# ANOTHER SIMPLE PROOF OF A THEOREM OF MILNER 

A.D. SCOTT


#### Abstract

In this note we give a short proof of a theorem of Milner concerning intersecting Sperner systems.


An intersecting Sperner system on $[n]=\{1, \ldots, n\}$ is a collection of subsets of $[n]$, no pair of which is either disjoint or nested. Milner [2] proved that an intersecting Sperner system on $[n]$ has at most $\binom{n}{[(n+1) / 2\rceil}$ sets. Katona [1] gave a simple proof of Milner's theorem using the cycle method. We give a simpler proof that uses the cycle method in a different way.

We write $[n]^{(k)}$ for the set of subsets of size $k$ of $[n]$. For $\mathcal{F} \subset[n]^{(k)}$ we write $\partial^{+\mathcal{F}}$ for the upper shadow $\left\{G \in[n]^{k+1}: G \supset F\right.$ for some $\left.F \in \mathcal{F}\right\}$ of $\mathcal{F}$ and $\partial^{-\mathcal{F}}$ for the lower shadow $\left\{G \in[n]^{k-1}: G \subset F\right.$ for some $F \in$ $\mathcal{F}\}$. By a simple counting argument, if $k<n / 2$ then $\left|\partial^{+} \mathcal{F}\right| \geq|\mathcal{F}|$ and if $k>n / 2$ then $\left|\partial^{-} \mathcal{F}\right| \geq|\mathcal{F}|$.

Theorem 1. An intersecting Sperner system on [n] has size at most

$$
\begin{equation*}
\binom{n}{\left\lceil\frac{n+1}{2}\right\rceil} \tag{1}
\end{equation*}
$$

Proof. Let $\mathcal{F} \subset \mathcal{P}(n)$ be an intersecting Sperner system of maximum size $N$. If $n$ is odd, then $\mathcal{F}$ satisfies (1) by Sperner's lemma, so we may assume $n=2 k$ is even. Let $r=\min \{|A|: A \in \mathcal{F}\}$ and, for $0 \leq k \leq n, \mathcal{F}_{k}=\mathcal{F} \cap[n]^{(k)}$. If $r<n / 2=k$ then consider the system $\mathcal{F}^{\prime}=\left(\mathcal{F} \backslash \mathcal{F}_{r}\right) \cup \partial^{+} \mathcal{F}_{r}$. This is an intersecting Sperner system which is at least as large as $\mathcal{F}$, since $\left|\partial^{+} \mathcal{F}_{r}\right| \geq\left|\mathcal{F}_{r}\right|$. Repeating the argument, we may assume that $|A| \geq n / 2$ for $A \in \mathcal{F}$. Now let $r=\max \{|A|: A \in \mathcal{F}\}$. If $r>k+1$ then consider $\mathcal{F}^{\prime}=\left(\mathcal{F} \backslash \mathcal{F}_{r}\right) \cup \partial^{-} \mathcal{F}_{r}$. Since all sets in $\mathcal{F}$ have size at least $n / 2$, this is an intersecting Sperner system, and $\left|\mathcal{F}^{\prime}\right| \geq|\mathcal{F}|$ because $\left|\partial^{-} \mathcal{F}_{r}\right| \geq\left|\mathcal{F}_{r}\right|$. Repeating, we may assume that $\mathcal{F} \subset[n]^{(k)} \cup[n]^{(k+1)}$.

Let $\mathcal{G}=\partial^{+} \mathcal{F}_{k}$. Since $\mathcal{G}$ and $\mathcal{F}_{k+1}$ are disjoint and $\left|\mathcal{F}_{k+1}\right|+|\mathcal{G}|$ is bounded by (1), the theorem follows if we show that $|\mathcal{G}| \geq\left|\mathcal{F}_{k}\right|$.

Consider a cyclic order $\mathbf{c}$ of $[n]$ and suppose $f(\mathbf{c})$ elements of $\mathcal{F}_{k}$ and $g(\mathbf{c})$ elements of $\mathcal{G}$ occur as intervals in $\mathbf{c}$. Since we do not have both an interval and its complement in $\mathcal{F}_{k}$, we have $f(\mathbf{c}) \leq n / 2=k$. However, every interval of length $k$ can be extended to an interval of length $k+1$ in two ways, so $g(\mathbf{c}) \geq f(\mathbf{c})+1 \geq \frac{k+1}{k} f(\mathbf{c})$. Each element of $\mathcal{F}_{k}$ occurs in $k!^{2}$ cyclic orders and each element of $\mathcal{G}$ in $(k+1)$ ! $(k-1)$ ! cyclic orders, so summing over all orders gives

$$
(k+1)!(k-1)!|\mathcal{G}|=\sum_{\mathbf{c}} g(\mathbf{c}) \geq \frac{k+1}{k} \sum_{\mathbf{c}} f(\mathbf{c})=\frac{k+1}{k} k!^{2}\left|\mathcal{F}_{k}\right|,
$$

and so $\left|\mathcal{F}_{k}\right| \leq|\mathcal{G}|$, as required.

## References

[1] G.O.H. Katona, A simple proof of a theorem of Milner, J. Combin. Theory Ser. A 83 (98), 138-140
[2] E.C. Milner, A combinatorial theorem on systems of sets, J. London Math. Soc. 43 (68), 204-206

Department of Mathematics, University College London, Gower Street, London WC1E 6BT, England

E-mail address: scott@math.ucl.ac.uk

