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Abstract. Erdős and Hajnal conjectured that for every graph H, there exists c > 0 such that every

H-free graph G has a clique or a stable set of size at least |G|c (“H-free” means with no induced subgraph

isomorphic to H). Alon, Pach, and Solymosi reduced the Erdős-Hajnal conjecture to the case when H is

prime (that is, H cannot be obtained by vertex-substitution from smaller graphs); but until now, it was

not shown for any prime graph with more than five vertices.

We will provide infinitely many prime graphs that satisfy the conjecture. Let H be a graph with the

property that for every prime induced subgraph G′ with |G′| ≥ 3, G′ has a vertex of degree one and

a vertex of degree |G′| − 2. We will prove that every graph H with this property satisfies the Erdős-

Hajnal conjecture, and infinitely many graphs with this property are prime. More generally, say a graph

is buildable if every prime induced subgraph with at least three vertices has a vertex of degree one. We

prove that if H1 and H2 are buildable, there exists c > 0 such that every graph G that is both H1-free and

H2-free has a clique or a stable set of size at least |G|c.
Our proof uses a new technique of “iterative sparsification”, where we pass to a sequence of successively

more restricted induced subgraphs. This approach also extends to ordered graphs and to tournaments.

For ordered graphs, we obtain a theorem which significantly extends a recent result of Pach and Tomon

about excluding monotone paths; and for tournaments, we obtain infinitely many new prime tournaments

that satisfy the Erdős-Hajnal conjecture (in tournament form).

In all of these cases, we can in fact prove a stronger result: we can weaken the “H-free” hypothesis

of the Erdős-Hajnal conjecture to one saying that there are not many copies of H; and strengthen its

conclusion, deducing a “polynomial” version of Rödl’s theorem conjectured by Fox and Sudakov.

1. Introduction

All graphs in this paper are finite and simple. For a graph G, G denotes its complement, and |G| :=
|V (G)|. An induced subgraph of G is a graph obtained from G by removing vertices. For a graph H, a

copy of H in G is an isomorphism from H to an induced subgraph of G; and G is H-free if there is no

copy of H in G.

A conjecture of Erdős and Hajnal [10, 11] asserts that:

Conjecture 1.1. For every graph H, there exists c > 0 such that in every H-free graph G there is a

clique or a stable set of size at least |G|c.

A graph H satisfying this conjecture is said to have the Erdős-Hajnal property. Despite considerable

attention (see, for example, [4, 14] for surveys), the Erdős-Hajnal conjecture remains open. Erdős and

Hajnal [11] proved that H-free graphs contain cliques or stable sets of size exp(cH
√
log n); recently, this

was improved to exp(cH
√
log n log logn) [3]. But no better general bound is known.

An important result of Alon, Pach, and Solymosi shows that the class of graphs H satisfying Conjec-

ture 1.1 has a certain closure property. Given two graphs H1, H2 and a vertex v ∈ V (H1), the graph
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obtained from H1 by substituting H2 for v is formed by taking the disjoint union of H1 \{v} and H2, and

then adding edges to make every vertex of H2 adjacent to all the neighbours of v in H1. This operation

is vertex-substitution. Alon, Pach, and Solymosi [1] showed the following:

Theorem 1.2. Let H1, H2 have the Erdős-Hajnal property, and let H be obtained from H1 by substituting

H2 for a vertex of H1. Then H has the Erdős-Hajnal property.

A graph H is prime if it cannot be constructed by vertex-substitution from two graphs both with fewer

vertices. Equivalently, H is prime if there is no proper subset S of V (H) with |S| ≥ 2 such that all

vertices in S have the same neighbourhood in V (H) \S. All graphs with at most two vertices are prime;

let us say a graph is non-trivial if it has at least three vertices.

In view of Theorem 1.2, it is enough to show that every prime graph satisfies the Erdős-Hajnal con-

jecture. However, until now the only non-trivial prime graphs known to have the Erdős-Hajnal property

were the the four-vertex path P4, the bull (obtained from P4 by adding a new vertex adjacent its two

middle vertices) [7], and the five-cycle C5 [9]. The five-vertex path is in process of being added to this

list [17] (and see also [2, 16] for some other recent progress).

In this paper, we will give infinitely many prime graphs that all have the Erdős-Hajnal property (for

example, the graphs of Fig. 1; the lower half of Figure 2 shows a more complicated example). The simplest

version of our main result is the following (we prove stronger versions later):

Theorem 1.3. Let H be a graph, such that every prime induced subgraph H ′ with at least three vertices

has both a vertex of degree one and a vertex of degree |H ′| − 2 (and so degree one in the complement).

Then H has the Erdős-Hajnal property.

This is remarkable, because until now, and despite intensive effort, there were no prime graphs with

more than five vertices that were known to have the Erdős-Hajnal property.

Figure 1. The two six-vertex prime graphs in H, and one on seven vertices.

We define H to be the class of all graphs that can be constructed by a sequence of the following

operations, starting with one-vertex graphs:

• choosing a graph G that is already constructed, choosing a vertex v ∈ V (G) that has degree at least

|G| − 1, and adding a new vertex adjacent only to v;

• choosing a graph G that is already constructed, choosing a vertex v ∈ V (G) that has degree at

most one, and adding a new vertex with neighbour set V (G) \ {v} (this is the operation of the first

bullet, in the complement graph);

• choosing two graphs H1, H2 that are already constructed, and substituting H2 for a vertex of H1.

For instance, the graph constructed in Fig. 2 belongs to H. (Add one vertex at a time in the order of the

numbers.) It is easy to see that:

• the bull and P4 belong to H;

• if H ∈ H, then so is its complement and all its induced subgraphs;
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b1 b4b3 b8b7 b12b11

a2 a5 a6 a9 a10 a13

Figure 2. Start with a path (a2-b3-a6-b7-a10-b11 in this case), add a leaf at every vertex,
add an isolated vertex b1, and take a bipartition (A,B), numbered as shown. Now make
A a clique; and make ai, bj adjacent if i ≥ j + 4.

• each prime graph in H is a split graph, that is, its vertex set is the union of a clique and a stable

set; and

• H ∈ H if and only if every nontrivial prime induced subgraph H ′ has a vertex of degree one and a

vertex of degree |H ′| − 2.

Thus, our theorem Theorem 1.3 says:

Theorem 1.4. Every H ∈ H has the Erdős-Hajnal property.

We claim that H contains an infinite number of prime graphs (including the bull, but not C5, and

unfortunately not P5). Indeed, H contains a prime graph with h vertices for every h ≥ 4. To see this,

observe first that there are prime graphs in H with four vertices and five vertices (P4 and the bull).

Second, if H ∈ H is prime, then there is a prime graph in H with |H| + 2 vertices; because let v be a

vertex of H with degree one, adjacent to u say. Add two new vertices, one adjacent to all vertices of H,

and the other just adjacent to u; then this enlarged graph is also prime and belongs to H.

We point out that the third bullet in the definition of H is not really important. If we just want to

construct all the prime graphs in H, the first two bullets are enough. Note, however, that having used,

say, the first bullet operation on some vertex v, adding a new vertex u, one can then use the first bullet

operation again on the same vertex v, adding a “nonadjacent twin” of u: this is the same as substituting

a two-vertex stable set for u. At that stage, the graph is not prime, but might still eventually grow into

a prime graph, because later steps in the growing process might restore primeness. Moreover, if we want

to avoid using the third bullet, then this repetition of the same operation on the same vertex may be

necessary (for instance, to grow the graph of Fig. 2). When we come to the “pairs of graphs” extension

of the result (Theorem 1.10), vertex-substitution will become important, and it is convenient to retain it

here to make that extension simpler.
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The Erdős-Hajnal property of the bull was first proved by Chudnovsky and Safra [7] using the strong

perfect graph theorem [6] and a decomposition theorem for bull-free graphs, and later reproved by Chud-

novsky, Scott, Seymour, and Spirkl [9] via a different approach that simultaneously showed the Erdős-

Hajnal property of C5. Our proof of Theorem 1.4 gives a third proof of the Erdős-Hajnal property of the

bull.

The result of this paper gives two prime six-vertex graphs that have the Erdős-Hajnal property. We

have been striving, for the last forty years or so (some of us, anyway) to prove that all five-vertex graphs

have the Erdős-Hajnal property, and we have just succeeded [17]. Where are we on six-vertex graphs?

There are ten prime six-vertex graphs that contain P5 or its complement, and that therefore are still

unsettled, since the proof for P5 in [17] does not extend to any supergraphs of P5; but what about six-

vertex graphs that do not contain P5 or P5? The result of this paper does two of them, and it turns

out that there are only four more (two complementary pairs) that are still unsettled, shown in Fig. 3.

Since P5 and its complement were by far the most difficult five-vertex graphs to settle, these four might

be the next candidates to look at. (We can prove that these four graphs have a “near-Erdős-Hajnal”

property [16]; We omit the details.)

Figure 3. The six-vertex graphs not containing P5 or P5 that remain open.

We will actually prove a statement stronger than Theorem 1.4 (in fact, our proof method requires most

of this additional strength). Our final result is stronger than Theorem 1.4 in four ways:

• We will prove that these graphs satisfy a conjecture of Fox and Sudakov (explained below), not just

that they have the Erdős-Hajnal property.

• We can obtain the same conclusion under a weaker hypothesis; we just need that there are not

many copies of H in G, rather than none at all.

• Each prime graph in H has a vertex of degree one and so does its complement, and this is what we

need for the inductive proof to work. It is just as good, and gives a stronger theorem, if we exclude

two graphs instead of one, with the property that every non-trivial prime induced subgraph of the

first has a vertex of degree one, and the same for the complement of the second.

• All this works just as well for ordered graphs; and we obtain consequences for ordered graphs and

tournaments.

Let us explain these things in more detail.

Throughout the paper we will need to work with graphs that are suitably dense or sparse. For ε ∈ (0, 12),

a graph G is ε-restricted if one of G,G has maximum degree at most ε|G|. We say that S ⊆ V (G) is

ε-restricted in G if G[S] is ε-restricted where G[S] is the subgraph of G induced on S. An important

theorem of Rödl [20] shows that H-free graphs contain large ε-restricted subsets for any fixed ε > 0:

Theorem 1.5. For every graph H and every ε ∈ (0, 12), there exists δ > 0 such that for every H-free

graph G, there is an ε-restricted subset S ⊆ V (G) with size at least δ|G|.
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Rödl’s theorem can be strengthened to allow a few copies of H. If G,H are graphs, indH(G) denotes

the number of copies of H in G. Nikiforov [18] extended Theorem 1.5 as follows:

Theorem 1.6. For every graph H and every ε ∈ (0, 12), there exists δ > 0 such that if G is a graph with

indH(G) ≤ (δ|G|)|H|, there is an ε-restricted subset S ⊆ V (G) with size at least δ|G|.

The proofs of Rödl and Nikiforov used the regularity lemma, and gave bounds for δ−1 that were tower-

type in terms of ϵ−1. Fox and Sudakov [13] gave much better bounds, using a different proof method;

they proved that, in both theorems, δ can be chosen to be 2−d(log 1
ε
)2 for some d > 0 depending only on

H. They also conjectured the following “polynomial Rödl” version of Theorem 1.5:

Conjecture 1.7. For every graph H, there exists d > 0 such that for every ε ∈ (0, 12), and every H-free

graph G, there is an ε-restricted subset of V (G) with size at least εd|G|.

Taking a fixed value of ε implies Theorem 1.5. However, the polynomial dependence allows us to take

much smaller ε: in particular, by taking ε to be a small negative power of n, it follows that Conjecture 1.7

implies the Erdős-Hajnal conjecture (although they are not known to be equivalent). But even more could

be true: the following “polynomial Nikiforov” statement unifies Theorem 1.6 and Conjecture 1.7.

Conjecture 1.8. For every graph H, there exists d > 0 such that for every ε ∈ (0, 12) and every graph G

with indH(G) ≤ (εd|G|)|H|, there is an ε-restricted subset of V (G) with size at least εd|G|.

Let us say a graph H is viral if it satisfies Conjecture 1.8. Thus, viral graphs satisfy Conjecture 1.7. It

is not known that every graph satisfying Conjecture 1.7 is viral, but recent developments on the Erdős-

Hajnal conjecture suggest that being viral could be the “right” concept to investigate. For example, it is

shown in [12] that the class of viral graphs is closed under vertex-substitution, while this is not known for

the class of graphs satisfying Conjecture 1.7. All the graphs known to have the Erdős-Hajnal property

are in fact viral. Moreover, the best general bound known in Conjecture 1.1 is ec
√
logn log logn (for some c

depending on H), and the best quantitative dependence of δ on ε known in Theorem 1.5 is

δ = e−d(log 1
ε
)2/ log log 1

ε

(for some d > 0 depending on H); and both these results were obtained in [3] with a proof relying crucially

on counting induced subgraphs. We will prove the following, which immediately implies Theorem 1.4:

Theorem 1.9. Every H ∈ H is viral.

The proof of this is by induction on |H|. Here is another instance of the “rightness” of the viral

concept. Even if we just wanted to prove that the graphs in H have the Erdős-Hajnal property, it is

essential, for our inductive argument to work, that we have a strong inductive hypothesis saying that

that the (smaller) graphs in H are viral. For instance, it would not be enough to know that they satisfy

Conjecture 1.7.

Although progress on the Erdős-Hajnal property itself has been slow, there are several papers in the

literature showing that graphs that contain neither of two given graphs have polynomial-sized cliques or

stable sets. For instance, it is shown in [8] that if H1, H2 are forests, there exists c > 0 such that every

graph G that is both H1-free and H2-free has a clique or stable set of size at least |G|c. The reason this

“pair of graphs” approach is comparatively so successful, is that the proof method uses Theorem 1.5 as

the first step, and thereafter works inside a subgraph that is either very sparse or very dense. One of

the graphs H1, H2 is good for the sparse case, and the other for the dense case, while it may be difficult
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to find a single graph that is good for both cases simultaneously. One could try to derive a graph with

the Erdős-Hajnal property by asking that H1 = H2; but for instance, if H is both a forest and the

complement of a forest, then H has at most four vertices, and we already know that such graphs have

the Erdős-Hajnal property. The same happens for all the “pair of graphs” results found so far: if we

insist that the same graph H fills both roles, we get nothing of interest. But in the present paper, that

is not so. There is a “pair of graphs” version, which is perhaps simpler and more natural; and it remains

nontrivial (and gives Theorem 1.9) if we insist that the two graphs are the same.

Figure 4. With H as shown, H ∈ J , and so {H,H} is viral.

We define J to be the class of all graphs that can be constructed by a sequence of the following

operations, starting with one-vertex graphs:

• choosing a graph G that is already constructed, choosing a vertex v ∈ V (G), and adding a new

vertex adjacent only to v;

• choosing two graphs H1, H2 that are already constructed, and substituting H2 for a vertex of H1.

Equivalently, J is the family of graphs J with the property that every induced subgraph of J either

contains a vertex of degree at most one or is not prime. For instance, J contains every forest, and all

line graphs of forests. We prove the following:

Theorem 1.10. If H1, H2 ∈ J , there exists c > 0 such that if G is both H1-free and H2-free, then G has

a clique or stable set of size at least |G|c.

The graphs H such that H ∈ J and H ∈ J are precisely the graphs in H, so this implies that the

members of H have the Erdős-Hajnal property, by taking H1 = H2 ∈ H. Note also that, as J contains

all forests, Theorem 1.10 contains the theorem of [8] mentioned earlier, about excluding a forest and a

forest complement. We will extend Theorem 1.10 to a viral version, in Theorem 7.5.

The proof method also applies to ordered graphs (an ordered graph is a graph with a total order on

its vertex set). An argument of Alon, Pach and Solymosi [1] shows that the Erdős-Hajnal conjecture is

equivalent to the same statement for ordered graphs. One can define “vertex-substitution” and “prime”

for ordered graphs just as for graphs, and again it suffices to consider only prime ordered graphs. But

the only prime ordered graphs that (until now) we knew had the ordered Erdős-Hajnal property had at

most three vertices. We will provide infinitely many. Indeed, each graph in H can be ordered to make

a prime ordered graph with the ordered Erdős-Hajnal property. For instance, the graph of Fig. 2, when

ordered such that

b12 ≤ b11 ≤ b8 ≤ b7 ≤ b4 ≤ b3 ≤ b1 ≤ a2 ≤ a5 ≤ a6 ≤ a9 ≤ a10 ≤ a13
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becomes a prime ordered graph that has the ordered Erdős-Hajnal property.

We define K to be the class of all ordered graphs that can be constructed by a sequence of the following

operations, starting with one-vertex ordered graphs:

• choosing a graph G that is already constructed, and adding a vertex of degree at most one at one

end or the other of its linear order;

• choosing two ordered graphs H1, H2 that are already constructed, and substituting H2 for a vertex

of H1.

We will prove:

Theorem 1.11. If H1, H2 ∈ K, there exists c > 0 such that if G is an ordered graph that is both H1-free

and H2-free (in the appropriate sense for ordered graphs), then G has a clique or stable set of size at least

|G|c.

This contains both Theorems 1.10 and 1.12. A recent theorem of Pach and Tomon [19] asserts the

special case of Theorem 1.11 where H1 and H2 are both obtained by giving a path its natural ordering.

All these results will be extended, in Theorem 2.1 and Theorem 7.5, to say that the corresponding

objects are viral. This extension is critical for inductive reasons.

We can apply Theorem 1.11 to tournaments, and obtain new tournaments with the Erdős-Hajnal

property. (See [5] for some related results.) Say a tournament is buildable if it can be grown from nothing

by repeatedly either adding a vertex of out-degree ≤ 1 or in-degree ≤ 1, or vertex-substitution. We will

show:

Theorem 1.12. For every buildable tournament H, there exists c such that if G is a tournament with

no subtournament isomorphic to H, then there is a transitive set in V (G) with size at least |G|c.

As in [3, 12], we work with dense or sparse subsets instead of large cliques or stable sets, and rather

than forbidding an induced subgraph H we allow a few copies: these are necessary generalizations for

our approach to work. However, the tools from these earlier papers are not strong enough to obtain the

polynomials bounds we need here for Erdős-Hajnal. In this paper we use a new method of “iterative

sparsificationi”: we start with a linear-sized dense or sparse subset S0 as given by Rödl’s theorem, and

then move iteratively through a sequence S0 ⊇ S1 ⊇ · · · of subsets that are ever denser or sparser, but

not too small. If we can keep repeating this process, and keep control of the trade-off between size and

density (in particular, maintaining a polynomial relationship between the two) then we can continue the

process until we obtain a polynomial-sized clique or stable set. Stopping the process at an intermediate

point gives us a set that is dense or sparse to a given degree, and proves the viral property (as well as

the Fox-Sudakov conjecture) for H. The key to making this strategy work is then finding a method of

passing to a large induced subgraph of a dense or sparse graph and increasing the density or sparsity.

We discuss this in the next section.

2. Ordered graphs, and a sketch of the proof

The main motivation for our work was unordered graphs and the Erdős-Hajnal conjecture, but the

proof works equally well for ordered graphs, and we thereby gain a much more powerful result. We would

like to outline the idea of the proof as soon as we can, but we need first to set up more definitions,

particularly about ordered graphs.
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An ordered graph is a pair G = (F,≤) where F is a graph and ≤ is a linear order of V (F ); and we

define G♮ := F , and we define ≤G to equal ≤. A copy of an ordered graph H in an ordered graph G is an

isomorphism ϕ from H♮ to an induced subgraph J of G♮, such that for all distinct u, v ∈ V (H), u ≤H v if

and only if ϕ(u) ≤G ϕ(v). We extend many definitions for graphs to ordered graphs in the natural way;

so for instance, if G is an ordered graph, we write V (G) := V (G♮); |G| := |G♮|; G := (G♮,≤G); “degree

in G” means degree in G♮; a “blockade in G” means a blockade in G♮; and so on. We use [n] to denote

{1, 2, . . . , n} for every integer n ≥ 1.

We will need to control the number of copies of particular subgraphs. For graphs G,H, and x > 0,

define

µH(x,G) :=
indH(G)

(x|G|)|H| ;

and for a finite set F of graphs, let

µF (x,G) := max
H∈F

µH(x,G).

Thus µF (x,G) ≤ 1 if and only if G contains at most x|H||G||H| induced copies of H for each H ∈ F .

We say that a finite set F of graphs is viral if there exists d > 0 such that for every ε ∈ (0, 12), and for

every graph G with µF (ε
d, G) ≤ 1, there is an ε-restricted S ⊆ V (G) with |S| ≥ εd|G|. We call such a

number d a viral exponent for F . Thus a graph H is viral if and only if {H} is viral. These definitions

extend to ordered graphs in the natural way. Thus, when G,H are ordered graphs, indH(G) denotes the

number of copies of H in G, and so on.

We need to define vertex-substitution for ordered graphs. Let H1, H2 be ordered graphs, and let

v ∈ V (H1). The ordered graph H obtained from H1 by substituting H2 for v is the pair (H♮,≤H), where

H♮ is the graph obtained from H♮
1 by substituting H♮

2 for v, and ≤H is defined by:

• if x, y ∈ V (H1) \ {v} then x ≤H y if and only if x ≤H1 y;

• if x, y ∈ V (H2) then x ≤H y if and only if x ≤H2 y;

• if x ∈ V (H1) \ {v} and y ∈ V (H2), then x ≤H y if and only if x ≤H1 v.

An ordered graph is prime if it cannot be obtained by vertex-substitution from two smaller ordered

graphs.

We say v ∈ V (H) is the first vertex of an ordered graph H if v ≤H u for all u ∈ V (H), and the last

vertex is defined similarly. We say that v is an end vertex of H if v is either the first or last vertex of H.

Let K be the class of all ordered graphs K with the property that for every induced ordered subgraph G

of K, either G is not prime, or there exists v ∈ V (G) with degree at most one in G♮, such that v is an

end vertex of H. Our ultimate goal is to prove the following:

Theorem 2.1. For all H,J ∈ K, the pair {H,J} is viral.

All the other theorems we mentioned will be corollaries of this.

Before we can sketch the proof, we need a few more definitions. For a graphG and disjointA,B ⊆ V (G),

B is x-sparse to A if every vertex in B has at most x|A| neighbours in A, and (1− x)-dense to A if every

vertex in B has at most x|A| nonneighbours in A. A blockade in a graph or ordered graph G is a

finite sequence (B1, . . . , Bn) of (possibly empty) disjoint subsets of V (G); its length is n and its width is

mini∈[n]|Bi|. For k,w ≥ 0, (B1, . . . , Bn) is a (k,w)-blockade if its length is at least k and its width is at

least w. For x ∈ (0, 12), this blockade is x-sparse if Bj is x-sparse to Bi for all i, j ∈ [n] with i < j, and
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(1− x)-dense if Bj is (1− x)-dense to Bi for all i, j ∈ [n] with i < j. A central part of our argument will

involve finding bloackades that are both large and satisfy suitable sparsity conditions.

Here, finally, is a sketch of the proof of Theorem 2.1.

Sketch proof of Theorem 2.1. We work by induction on |H|+ |J |. If one of H,J is not prime, the result

follows easily from the inductive hypothesis, by means of Lemma 3.4 below. So we can assume they are

both prime, and hence, for each of H,J , some end vertex has degree one. Let H ′, J ′ be obtained from

H,J respectively, by deleting an end vertex of degree one. Inductively we know that {H ′, J} and {H,J ′}
are both viral; and this will be enough to imply that {H,J} is viral (Theorem 6.1). Let d0 be large

enough to be a viral exponent for both {H ′, J} and {H,J ′}.
There is a key result, Theorem 4.5 below, that deduces the property of being viral from the existence of

suitable blockades. It follows that if there exists d such that for every ordered graph G with µF (x
d, G) ≤ 1,

and every x ∈ (0, 12), there is an x-sparse or (1 − x)-dense blockade in G with appropriate length and

width, then F is viral. Because of this, we will try to find such a blockade, instead of trying to find

directly a large ε-restricted set. Thus, let d ≥ d0 be some large number, let x ∈ (0, 12), and let G be an

ordered graph, with µF (x
d, G) ≤ 1. We assume for a contradiction that the blockade we want does not

exist; that is, there is no x-sparse or (1− x)-dense blockade in G with length k, where 2 ≤ k ≤ 1/x, and

width at least ⌊|G|/kd⌋.
Let h = max(|H|, |J |). We will grow a nested sequence of subsets V (G) = S0 ⊇ S1 ⊇ · · · , where for

each i, |Si| ≥ 2−6hdi |Si−1| and Gi is 2−4hdi−1
-restricted. We have a method to define Si+1 in terms of

Si, provided Si is 1/h-restricted; but it does not work to define S1, because G is not 1/h-restricted, so

we have to do something else to get S1. We need a large subset S1 which is 2−4h-restricted. Nikiforov’s

theorem would give us such a thing, except we are working with ordered graphs; so we need an ordered

graphs version of Nikiforov’s theorem (Theorem 3.2 below). This gives G[S1]. The latter will either have

small maximum degree, or the same in the complement, and by moving to the complement if necessary

we may assume it has small maximum degree.

Now we will describe the general step, to obtain Si+1 from Si when i ≥ 1. We recall that H ′ = H \{v},
where v is an end vertex of H with degree one. Now we will use that {H ′, J} is viral.(In the other case,

when G[S1] has small maximum degree in the complement, we would use that {H,J ′} is viral.) Reversing

the order if necessary, we may assume that v is the last vertex of H.

Let y = 2−2hdi−1 . Thus Si is y
2-restricted. G is an ordered graph; let S be the set of the first ⌈y|Si|⌉

vertices of Si. If G[S] does not contain many copies of H ′ (and we already know that it does not contain

many copies of J , since G itself does not), we can use that {H ′, J} is viral to find Si+1 ⊆ S. So we assume

that it does contain many copies of H ′. Let u be the neighbour of v in H, and let H ′′ = H \ {u, v}. It

follows that G[S] contains many copies of H ′′ that each can be extended to many copies of H ′ in G[S].

But they cannot all be extended to many copies of H in G, because there are not that many copies of H.

So there is a copy X of H ′′ in G[S], that extends to many copies of H ′ in G[S], and yet does not extend

to many copies of H in G.

Let A1 be the set of vertices in S that give an extension of X to a copy of H ′; so A1 is large, all the

vertices in A1 have the same neighbours in V (X), and they are all in the right position in the order ≤G

with respect to the vertices in X. (For simplicity, we are conflating the copy X, which is an isomorphism,

with its image, an induced subgraph of G[S].) Since G[Si] has maximum degree at most y2|Si|, there are

not many vertices in the rest of Si that have a neighbour in V (X); and for the others, say B, any edge

between A1 and B gives a copy of H. (This is where we use that v is the last vertex of H and S is an
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initial segment of G[Si]; all the vertices in B are in the right order relative to X and A1.) Since X does

not extend to many copies of H, there are not many edges between A1 and B; and by throwing away a

few outliers, we can choose B1 ⊆ B, x-sparse to A1, where B1 still contains almost all of Si. We have

produced an x-sparse blockade (A1, B1) in G[Si] of length two, where |A1| is at least poly(y)|G|, and |B1|
is only slightly smaller than |Si|. That is the only argument where we use the leaf of H; it is Lemma 5.1.

Now we look inside the set B1 above, and repeat the same argument; we obtain either the desired

set Si+1, or an x-sparse blockade (A1, A2, B2) in G[Si] of length three, where |A1|, |A2| are both at least

poly(y)|G|, and |B2| is only slightly smaller than |Si|. By repeating this 1/y times (which we can, there

is enough room), we obtain either the set Si+1 that we want, or the blockade that we assumed did not

exist. This is Lemma 5.3.

3. Some lemmas about counting subgraphs

We need to extend Nikiforov’s theorem (Theorem 1.6) to ordered graphs, and to do so, we use the

following result of Rödl and Winkler [21]:

Theorem 3.1. For every ordered graph J there is a graph H such that, with every ordering of V (H), it

contains a copy of J .

We deduce:

Theorem 3.2. For every ordered graph J and every ε ∈ (0, 12), there exists δ > 0 such that if G is a

ordered graph with indJ(G) ≤ (δ|G|)|J |, there is an ε-restricted subset S ⊆ V (G) with size at least δ|G|.

Proof. Choose H as in Theorem 3.1, and choose δ′ such that setting δ = δ′ satisfies Theorem 1.6. Let

h := |H| and j := |J |, and let δ := (δ′)h/j . We claim that δ satisfies the theorem. To show this, let G be

a ordered graph with indJ(G) ≤ (δ|G|)|J |. We must show that there is an ε-restricted subset S ⊆ V (G)

with size at least δ|G|.
Since each copy of J in G♮ extends to at most |G|h−j copies of H in G♮, and each copy of H in G♮ is

an extension of some such copy (because of the choice of H), there are at most

indJ(G)|G|h−j ≤ (δ|G|)j |G|h−j = (δ′|G|)h

copies of H in G♮. But then the result follows from the choice of δ′. This proves Theorem 3.2. ■

We observe:

Lemma 3.3. If F ⊆ F ′ and F is viral, then so is F ′.

Proof. This follows from the fact that µF (x,G) ≤ µF ′(x,G) for every x > 0 and every graph (or ordered

graph) G. ■

It will also be useful to have an analogue of the Alon-Pach-Solymosi theorem (Theorem 1.2) for viral

families of graphs. This was proved for single graphs in [12]; here is an extension to families:

Lemma 3.4. Let F be a finite set of graphs, and let H1, H2 be graphs such that F ∪{H1} and F ∪{H2}
are viral. Let H be obtained by substituting H2 for a vertex v of H1. Then F ∪ {H} is viral. The same

is true for ordered graphs in place of graphs.
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Proof. The following proof works for both graphs and ordered graphs. If H1 or H2 is in F then F is

viral, and so F ∪ {H} is viral by Lemma 3.3. Thus we may assume H1, H2 /∈ F . For i ∈ {1, 2}, let
hi := |Hi|, and let di > 0 be a viral exponent for Fi := F ∪ {Hi}. We claim that d := d1h1 + d2 + 1 is

a viral exponent for F ′ := F ∪ {H}. To see this, we may assume h1 ≥ 2. Now, let ε ∈ (0, 1/2) and let

G be a graph (or ordered graph) with µF ′(εd, G) ≤ 1; and suppose for a contradiction that there is no

ε-restricted S ⊆ V (G) with |S| ≥ εd|G|. Then µF1(ε
d1 , G) > 1 by the choice of d1; and so µF1(ε

d1 , G) > 1.

Thus, since µF (ε
d1 , G) ≤ µF (ε

d, G) ≤ µF ′(εd, G) ≤ 1, we deduce that µH1(ε
d1 , G) > 1. It follows that

indH1(G) > (εd1 |G|)h1 = εd1h1 |G|h1 .

For every copy φ of H1 \ v in G, let Iφ be the set of copies φ′ of H1 with φ′|V (H1\v) = φ. Let T be the

set of copies φ of H1 \ v in G with |Iφ| ≥ εd1h1+1|G|; then∑
φ∈T

|Iφ| ≥ indH1(G)− |G|h1−1 · εd1h1+1|G| > εd1h1 |G|h1 − εd1h1+1|G|h1 ≥ εd1h1+1|G|h1 .

Thus |T | > εd1h1+1|G|h1−1 ≥ (εd|G|)h1−1 since h1 ≥ 2 and |Iφ| ≤ |G| for all φ ∈ T .

Claim 3.5. For every φ ∈ T , there are at least (εd|G|)h2 copies φ′′ of H in G with φ′′|V (H1\v) = φ.

Proof. Let A := {φ′(v) : φ′ ∈ Iφ}; then |A| ≥ εd1h1+1|G|. Thus, since G includes no ε-restricted S ⊆ V (G)

with |S| ≥ εd|G|, G[A] contains no ε-restricted S ⊆ A with |S| ≥ εd2 |A| ≥ εd|G|. The choice of d2 then

implies that µF2(ε
d2 , G[A]) > 1. Hence, because

µF (ε
d2 , G[A]) ≤ µF (ε

d1h1+d2+1, G) = µF (ε
d, G) ≤ 1,

we obtain µH2(ε
d2 , G[A]) > 1, and so indH2(G[A]) > (εd2 |A|)h2 ≥ (εd|G|)h2 . Since each copy of H2 in

G[A] together with φ forms a copy φ′′ of H in G with φ′′|V (H1\v) = φ and these copies are distinct, the

proof of Claim 3.5 is complete. □

Now, Claim 3.5 yields

indH(G) ≥ |T |(εd|G|)h2 > (εd|G|)h1−1(εd|G|)h2 = (εd|G|)|H|

and so µF ′(εd, G) ≥ µH(εd, G) > 1, a contradiction. This proves Lemma 3.4. ■

Lemma 3.4 allows us to focus our attention on prime ordered graphs.

4. Being divisive and being viral

For the next three sections, we will focus on ordered graphs and proving Theorem 2.1. At the end of

the paper, we look at its corollaries, for unordered graphs, for tournaments, and for excluding one graph

instead of two. The goal of this section is to show that a finite set of graphs or ordered graphs is viral if

and only if it has the property of being “divisive”. This will turn out to be easier to work with.

Let F be a finite set of graphs or ordered graphs. We say that F is weakly viral if there exists d > 0

such that for every ε ∈ (0, 12), and for every graph (or ordered graph, appropiately) G with µF (ε
d, G) ≤ 1,

there is a subset S ⊆ V (G) with |S| ≥ εd|G| such that one of G[S], G[S] has at most ε
(|S|

2

)
edges. (So

we are not restricting the maximum degree in one of G[S], G[S], just the average degree.) We call such a

number d a weak viral exponent for F . It does not really matter which definition we use, becuase of the

following.



12 TUNG NGUYEN, ALEX SCOTT, AND PAUL SEYMOUR

Lemma 4.1. Let F be a finite set of graphs or ordered graphs. If d is a viral exponent for F then it is

a weak viral exponent for F . Conversely, if d is a weak viral exponent for F , then 3d is a viral exponent

for F . In particular, F is viral if and only if it is weakly viral.

Proof. The first assertion is clear. For the second, let d be a weak viral exponent for F , let ε ∈ (0, 12), and

let G be a graph or ordered graph with µH(ε
3d, G) ≤ 1. Since ε/4 ≥ ε3 it follows that µH((ε/4)

d, G) ≤ 1.

Since d is a weak viral exponent for F , there is a subset T ⊆ V (G) with |T | ≥ (ε/4)d|G| such that one

of G[T ], G[T ] has at most (ε/4)
(|T |

2

)
edges, and we may assume the first. Consequently, at most |T |/2

vertices in T have degree in G[T ] more than ε|T |/2; and so there exists S ⊆ T with |S| ≥ |T |/2 such that

every vertex in S has degree at most ε|T |/2 ≤ ε|S| in G[T ] and hence in G[S]. Thus S is ε-restricted.

This proves Lemma 4.1. ■

We say that a finite set F of graphs is “divisive”, if every graph G either contains many copies of some

member of F , or admits a blockade that is both long and wide, and either sparse or dense. More exactly,

F is divisive if there exist b, c > 0 such that for every x ∈ (0, c) and every graph G with µF (x
b, G) ≤ 1,

there is an x-sparse or (1 − x)-dense (k, ⌊|G|/kb⌋)-blockade in G where k ∈ [2, 1/x]. (This property is a

variant of the so-called quasi-Erdős-Hajnal property employed in [9, 19, 22].) Similarly, a finite set F of

ordered graphs is divisive if there exist b, c > 0 such that for every x ∈ (0, c) and every ordered graph G

with µF (x
b, G) ≤ 1, there is an x-sparse or (1− x)-dense (k, ⌊|G|/kb⌋)-blockade in G where k ∈ [2, 1/x].

We call (b, c) a pair of divisive sidekicks for F .

In this section we show that all finite divisive sets are viral; this is a key result, and will be crucial in

the proof of Theorem 1.9. We will need the following:

Theorem 4.2. Let G be a graph, and let ε ∈ (0, 12) and d ≥ 1. Let x = ε12d. Suppose that for every

induced subgraph F of G with |F | ≥ ε4d|G|, there is an x-sparse or (1− x)-dense blockade in F of length

k ∈ [2, 1/x] and width at least |F |/kd. Then there exists S ⊆ V (G) with |S| ≥ xd+1|G| such that one of

G[S], G[S] has at most ε
(|S|

2

)
edges.

Proof. We may assume that |G| > x−d−1, since otherwise we may take |S| ≤ 1 to satisfy the theorem. A

cograph is a P4-free graph. Let J be a cograph, and for each j ∈ V (J) let Aj ⊆ V (G), pairwise disjoint.

We call L = (J, (Aj : j ∈ V (J))) a layout. A pair {u, v} of distinct vertices of G is undecided for a layout

(J, (Aj : j ∈ V (J))) if there exists j ∈ V (J) with u, v ∈ Aj ; and decided otherwise. Thus, all pairs {u, v}
with u /∈

⋃
j∈V (J)Aj are decided. A decided pair {u, v} is wrong for (J, (Aj : j ∈ V (J))) if there are

distinct i, j ∈ V (J) such that u ∈ Ai, v ∈ Aj , and either

• u, v are adjacent in G and i, j are nonadjacent in J ; or

• u, v are nonadjacent in G, and i, j are adjacent in J .

We are interested in layouts in which the number of wrong pairs is only a small fraction of the number

of decided pairs. Choose a layout L = (J, (Aj : j ∈ V (J))) satisfying the following:

• |Aj | ≥ ε6d|G| for each j ∈ V (J);

•
∑

j∈V (J) |Aj |1/d ≥ |G|1/d;
• the number of wrong pairs is at most x times the number of decided pairs; and

• subject to these three conditions, |J | is maximum.

(This is possible since we may take |J | = 1 and A1 = G to satisfy the first three conditions.)

Claim 4.3. We may assume that |J | ≤ 4ε−2.
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Proof. Suppose that |J | ≥ 4ε−2. Since J is a cograph, it has a clique or stable set I of size at least

|J |1/2 ≥ 2/ε, and by taking complements if necessary, we may assume that I is a stable set. For each

i ∈ I, choose Bi ⊆ Ai with size ⌈ε6d|G|⌉, and let S =
⋃

i∈I Bi. Thus |S| ≥ (2ε−1)ε6d|G|. We claim that

G[S] has edge-density at most ε. There are at most |I|−1
(|S|

2

)
edges uv of G[S] such that u, v ∈ Bi for

some i ∈ I; and the number of edges uv of G[S] such that u ∈ Bi and v ∈ Bj for some distinct i, j ∈ I is

at most the number of wrong pairs of L, and hence at most

x

(
G

2

)
≤ x|G|2/2 ≤ x(ε1−6d|S|/2)2/2 = xε2−12d|S|2/8 ≤ xε2−12d

(
|S|
2

)
/2.

Hence the number of edges of G[S] is at most (|I|−1 + xε2−12d/2)
(|S|

2

)
≤ ε

(|S|
2

)
since |I|−1 ≤ ε/2 and

xε2−12d/2 ≤ ε/2. Moreover,

|S| ≥ ε6d|G| ≥ xd+1|G|,

and so the theorem is satisfied. This proves Claim 4.3. □

We may assume that |A1| ≥ |Aj | for all j ∈ V (J). Since
∑

j∈V (J) |Aj |1/d ≥ |G|1/d, and |J | ≤ 4ε−2 by

Claim 4.3, it follows that |A1|1/d ≥ (ε2/4)|G|1/d, that is,

|A1| ≥ ε2d2−2d|G| ≥ ε4d|G|.

By applying the hypothesis to G[A1], we deduce that there an x-sparse or (1 − x)-dense blockade

(B1, . . . , Bk) in G[A1] where k ∈ [2, 1/x], with width at least |A1|/kd. By taking complements, we may

assume that (B1, . . . , Bk) is x-sparse.

Claim 4.4. k ≥ 2/ε.

Proof. Suppose that k ≤ 2/ε ≤ ε−2. Then each of the sets B1, . . . , Bk has size at least |A1|/kd ≥ ε2d|A1|.
By substituting a k-vertex stable set for the vertex 1 in J , and replacing A1 by B1, . . . , Bn, we obtain a

new layout L′ = (J ′, (A′
j : j ∈ V (J ′))) say, where |J ′| > |J |. We claim that this violates the choice of L;

and so we must verify that L′ satisfies the first three bullets in the definition of L. Each Bj satisfies

|Bj | ≥ ε2d|A1| ≥ ε6d|G|,

and so the first bullet is satisfied. For the second bullet, since B1, . . . , Bk all have size at least |A1|/kd,
it follows that

|B1|1/d + · · ·+ |Bk|1/d ≥ |A1|1/d,

and so
∑

j∈V (J) |A′
j |1/d ≥ |G|1/d. For the third bullet, let P be the set of all decided pairs for L, and

Q ⊆ P the set of wrong pairs for L, and define P ′, Q′ similarly for L′. Then |Q| ≤ x|P |. Let R be

the set of all pairs {u, v} with u, v ∈ A1 such that u, v belong to different blocks of (B1, . . . , Bk). Then

R ⊆ P ′ \P ; and Q′ \Q ⊆ R; and |Q′ \Q| ≤ x|R| since (B1, . . . , Bk) is x-sparse. Hence |Q′ \Q| ≤ x|P ′ \P |,
and so

|Q′| ≤ |Q|+ |Q′ \Q| ≤ x|P |+ x|P ′ \ P | = x|P ′|

since P ⊆ P ′. This contradicts the choice of L, and so proves Claim 4.4. □

Let n = ⌈2/ε⌉. For 1 ≤ i ≤ n, choose Ci ⊆ Bi with size w := ⌈|A1|/kd⌉, uniformly at random.

The probability that an edge between Bi, Bj has ends in Ci and Cj is w2

|Bi|·|Bj | , and since there are at

most x|Bi| · |Bj | edges between Bi, Bj , the expected number of edges between Ci, Cj is at most xw2.

Consequently the probability that there are more than xn2w2/2 such edges is less than 2/n2. It follows

that the probability that for all distinct i, j ∈ {1, . . . , n}, there are at most xn2w2/2 edges between Ci, Cj
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is positive, and so there is a choice of C1, . . . , Cn such that for all distinct i, j there are at most xn2w2/2

edges between Ci, Cj . Let S = C1 ∪ · · · ∪ Cn. The number of edges of G[S] with ends in the same

Ci is at most (1/n)
(|S|

2

)
; and the number of edges of G[S] with ends in distinct blocks Ci, Cj is at most

(xn2w2/2)(n2/2) = xn2|S|2/4 ≤ xn2
(|S|

2

)
. Consequently G[S] has at most (1/n+xn2)

(|S|
2

)
≤ ε

(|S|
2

)
edges,

since 1/n ≤ ε/2 and xn2 ≤ x(4/ε)2 ≤ ε/2. Moreover,

|S| ≥ w ≥ |A1|/kd ≥ ε4d|G|/kd ≥ ε4dxd|G| ≥ xd+1|G|,

and hence S satisfies the theorem. This proves Theorem 4.2. ■

This is used to prove the following:

Theorem 4.5. If F is a finite set of graphs or ordered graphs, then it is divisive if and only if it is viral.

Proof. We will only need the “only if” direction, but the “if” direction of this theorem is simple. To

see this, we assume that F is a viral set of graphs, or of ordered graphs. Let d be a viral exponent for

F . Let x > 0 with x ≤ min(1/16, 1/d); and let G be a graph or ordered graph with µF (x
2d, G) ≤ 1.

There exists an x2-restricted S ⊆ V (G) with |S| ≥ x2d|G|. Let k := ⌈x−1/2⌉ ∈ [2, 1/x], and choose a

sequence (B1, . . . , Bk) of disjoint subsets of S, all of size ⌊2x|S|⌋ (such subsets exist since k⌊2x|S|⌋ ≤
4x1/2|S| < |S|). Then (B1, . . . , Bk) is an x-sparse or (1− x)-dense (k, ⌊|G|/k4d+2⌋)-blockade in G (since

⌊x2|S|⌋ ≤ x⌊2x|S|⌋). This proves the “if” direction.

For the “only if” direction, we assume that F is a set of graphs or ordered graphs. Let (b0, c0) be a

pair of divisive sidekicks for F , and let d = max(b0, 1/c0) (so (d, 1/d) is also a pair of divisive sidekicks

for F). Let c := 12(d+ 1)(d+ 2). We claim that c is a weak viral exponent for F .

To show this, let ε ∈ (0, 12) and let G be a graph (or ordered graph, if F is a set of ordered graphs) with

µF (ε
c, G) ≤ 1. We must show that there exists S ⊆ V (G) with |S| ≥ εc|G| such that one of G[S], G[S]

has at most ε
(|S|

2

)
edges. We may assume that |G| > ε−c, since otherwise we may take |S| ≤ 1. Let

d′ = d+ 1, and x = ε12d
′
. We claim that:

Claim 4.6. For every induced subgraph F of G (or of G♮, if G is ordered) with |F | ≥ ε4d
′ |G|, there is an

x-sparse or (1− x)-dense blockade in F of length k ∈ [2, 1/x] and width at least |F |/kd′.

Proof. We observe that xdε4d
′
= ε12dd

′+4d′ ≥ εc, and so xd|F | ≥ εc|G|. It follows that

µF (x
d, F ) ≤ µF (ε

c, G) ≤ 1.

Since d is an exponent for the divisiveness of F , there exists k ∈ [2, 1/x] such that there is an x-sparse or

(1− x)-dense blockade in F of length at least k and width at least ⌊|F |/kd⌋. But

|F |/kd ≥ xd|F | ≥ εc|G| > 1,

and so

⌊|F |/kd⌋ ≥ |F |/(2kd) ≥ |F |/kd+1 = |F |/kd′ .

This proves Claim 4.6. □

¿From Theorem 4.2, with d replaced by d′, we deduce that there exists S ⊆ V (G) with |S| ≥ xd
′+1|G| =

εc|G| such that one of G[S], G[S] has at most ε
(|S|

2

)
edges. This proves that F is weakly viral, and hence

viral by Lemma 4.1, and so proves Theorem 4.5. ■
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5. Using the leaf

In this section, we are given an ordered graph H with a vertex v of degree one that is an end vertex

of H, and a sparse “host” ordered graph G, and we would like to show that either:

• G contains many copies of H; or

• we can locate a subset of V (G) of decent size that induces an ordered subgraph containing not too

many copies of H \ {v}; or
• there is a sparse blockade inG with length and width polynomially related to the sparsity parameter.

To do this, we shall first prove this with the third outcome replaced by

• there are disjoint subsets A,B of V (G) where B is sparse to A, and A has decent size, and |B|
contains almost all vertices of G.

Then, by iterating the procedure, we will convert the two subsets of this last outcome into a sparse

blockade of the desired length and width.

For sets X,Y, Z with Z ⊆ X and a map f : X → Y , let f |Z denote the restriction of f to Z. If H is

an ordered graph, and X ⊆ V (G), H \X and H[X] are defined in the natural way.

We obtain sparse pairs by means of the following lemma:

Lemma 5.1. Let H be an ordered graph with an end vertex v of degree one. Let h := |H| ≥ 2, and let

H ′ := H \ {v}. Let x, y > 0 with x ≤ y ≤ 1
2h , and let G be an ordered graph with maximum degree at

most y|G|. Then for every a ≥ 2, one of the following outcomes hold:

• indH(G) > x2a+h|G|h;
• there exists S ⊆ V (G) with |S| ≥ y|G| such that indH′(G[S]) ≤ ya−2|S|h−1; or

• there are disjoint A,B ⊆ V (G) such that |A| ≥ ⌊ya|G|⌋, |B| ≥ (1−hy)|G|, and B is x-sparse to A.

Proof. We assume that the last two outcomes do not hold; then ya|G| ≥ 1 for otherwise the third

outcome trivially holds. ¿From the symmetry, we may assume that v is the last vertex of H. Let u be

the neighbour of v in H, and let J := H \ {u, v}. Let S be the set of the first ⌈y|G|⌉ vertices of G; that

is, S is the subset of V (G) with |S| = ⌈y|G|⌉ such that p ≤G q for all p ∈ S and q ∈ V (G) \ S. For every
copy φ of J in G[S], let Iφ be the set of copies φ′ of H ′ in G[S] with φ′|V (J) = φ. Let T be the set of

copies φ of J in G[S] with |Iφ| ≥ ya|G|. Since ya|G| ≤ ya−1|S| and there are at most |S|h−2 copies of J

in G[S], we have (note that y ∈ (0, 12))∑
φ∈T

|Iφ| ≥ indH′(G[S])− |S|h−2 · ya|G| > ya−2|S|h−1 − ya−1|S|h−1 ≥ ya−1|S|h−1,

and so |T | > ya−1|S|h−2, since |Iφ| ≤ |S| for all φ ∈ T .

Claim 5.2. For every φ ∈ T there are at least xa+3|G|2 copies φ′′ of H in G with φ′′|V (J) = φ.

Proof. Let P := φ(V (J)); then |P | = h− 2. Let A′ := {φ′(v) : φ′ ∈ Iφ}; then A′ ⊆ S and |A′| = |Iφ′ | ≥
ya|G|. Let A ⊆ A′ with |A| = ⌈ya|G|⌉. Now |V (G) \ S| = |G| − ⌈y|G|⌉ ≥ |G|(1 − y) − 1; and at most

y(h− 2)|G| vertices in V (G) \S have a neighbour in P (note that there could be no edges between A,P ).

Let B be the set of vertices in V (G) \ S with no neighbours in P ; then

|B| ≥ (1− (h− 1)y)|G| − 1.
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Since the third outcome does not hold, there are at most (1− hy)|G| vertices in B that have fewer than

x|A| neighbours in A. Thus the number of vertices in B with at least x|A| neighbours in A is at least

|B| − (1− hy)|G| ≥ y|G| − 1 ≥ 2y2|G| − 1 ≥ y2|G|

(note that y|G| ≥ 2y2|G| ≥ 2ya|G| ≥ 2). Consequently there are at least xy2|A| · |G| ≥ xa+3|G|2 edges

between A,B. Since the endpoints of each such edge together with P form a copy φ′ of H in G with

φ′|V (J) = φ, there are at least xa+3|G|2 copies φ′ of H in G with φ′|V (J) = φ, as claimed. □

Therefore, Claim 5.2 implies that

indH(G) ≥ |T | · xa+3|G|2 > ya−1|S|h−2 · xa+3|G|2 ≥ ya+h−3xa+3|G|h ≥ x2a+h|G|h

which is the first outcome. This proves Lemma 5.1. ■

Now we turn sparse pairs into sparse, long, wide blockades.

Lemma 5.3. Let H be an ordered graph with h := |H| ≥ 2, and let v ∈ V (H) be an end vertex of H,

and have degree one. Let H ′ := H \ {v}. Let x, y > 0 with x ≤ y ≤ 4−h, and let G be an ordered graph

with maximum degree at most y2|G|. Then for every a ≥ 2, one of the following holds:

• indH(G) > x2a+2h|G|h;
• indH′(G[S]) ≤ ya−2|S|h−1 for some S ⊆ V (G) with |S| ≥ y2|G|; or
• there is an x-sparse (y−1, ⌊ya+1|G|⌋)-blockade in G.

Proof. Suppose that none of the outcomes holds; then ya+1|G| ≥ 1. Choose an x-sparse blockade

(B0, B1, . . . , Bk) in G such that |Bi−1| ≥ ya+1|G| for all i ∈ [k], and |Bk| ≥ (1 − hy)k|G|, with k

maximum. Since the third outcome does not hold, we have k < y−1, which implies (since 1− t ≥ 4−t for

all t ∈ [0, 12 ]) that

|Bk| ≥ (1− hy)k|G| ≥ 4−hyk|G| > 4−h|G| ≥ y|G| ≥ x|G|.

It follows that G[Bk] has maximum degree at most y2|G| ≤ y|Bk|. Since the first two outcomes do not

hold, we have

• indH(G[Bk]) ≤ indH(G) ≤ x2a+2h|G|h ≤ x2a+h|Bk|h; and
• indH′(G[Bk]) > ya−2|Bk|h−1.

By Lemma 5.1, there are disjoint A,B ⊆ Bk with

|A| ≥ ⌊ya|Bk|⌋ ≥ ⌊ya+1|G|⌋ and |B| ≥ (1− hy)|Bk| ≥ (1− hy)k+1|G|

such that B is x-sparse to A. Therefore (B0, . . . , Bk−1, A,B) is an x-sparse blockade, and this contradicts

the maximality of k. This proves Lemma 5.3. ■

6. Producing the blockade

To finish the proof of Theorem 2.1, we need to write out the argument sketched in Section 2.

Theorem 6.1. Let F be a finite set of ordered graphs, and let H,J ∈ F . Let v be an end vertex of H

with degree one, and let w be an end vertex of J with degree one. Let H ′ = H \ {v} and J ′ = J \ {w}. If

{H ′} ∪ (F \ {H}) and {J ′} ∪ (F \ {J}) are both viral then F is viral.

Proof. Define h := max(|H|, |J |, 4), and c := 4−h. By Theorem 3.2, there exists c′ > 0 such that for

every ordered graph G with µF (c
′, G) ≤ 1, there is a c2-restricted S ⊆ V (G) with |S| ≥ c′|G|. Since
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F1 := {H ′} ∪ (F \ {H}) and F2 := {J ′} ∪ (F \ {J}) are viral, there exists d > 0 that is a viral exponent

for them both; and we may increase d so that d ≥ max(4, logc(c
′)). Let a := 2d2h and b := a + 6d + 1.

We need the following claim.

Claim 6.2. Let x, y > 0 with x ≤ y ≤ c, and let G be a y2-restricted ordered graph. Then either

• µF (x
b−4d, G) > 1; or

• min(µH′(y2d
2
, G[S]), µJ ′(y2d

2
, G[S])) ≤ 1 for some S ⊆ V (G) with |S| ≥ y2|G|; or

• there is an x-sparse or (1− x)-dense (y−1, ⌊ya+1|G|⌋)-blockade in G.

Proof. If G has maximum degree at most y2|G|, then Lemma 5.3 implies that either:

• indH(G) > x2a+2|H||G||H| ≥ (xb−4d|G|)|H|, where the second inequality is by the choice of b (and so

µF (x
b−4d, G) > 1); or

• indH′(G[S]) ≤ ya−2|S||H′| ≤ (y2d
2 |S|)|H′| for some S ⊆ V (G) with |S| ≥ y2|G|, where the second

inequality is because a− 2 = 2d2h− 2 ≥ 2d2(h− 1) by the choice of a (and so µH′(y2d
2
, G[S]) ≤ 1);

or

• there is an x-sparse (y−1, ⌊ya+1|G|⌋)-blockade in G.

If G has maximum degree at most y2|G|, then similarly, also by Lemma 5.3, either:

• indJ(G) = indJ(G) > x2a+2|J ||G||J | ≥ (xb−4d|G|)|J |; or
• indJ ′(G[S]) = indJ ′(G[S]) ≤ ya−2|S||J ′| ≤ (y2d

2 |S|)|J ′| for some S ⊆ V (G) with |S| ≥ y2|G|; or
• there is a (1− x)-dense (y−1, ⌊ya+1|G|⌋)-blockade in G.

This proves Claim 6.2. □

We claim that (b, c) is a pair of divisive sidekicks for F ; and hence F is divisive, and consequently

viral by Theorem 4.5. Thus, let x ∈ (0, c), and let G be a graph with µF (x
b, G) ≤ 1. Suppose for a

contradiction that there is no x-sparse or (1 − x)-dense (k, ⌊|G|/kb⌋)-blockade in G with k ∈ [2, 1/x];

then |G| ≥ x−b/2, because otherwise the blockade with ⌊1/x⌋ ≥ x−1/2 empty blocks contradicts our

supposition. Let m ≥ 2 be the least integer with cd
m−1 ≤ x; then cd

m−2 ≥ x.

Claim 6.3. There is a nested sequence V (G) = S0 ⊇ S1 ⊇ · · · ⊇ Sm such that |Si| ≥ c3d
i |Si−1| and Si is

c2d
i−1

-restricted in G for all i ∈ [m].

Proof. Since µF (c
′, G) ≤ µF (c

d, G) ≤ µF (x
b, G) ≤ 1 by the choice of b, d, there exists a c2-restricted

S1 ⊆ V (G) with |S1| ≥ c′|G| ≥ cd|G|. This proves the base case.

Now, for i ∈ [m] with i < m, assuming that S0, S1, . . . , Si have been constructed, we shall construct

Si+1. Let y := cd
i−1 ≥ cd

m−2 ≥ x. Since di−1 + di−2 + · · ·+ 1 = di−1
d−1 < 1

3d
i (as d ≥ 4), and consequently

3di + 3di−1 + · · ·+ 3d+ 3 < 4di, we have

|Si| ≥ c3d
i |Si−1| ≥ c3d

i+3di−1 |Si−2| ≥ · · · ≥ c3d
i+3di−1+···+3d|S0| ≥ c4d

i |G| = y4d|G| ≥ x4d|G|.

It follows that

µF (x
b−4d, G[Si]) ≤ µF (x

b, G) ≤ 1.

Thus, since Si is y
2-restricted in G and 0 < x ≤ y ≤ c, Claim 6.2 implies that either

• min(µH′(y2d
2
, G[S]), µJ ′(y2d

2
, G[S])) ≤ 1 for some S ⊆ Si with |S| ≥ y2|Si|; or

• G[Si] contains an x-sparse or (1− x)-dense (y−1, ⌊ya+1|Si|⌋)-blockade.
If the second bullet holds, then since ya+1|Si| ≥ ya+6d+1|G| ≥ yb|G| by the choice of b, G[Si] (and thus G)

contains an x-sparse or (1 − x)-dense (k, ⌊|G|/kb⌋)-blockade where k = 1/y ∈ [2, 1/x], contradicting our
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supposition. Thus the first bullet holds. Let G′ := G[S]. The choice of a, b implies that b = a+ 6d+ 1 ≥
2d2 + 5d. Thus, since |S| ≥ y2|Si| ≥ y4d+2|G| ≥ y5d|G|, we obtain

µH(y2d
2
, G′) ≤ µH(y2d

2+5d, G) ≤ µH(xb, G) ≤ 1,

and similarly µJ(y
2d2 , G′) ≤ 1. Therefore, recalling that F1 = {H ′, J} and F2 = {H,J ′}, we deduce

that µFi(y
2d2 , G′) ≤ 1 for some i ∈ {1, 2}. Hence, the choice of d implies that G′ (and so G) contains a

y2d-restricted Si+1 ⊆ S with |Si+1| ≥ y2d
2 |S| ≥ y2d

2+2|Si| ≥ c3d
i+1 |Si|. Since y2d = c2d

i
, this completes

the induction step and proves Claim 6.3. □

Now, we have x2d ≤ c2d
m−1 ≤ x2, which implies that Sm is x2-restricted in G. Furthermore,

|Sm| ≥ c3d
m |Sm−1| ≥ . . . ≥ c3d

m+3dm−1+···+3d|S0| ≥ c4d
m |G| ≥ x4d

2 |G| ≥ x4d
2−b/2 ≥ x−1.

Let k := ⌈x−1/2⌉; then k ≥ x−1/2 ≥ 2. Because k⌊2x|Sm|⌋ ≤ 2x−1/2 · 2x|Sm| = 4x1/2|Sm| ≤ |Sm|, there
are disjoint subsets B1, . . . , Bk of Sm with |Bi| = ⌊2x|Sm|⌋ for all i ∈ [k]. Since

⌊2x|Sm|⌋ ≥ x|Sm| ≥ x4d
2+1|G| ≥ |G|/k8d2+2 ≥ |G|/kb

by the choice of b, and since Sm is x2-restricted in G, (B1, . . . , Bk) is an x-sparse or (1 − x)-dense

(k, |G|/kb)-blockade in G, a contradiction.

This proves our claim that (b, c) is a pair of divisive sidekicks for F . Consequently F is divisive, and

therefore viral by Theorem 4.5. This proves Theorem 6.1. ■

Finally, we have:

Proof of Theorem 2.1. We proceed by induction on |H| + |J |. If min(|H|, |J |) ≤ 2 then we are done

by Lemma 3.3, since every ordered graph on at most two vertices is viral. Let |H|, |J | ≥ 3; we assume

that the theorem is true for every pair {H ′, J ′} with |H ′| + |J ′| < |H| + |J |, and we shall prove it for

F := {H,J}.
If one of H,J is not prime, then {H,J} is viral by Lemma 3.4 and the induction hypothesis. Thus we

may assume they are both prime; and so there is a vertex v of H with degree one, and v is either the

first or last vertex of H. Choose u ∈ V (J) similarly, and let H ′ := H \ {v} and J ′ := J \ {u}. ¿From the

inductive hypothesis, F1 := {H ′, J} and F2 := {H,J ′} are viral; and so Theorem 6.1 implies that {H,J}
is viral. This proves Theorem 2.1. ■

7. Corollaries

There are several corollaries of these results. First, let us say a monotone path is an ordered graph

H such that H♮ is a path with vertex set {v1, . . . , vk}, where vi, vi+1 are adjacent for 1 ≤ i < k, and

vi ≤H vj if i < j. As we mentioned earlier, Pach and Tomon [19] proved:

Theorem 7.1. If H1, H2 are both monotone paths, then there exists c > 0 such that if G is an ordered

graph that is both H1-free and H2-free then G has a clique or stable set of size at least |G|c.

Since monotone paths belong to K, this theorem is a special case of Theorem 2.1. Indeed, it follows

that if H1, H2 are monotone paths then {H1, H2} is viral.

Second, what happens if we insist that H1 = H2 in Theorem 2.1? That gives us a class of ordered

graphs with the Erdős-Hajnal property, as follows. Let L be the class of ordered graphs G minimal such

that:
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• the one-vertex ordered graph is in L;
• if H1, H2 ∈ L and H is obtained from H2 by substituting H1 for one of its vertices, then H ∈ L;
• if H ∈ L, and the first vertex a of H is adjacent to only the last vertex of H, then we can add a

new last vertex adjacent to all vertices in V (H) \ {a}, and this enlarged ordered graph is also in L;
• also three variants of the bullet above, exchanging “first” with “last”, and/or exchanging “adjacent”

with “nonadjacent”, which we do not write out explicitly.

If H ∈ L, then evidently H,H ∈ K (in fact H ∈ L if and only if H,H ∈ K; this is proved like

Lemma 7.6 below). We deduce from Theorem 2.1 that:

Theorem 7.2. All ordered graphs in L are viral.

Let us say that an ordered graph H has the Erdős-Hajnal property if there exists c > 0 such that if G

is an H-free ordered graph, then there is a clique or stable set in G with size at least |G|c. And as with

unordered graphs, if an ordered graph H is obtained by vertex-substitution from two smaller ordered

graphs with the Erdős-Hajnal property, then H has the Erdős-Hajnal property. So we would like to find

prime ordered graphs that have the Erdős-Hajnal property. It is striking that, until now, there were none

known with more than three vertices. In Fig. 5 we show all the prime ordered graphs on four vertices (up

to taking complements and reversing the order); as we said, none of them were previously known to have

the Erdős-Hajnal property. Our result shows that the first, the fifth and the seventh have the property,

and indeed are viral, because they belong to L.

Figure 5. The four-vertex prime ordered graphs (up to complements and reversal).

Next, let us look at corollaries of Theorem 2.1 for unordered graphs. We will use a nice correspondence

between the classes L,K of ordered graphs and the classes H,J of (unordered) graphs:

Lemma 7.3. If G ∈ K then G♮ ∈ J ; and if F ∈ J , there is a linear order ≤ of V (F ) such that

(F,≤) ∈ K. Similarly, if G ∈ L then G♮ ∈ H; and if F ∈ H, there is a linear order ≤ of V (F ) such that

(F,≤) ∈ L.

The proofs are straightforward arguments by induction and we omit them. We will also need:

Lemma 7.4. Let F be a finite set of ordered graphs, and let F ♮ be the set {F ♮ : F ∈ F}. If F is viral

then F ♮ is viral.
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Proof. Let d be a viral exponent for F ; we claim d is also a viral exponent for F ♮. Let ε ∈ (0, 12), and

let G be a graph with µF♮(εd, G) ≤ 1. choose a linear order of V (G), to obtain an ordered graph H with

H♮ = G. Thus µF (ε
d, G) ≤ µF♮(εd, G) ≤ 1, and so there is an ε-restricted S ⊆ V (G) with |S| ≥ εd|G|.

This proves Lemma 7.4. ■

¿From Lemma 7.3 and Lemma 7.4, we see that Theorem 2.1 implies:

Theorem 7.5. If H1, H2 ∈ J , then {H1, H2} is viral.

This implies Theorem 1.10; and by takingH1 = H2, we deduce from Lemma 7.6 below that Theorem 7.5

implies Theorem 1.9.

Lemma 7.6. H ∈ H if and only if H,H ∈ J .

Proof. We first prove the “only if” direction by induction. Let H ∈ H. If |H| ≤ 3 then obviously

H,H ∈ J , so we may assume |H| ≥ 4, and every induced subgraph J of H with |J | < |H| satisfies
J, J ∈ J . If H is not prime then H,H ∈ J by definition, so we assume it is prime. From the definition

of H, we may assume (replacing H by H if necessary) that there is a vertex v of H with degree one, such

that its neighbour u is adjacent to all except one vertex of H \ {v}. So H ∈ J ; and also H ∈ J , since u

has degree one in H. This completes the inductive step, and so prove the “only if” part.

Now, we prove the “if” direction, again by induction. Let H be such that H,H ∈ J . If |H| ≤ 3 then

H ∈ H and we are done; so we may assume |H| ≥ 4. Thus, since H ∈ J , either H contains a vertex of

degree one or H is not prime. If H is not prime, then it can be obtained by substituting some graph H2

for a vertex of some graph H1, where H1, H2 are induced subgraphs of H with |H1|, |H2| < |H|. Hence

Hi, Hi ∈ J for all i ∈ {1, 2}; and so the induction hypothesis implies that H1, H2 ∈ H, which yields

H ∈ H. Hence, we may assume that H has a vertex u of degree one; and similarly, we may assume that

H has a vertex v of degree one. Since |H| ≥ 4, u ̸= v. If uv ∈ E(H) then v is the unique neighbour of u in

H, and so H ∈ H since H \ u ∈ H by induction. If uv /∈ E(H) then u is the unique neighbour of v in H,

and so H ∈ H since H \ v = H \ v ∈ H by induction. Therefore H ∈ H, and this proves Lemma 7.6. ■

There is a version of Theorem 6.1 for unordered graphs:

Theorem 7.7. Let F be a finite set of graphs, and let H1, H2 ∈ F . For i = 1, 2, let vi be a vertex of Hi

with degree one, and let H ′
i = Hi \ {vi}. If F1 := {H ′

1} ∪ (F \ {H1}) and F2 := {H ′
2} ∪ (F \ {H2}) are

both viral then F is viral.

Proof. This can be proved directly, in the same way that we proved Theorem 6.1, but it can also be

derived from Theorem 6.1, as follows. Let P be the set of all ordered graphs J such that J ♮ ∈ F , and

define P1 and P2 similarly. Thus P1 and P2 are viral. Let Q1 be the set of all J in P such that J ♮ = H1

and v1 is an end vertex of J ; and let Q′
1 be the set of all ordered graphs J \ {v1} where J ∈ Q1. Let

Q2 be the set of all J ∈ P such that J ♮ = H2 and v2 is an end vertex of J ; and let Q′
2 be the set of all

ordered graphs J \ {v2} where J ∈ Q2. Thus Pi ⊆ (P \Qi) ∪Q′
i for i = 1, 2. Since Pi is viral, it follows

that (P \Qi)∪Q′
i is viral, for i = 1, 2. By repeated application of Theorem 6.1, it follows that P is viral;

and hence F is viral, by Lemma 7.4. This proves Theorem 7.7. ■

Since C5 is viral (this will be shown in Tung Nguyen’s thesis [15]), we can use Theorem 7.7 to obtain

viral pairs of prime graphs that are not given by Theorem 7.5. For instance, say a graphH is five-unicyclic

if all its cycles have length five, and every component has at most one cycle. Then Theorem 7.7 implies



INDUCED SUBGRAPH DENSITY. IV. NEW GRAPHS WITH THE ERDŐS-HAJNAL PROPERTY 21

that if H1, H2 are both five-unicyclic, then {H1, H2} is viral. More complicated constructions are also

possible, but we omit the details.

There are also implications for tournaments. A tournament is a digraph such that for all distinct uv,

exactly one of uv, vu is an edge. For tournaments T,Q, a copy of Q in T is an isomorphism from Q to

an subtournament of T , and T is Q-free if there is no copy of Q in T . Let indQ(T ) denote the number

of copies of Q in T . We say that Q has the Erdős-Hajnal property if there exists c > 0 such that every

tournament T admitting no copy of Q contains a transitive subtournament on at least |T |c vertices; and
Alon, Pach, and Solymosi [1] proved that the Erdős-Hajnal conjecture is equivalent to the statement that

every tournament has the Erdős-Hajnal property. Let Q be the family of tournaments defined as follows:

• Q is closed under taking vertex-substitutions; and

• if Q is a tournament, and v ∈ V (Q) has indegree at most one or out-degree at most one, and

Q \ {v} ∈ Q, then Q ∈ Q.

Let Q be a tournament, and take a numbering of its vertex set, say {v1, . . . , vn}. Let G be the graph

with vertex set V (Q) in which for 1 ≤ i < j ≤ n, vi, vj are adjacent in G if and only if vi is adjacent from

vj in Q. We call G the backedge graph of Q, and if we order its vertex set by vi ≤ vj if i ≤ j, we obtain

an ordered graph called the backedge ordered graph. It is easy to prove by induction (again, we omit the

details) that:

Lemma 7.8. Q ∈ Q if and only there is a numbering of its vertex set such that the resulting backedge

ordered graph is in K.

Then we can prove the tournament analogue of Theorem 1.4, which says:

Theorem 7.9. Every tournament in Q has the Erdős-Hajnal property.

Proof. Let Q ∈ Q, and take a numbering of V (Q) as in Lemma 7.8. Let H ∈ K be the resulting backedge

ordered graph. Let H ′ be the ordered graph obtained from H by reversing the linear order. It follows

that H ′ ∈ K, since K is closed under taking reversals. Moreover, H ′ is also a backedge ordered graph of

Q, obtained from the reversed ordering.

By Theorem 2.1, there exists c > 0 such that if an ordered graph G is both H-free and H ′-free, then

there is a clique or stable set of size at least |G|c in G. Let T be a Q-free tournament, take a numbering

of its vertex set, and let P be the resulting backedge ordered graph. Then P is J-free for every backedge

ordered graph of Q, because T is Q-free; and in particular, P is both H-free and H ′-free. Hence there

is a clique or stable set S in P of size at least |Q|c. But then S is a transitive set of T . This proves

Theorem 7.9. ■

One can also extend Theorem 7.9 to a viral version, in terms of the backedge graph, but we omit the

details.
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