ANOTHER SIMPLE PROOF OF A THEOREM OF MILNER

A.D. SCOTT

ABSTRACT. In this note we give a short proof of a theorem of Milner concerning intersecting Sperner systems.

An intersecting Sperner system on $[n] = \{1, \ldots, n\}$ is a collection of subsets of [n], no pair of which is either disjoint or nested. Milner [2] proved that an intersecting Sperner system on [n] has at most $\binom{n}{\lceil (n+1)/2\rceil}$ sets. Katona [1] gave a simple proof of Milner's theorem using the cycle method. We give a simpler proof that uses the cycle method in a different way.

We write $[n]^{(k)}$ for the set of subsets of size k of [n]. For $\mathcal{F} \subset [n]^{(k)}$ we write $\partial^+ \mathcal{F}$ for the upper shadow $\{G \in [n]^{k+1} : G \supset F \text{ for some } F \in \mathcal{F}\}$ of \mathcal{F} and $\partial^- \mathcal{F}$ for the lower shadow $\{G \in [n]^{k-1} : G \subset F \text{ for some } F \in \mathcal{F}\}$. By a simple counting argument, if k < n/2 then $|\partial^+ \mathcal{F}| \ge |\mathcal{F}|$ and if k > n/2 then $|\partial^- \mathcal{F}| \ge |\mathcal{F}|$.

Theorem 1. An intersecting Sperner system on [n] has size at most

(1)
$$\begin{pmatrix} n \\ \lceil \frac{n+1}{2} \rceil \end{pmatrix}$$

Proof. Let $\mathcal{F} \subset \mathcal{P}(n)$ be an intersecting Sperner system of maximum size N. If n is odd, then \mathcal{F} satisfies (1) by Sperner's lemma, so we may assume n = 2k is even. Let $r = \min\{|A| : A \in \mathcal{F}\}$ and, for $0 \leq k \leq n, \mathcal{F}_k = \mathcal{F} \cap [n]^{(k)}$. If r < n/2 = k then consider the system $\mathcal{F}' = (\mathcal{F} \setminus \mathcal{F}_r) \cup \partial^+ \mathcal{F}_r$. This is an intersecting Sperner system which is at least as large as \mathcal{F} , since $|\partial^+ \mathcal{F}_r| \geq |\mathcal{F}_r|$. Repeating the argument, we may assume that $|A| \geq n/2$ for $A \in \mathcal{F}$. Now let $r = \max\{|A| : A \in \mathcal{F}\}$. If r > k + 1 then consider $\mathcal{F}' = (\mathcal{F} \setminus \mathcal{F}_r) \cup \partial^- \mathcal{F}_r$. Since all sets in \mathcal{F} have size at least n/2, this is an intersecting Sperner system, and $|\mathcal{F}'| \geq |\mathcal{F}|$ because $|\partial^- \mathcal{F}_r| \geq |\mathcal{F}_r|$. Repeating, we may assume that $\mathcal{F} \subset [n]^{(k)} \cup [n]^{(k+1)}$.

Let $\mathcal{G} = \partial^+ \mathcal{F}_k$. Since \mathcal{G} and \mathcal{F}_{k+1} are disjoint and $|\mathcal{F}_{k+1}| + |\mathcal{G}|$ is bounded by (1), the theorem follows if we show that $|\mathcal{G}| \geq |\mathcal{F}_k|$.

Date: February 8, 2010.

A.D. SCOTT

Consider a cyclic order **c** of [n] and suppose $f(\mathbf{c})$ elements of \mathcal{F}_k and $q(\mathbf{c})$ elements of \mathcal{G} occur as intervals in \mathbf{c} . Since we do not have both an interval and its complement in \mathcal{F}_k , we have $f(\mathbf{c}) \leq n/2 = k$. However, every interval of length k can be extended to an interval of length k+1in two ways, so $g(\mathbf{c}) \geq f(\mathbf{c}) + 1 \geq \frac{k+1}{k} f(\mathbf{c})$. Each element of \mathcal{F}_k occurs in $k!^2$ cyclic orders and each element of \mathcal{G} in (k+1)!(k-1)! cyclic orders, so summing over all orders gives

$$(k+1)!(k-1)!|\mathcal{G}| = \sum_{\mathbf{c}} g(\mathbf{c}) \ge \frac{k+1}{k} \sum_{\mathbf{c}} f(\mathbf{c}) = \frac{k+1}{k} k!^2 |\mathcal{F}_k|,$$

I so $|\mathcal{F}_k| \le |\mathcal{G}|$, as required.

and so $|\mathcal{F}_k| \leq |\mathcal{G}|$, as required.

References

- [1] G.O.H. Katona, A simple proof of a theorem of Milner, J. Combin. Theory Ser. A 83 (98), 138-140
- [2] E.C. Milner, A combinatorial theorem on systems of sets, J. London Math. Soc. 43 (68), 204-206

DEPARTMENT OF MATHEMATICS, UNIVERSITY COLLEGE LONDON, GOWER STREET, LONDON WC1E 6BT, ENGLAND

E-mail address: scott@math.ucl.ac.uk