1968.

[14] A. Grzesik, On the maximum number of five-cycles in a triangle-free graph, J. Combin.
Theory Ser. B 102 (2012), no. 5, 1061–1066.

[15] A. Grzesik and B. Kielak, On the maximum number of odd cycles in graphs without
smaller odd cycles, arXiv:1806.09953v1, preprint, June 2018.
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