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Abstract

We classify the countably infinite oriented graphs which, for every
partition of their vertex set into two parts, induce an isomorphic copy
of themselves on at least one of the parts. These graphs are the edge-
less graph, the random tournament, the transitive tournaments of order
type ωα, and two orientations of the Rado graph: the random oriented
graph, and a newly found random acyclic oriented graph.

1 Introduction

Which countably infinite oriented graphs G have the property that, for every
partition of the vertex set of G into two parts, G is isomorphic to one of the
two induced subgraphs? There are some natural examples: the edgeless graph,
the random tournament, the transitive tournaments of order type ωα (and their
inverses), and the random oriented graph. In this paper we find another such
graph, a certain random acyclic oriented graph. We show that, together with
its inverse,1 this graph completes the list of all oriented graphs with the above
property.

Let us say that a countable graph G, directed or undirected, has property
P if, for every bipartition (V1, V2) of it vertex set, at least one of the induced
subgraphs G[V1] and G[V2] is isomorphic to G. The simple undirected graphs
with this property were characterized by Cameron [5]; they are the countably
infinite complete graph, its complement, and the Rado graph.

Bonato, Cameron and Delić [1] then asked which oriented graphs have prop-
erty P, and found all the tournaments (i.e. oriented complete graphs) that do:
these are the random tournament, the transitive tournaments of order type ωα,
and the inverses of the latter (see also [3] for some related results). Since the
undirected graph underlying an oriented graph with property P also has prop-
erty P, the only remaining problem is to classify the orientations of the Rado
graph that have property P. We shall do so in this paper.

Any non-standard terminology we use will be explained in Section 2. The
reader might benefit from familiarity with the (undirected) Rado graph R, its

1 The inverse of an oriented graph is obtained by reversing all its edges.
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random construction, and its basic properties such as the ‘back-and-forth’ ar-
gument to prove its uniqueness, but technically we do not assume any such
knowledge. The only property of R that we shall use is that it is the unique
countably infinite graph such that for every two disjoint finite sets of vertices,
A and B say, it has a further vertex adjacent to every vertex in A but to none
in B. The Rado graph was introduced by Rado [7] – see Cameron [4] for details
and further background information.

2 Terminology, basic facts, and main result

Let X be an infinite set and Y a countable set of infinite subsets of X. A
partition (A,B) of X will be called a Bernstein partition with respect to Y if
for every Y ∈ Y both Y ∩ A and Y ∩ B are infinite. Such partitions are easily
constructed inductively. For example, let Y1, Y2, . . . be an ω-sequence of sets in
Y containing each of them infinitely often. Now build the partition (A,B) in
ω steps, choosing at step n two elements of Yn that are not yet in A or B and
assigning one to A and the other to B (and at the end assign any unassigned
points of X to A, say).

An oriented graph is a directed graph G whose underlying undirected graph
is simple, ie. has neither loops nor parallel edges. The inverse of G is the
oriented graph obtained from G by reversing the directions of all its edges.
Given vertices u, v ∈ G, we write u → v for the edge from u to v, or for the
fact that G contains this edge. When α is an ordinal, the oriented graph with
vertex set α = {β | β < α} and edge set {β → ∞ | β < ∞ < α} will be called the
α-tournament.

We write v−G := {u | u → v} for the in-neighbourhood of a vertex v in G,
and abbreviate v−G to v− if no confusion can occur. A source is a vertex with
empty in-neighbourhood. Similarly, v+ denotes the out-neighbourhood of v,
and a vertex with empty out-neighbourhood is a sink. An in-section of G is any
set I ⊆ V (G) such that x ∈ I and y → x imply y ∈ I. The intersection of all in-
sections containing a given set X is the in-section generated by X. Out-sections
are defined correspondingly.

An oriented graph G is well-founded if it contains no directed cycle and no
infinite ‘inverse ray’, ie. no infinite path of the form . . . v−2 → v−1 → v0. We
then denote by L0 its set of sources and, inductively, by Lα the set of sources
of G −

S
β<α Lβ . The Lα are the levels of G, and the vertices in Lα are those

of rank α. The smallest ordinal α such that Lα = ∅ is the rank of G. Observe
that if G has property P, then its rank must be a limit ordinal: otherwise we
partition V into the vertices of highest rank versus all the others, and note that
neither part is isomorphic to G. Similarly, if G has property P and the ranks
of the vertices in X ⊆ V are not cofinal in the rank of G, then G must be
isomorphic to G−X.

A subgraph H of a well-founded oriented graph G is rank-preserving if its
vertices have the same rank in H as in G. Note that disjoint rank-preserving sub-
graphs H1,H2 can always be extended to rank-preserving subgraphs G1 ⊇ H1
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and G2 ⊇ H2 that partition the vertex set of G: if we assign any remaining
vertices of G to the two sides inductively, level by level, we can obviously make
them keep their rank. Vertex partitions of G into two rank-preserving induced
subgraphs will be called rank-preserving partitions.

We shall consider two orientations of the Rado graph. The first of these, the
random oriented graph or RO, is the unique countably infinite oriented graph
such that for every triple of disjoint finite subsets of vertices A,B,C there
exists a vertex x such that A ⊆ x+, B ⊆ x− and C ∩ (x− ∪ x+ ∪ {x}) = ∅. It is
straightforward to construct such a graph inductively, and by the usual back-
and-forth argument it is clear that any two countable oriented graphs with this
property are isomorphic. It is also clear that this oriented graph has the Rado
graph as its underlying graph. We leave as an exercise the fact that RO has
property P. (The proof is analogous to that of Lemma 2.2.)

For our second orientation of the Rado graph, we shall prove that there is a
unique well-founded oriented graph such that every vertex has finite in-degree
and for every finite set F of vertices there are infinitely many vertices v such
that v− = F . We shall call this the acyclic random oriented graph (see below for
why), or ARO for short. It is again straightforward to construct such a graph
inductively, and to prove that its underlying undirected graph has the defining
property of the Rado graph. It thus remains to show uniqueness, and to check
that the ARO has property P.

Lemma 2.1 The ARO is unique.

Proof. Let G1 and G2 be two countable oriented graphs that have the defining
property of the ARO. Suppose we have already defined an isomorphism f from
a finite in-section F1 of G1 into a finite in-section F2 of G2. Let v be any
vertex of G1−F1. If we can extend f to a partial isomorphism g whose domain
contains F1∪{v}, we will be able likewise to construct an isomorphism between
G1 and G2 inductively, using the standard back-and-forth method. By König’s
infinity lemma and our assumption that G1 is well-founded (with every vertex
having finite in-degree), the in-section F that v generates in G1 is finite. Thus,
F1 ∪ F is another finite in-section of G1. To obtain g, we use the defining
property of ARO for G2 to extend f to F1∪F level by level (of F \F1), starting
with the lowest level. The image of g will then be another finite in-section
of G2. §

Interestingly, there is also a random construction for the ARO. Take ω
as the vertex set, let all edges i → j be oriented forward (ie. so that i < j),
and form an oriented graph by taking these edges i → j independently with
probability 2−(i+1). By construction, any oriented graph obtained in this way is
well-founded, and all in-degrees are finite. Moreover, the graph obtained almost
surely has the defining property of the ARO. (The proof of this mimics the
standard proof that the undirected random graph is almost surely the Rado
graph – see [7] or [4]. There is nothing mysterious about our edge probabilies
pi = 2−(i+1); the proof works for any pi such that Π1i=0(1− pi) > 0.)
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Lemma 2.2 The ARO has property P.

Proof. Let G be a copy of the ARO, and let (G0, G00) be a vertex partition
of G into two induced subgraphs. If neither G0 nor G00 is the ARO, then G0

has a finite set F 0 of vertices such that {v ∈ G0 | v−G0 = F 0} is finite, and G00

has a finite set F 00 of vertices such that {v ∈ G00 | v−G00 = F 00} is finite. But
then only finitely many vertices v of G satisfy v− = F 0 ∪ F 00, contradicting our
assumption that G is the ARO. §

We can now state our main result.

Theorem 2.3 The only orientations of the Rado graph with property P are
RO, ARO, and the inverse of ARO.

As pointed out in the Introduction, Theorem 2.3 completes the classification
of the countable oriented graphs with property P.

Corollary 2.4 The countable oriented graphs with property P are precisely the
following:

• the edgeless graph;

• the random tournament;

• the transitive tournaments of order type ωα and their inverses;

• the random oriented graph RO;

• the random acyclic oriented graph ARO and its inverse. §

We shall prove Theorem 2.3 in the next three sections. From now on, we
consider a fixed orientation G = (V,E) of the Rado graph that has property P.
Our proof proceeds by a series of lemmas, gradually learning more and more
about the structure of G.

3 Finite in-degrees

Lemma 3.1 If G 6= RO then either G or its inverse is well-founded.

Proof. We assume that G 6= RO. Let us begin by showing that G has a source
or a sink. As G 6= RO, there are three disjoint finite sets A,B,C ⊂ V such
that no vertex x ∈ G satisfies A ⊆ x+, B ⊆ x− and C ∩ (x+ ∪ x− ∪ {x}) = ∅.
Let us choose A,B,C with |A ∪ B ∪ C| minimum. Since G is an orientation
of the Rado graph, A ∪ B is non-empty. We assume that A 6= ∅; the case of
B 6= ∅ is analogous with reverse edges. Pick a ∈ A, let G1 be the subgraph of G
induced by (A ∪B ∪C ∪ a−) \ {a}, and let G2 be the subgraph induced by the
complement of this set. Apply P to the partition (G1, G2). If G ' G1, then by
the minimality of |A ∪B ∪C| there is a vertex x ∈ G1 such that A \ {a} ⊆ x+,
B ⊆ x− and C ∩ (x−∪x+∪{x}) = ∅. But then x ∈ a− and hence even A ⊆ x+,
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so this contradicts the choice of A,B,C. Therefore G ' G2. Since a is a source
of G2, we have thus proved that G has a source (or a sink).

By reversing all edges if necessary, we may thus assume that G has a source.
Let S be a maximal well-founded in-section of G. Apply property P to the
partition (S, V \ S). As S is maximal, G cannot be isomorphic to G− S: then
G − S would contain a source s, and S ∪ {s} would be larger a well-founded
in-section. So G is isomorphic to G[S] and therefore well-founded. §

From now on we assume that G is well-founded, and show that G = ARO.
Recall that the levels of G are denoted by L0, L1, . . ..

Lemma 3.2 G has infinitely many sources.

Proof. Suppose not, ie. suppose that L0 is finite. Pick x ∈ L0, and consider
the partition (X,V \ X), where X is the out-section generated by x. Clearly
G 6' G − X, since G − X has the smaller set L0 \ {x} as its set of sources.
Therefore G ' G[X], so G has a single source. Since G is an orientation of the
Rado graph, it has two non-adjacent vertices u, v. But then G−(u−∪v−) has at
least two sources and is isomorphic to G by property P, a contradiction. §

Lemma 3.3 If every vertex of G has finite in-degree, then G = ARO.

We shall spend most of the remainder of this section proving Lemma 3.3.
Asssume that every vertex of G has finite in-degree. Then G has rank at most ω,
and since G satisfies P its rank is exactly ω. Given a set U ⊆ V , let us write
U+ := U ∪ {u+ | u ∈ U}.

Claim 3.4 Whenever F ⊂ V is finite and x ∈ V \ F , we have x+ 6⊆ F+.

Proof. Suppose not, and let (F, x) be a counterexample with |F | minimum.
Observe that F 6= ∅, since otherwise x is a sink and hence has only finitely
many neighbours, which is impossible in the Rado graph. Pick y ∈ F , and
consider the partition (X,V \X), where X = (y+ \ ({x}∪F ))∪ {y}. Since y is
adjacent to every other vertex in X but the Rado graph has no vertex adjacent
to every other vertex, G 6' G[X]. Therefore G ' G−X. But then the fact that
x+

G−X ⊆ (F \ {y})+G−X contradicts the minimality of F . §

Claim 3.5 For every x ∈ V there is a y ∈ V such that y− = {x}.

Proof. We inductively construct a partition of V into sets V1 and V2 that have
the desired property in the subgraphs they induce, ie., are such that for every
x ∈ Vi there is a y ∈ Vi with y−G[Vi]

= {x} (i = 1, 2). Then, by P, also G will
have this property.

Let (xi)i∈ω be an enumeration of V such that i < j for every edge xi → xj

of G. (Such an enumeration exists, because G is well-founded.) Suppose we have
already defined two disjoint finite sets Xn, Yn ⊂ V such that {x0, . . . , xn} ⊆

5



Xn ∪ Yn and for every xi ∈ Xn (resp. Yn) with i ≤ n there exists y ∈ Xn

(resp. Yn) such that xi ∈ y− and y− \ {xi} ⊆ Yn, (resp. Xn). Let us show
that we can extend Xn and Yn to sets Xn+1 and Yn+1 with the corresponding
properties for n + 1.

Adding xn+1 to Xn if necessary, we may assume that xn+1 ∈ Xn∪Yn. Since
x+

n+1 6⊆ ((Xn∪Yn)\{xn+1})+ by Claim 3.4, there exists a vertex y ∈ V \(Xn∪Yn)
such that y− ∩ (Xn ∪ Yn) = {xn+1}. If xn+1 ∈ Xn, we put Xn+1 := Xn ∪ {y}
and Yn+1 := Yn ∪ (y− \ {xn+1}). If xn+1 ∈ Yn we swap the roles of X and Y ,
i.e. add y to Yn and its in-neighbours to Xn. Then V1 =

S
Xi and V2 =

S
Yi

form the desired partition of V . §

To complete the proof of Lemma 3.3, we now prove that G = ARO. Suppose
not. Then G violates the defining property of the ARO, ie. there exists a finite
set F ⊂ V such that A := {v ∈ V | v− = F} is finite. By Lemma 3.2, every
such F is non-empty; we choose F so that |F ∪A| is minimum.

Let S denote the out-section generated by A, and consider the partition
(S, V \ S) of V . By Lemma 3.2 we have G 6' G[S]. So G is isomorphic to the
graph G− S, which contains F but no vertex v with v−G−S = F . By the choice
of F , this implies A = ∅.

Pick x ∈ F , and consider a maximal set X ⊆ V such that

• X ∩ F = {x}

• (V \ (F ∪ x+)) ⊆ X

• for every v ∈ x+ ∩X we have v− ∩X 66= {x}.

By Claim 3.5 applied to x, we have G 6' G[X]. So G ' G − X. But in
G − X there is no vertex v with v−G−X = F \ {x}: any such v would lie in
G −X − F ⊆ x+, giving v− ⊇ F and hence v− = F (since v− ∩X = {x} by
the maximality of X), contradicting the fact that A = ∅. This contradicts the
minimality of |F ∪A| and completes the proof of Lemma 3.3.

To complete our proof of Theorem 2.3, it suffices by Lemma 3.3 to show that
G has no vertex of infinite in-degree.

Lemma 3.6 If G has a vertex of infinite in-degree, and α is the least rank of
such a vertex, then α ∈ {1,ω}.

Proof. Let v be a vertex of infinite in-degree and rank α. Since all vertices of
rank ω have infinite in-degree, clearly α ≤ ω. If α < ω, then for some finite i the
set X = v−∩Li is infinite. If we delete all the vertices of rank < α except those
in X, we obtain a graph in which v has rank 1 and infinite in-degree. Since this
graph is isomorphic to G by property P, it follows that α ∈ {1,ω}. §

In the remaining two sections we shall treat these two cases α = 1 and α = ω
in turn.
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4 Rank 1 vertices of infinite in-degree

Our aim in this section is to dispose of the first of our two cases:

Lemma 4.1 G has no rank 1 vertex of infinite in-degree.

For our proof of Lemma 4.1, let I denote the set of rank 1 vertices of infinite
in-degree. Suppose that I 6= ∅.

Claim 4.2 The set I is infinite.

Proof. Suppose I is finite. Let X be the out-section generated by I. Then the
partition (X,V \X) of V violates P: while G[X] has only finitely many sources
(cf. Lemma 3.2), the graph G−X has no rank 1 vertex of infinite in-degree. §

Let GI denote the simple undirected graph with vertex set I in which uv is
an edge if and only if u− ∩ v− is finite.

Claim 4.3 GI has property P.

Proof. Let (X,Y ) be any bipartition of I. Let (A,B) be a Bernstein partition of
L0 with respect to {v− : v ∈ I}∪{u−∩v− : u, v ∈ I and |u−∩v−| =1}. Extend
(A ∪ X,B ∪ Y ) to a rank-preserving partition (VA, VB) of V . By property P
for G, we may assume that G ' G[VA] =: G0. But the set I 0 of rank 1 vertices
of infinite in-degree in G0 is precisely X, so GI [X] = G0

I0 ' GI by the choice
of (A,B). §

By Cameron’s theorem [5], Claim 4.3 implies that GI is either the infinite
complete graph or the infinite edgeless graph or the Rado graph.

Claim 4.4 GI is not the Rado graph.

Proof. If GI is the Rado graph, it has two non-adjacent vertices u, v. By
definition of GI , these are elements of I such that u− ∩ v− is infinite. By P,
we know that G ' G − (u−4v−). Therefore G has two vertices x, y ∈ I with
x− = y−. Then x and y have the same neighbourhood in GI . But no two
vertices of the Rado graph have the same neighbourhood. §

Claim 4.5 GI is not the infinite complete graph.

Proof. Let (xi)i<ω be an enumeration of I. If GI is complete, then x−i ∩ x−j
is finite for all i 6= j. We may therefore select an infinite sequence (yi)i<ω of
vertices in L0 such that yi ∈ x−i \(x−0 ∪. . .∪x−i−1) for all i. Put Y := {yi | i < ω},
and extend (Y ∪ I, L0 \ Y ) to a rank-preserving partition (A,B) of V . Then
neither G[A] nor G[B] has any rank 1 vertices of infinite in-degree. By our
assumption that I 6= ∅, this contradicts property P for G. §
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So GI is the infinite edgeless graph. In other words, the in-neighbourhoods
of two vertices u, v ∈ I always meet in an infinite set. Observe that u− \v− and
v− \ u− cannot both be infinite, because any isomorphism from G \ (u− ∩ v−)
to G (which exists by P) would then map u and v to adjacent vertices of GI .

Let HI denote the simple undirected graph on I in which uv is an edge if
and only if u−4v− is infinite.

Claim 4.6 HI has property P.

Proof. Let (X,Y ) be any bipartition of I. Let (A,B) be a Bernstein partition
of L0 with respect to {v− : v ∈ I} ∪ {u−4v− : u, v ∈ I and |u−4v−| =1}.
Extend (A ∪X,B ∪ Y ) to a rank-preserving partition (VA, VB) of V . By prop-
erty P for G, we may assume that G ' G[VA] =: G0. Define I 0 and H 0

I0 for G0

in analogy to I and HI in G, and note that I 0 = X. Hence HI [X] = H 0
I0 ' HI

by the choice of (A,B). §

As before, HI is isomorphic to the Rado graph, the infinite complete graph,
or the infinite edgeless graph. The first two possibilities are ruled out by the fact
that for every two vertices u, v ∈ I the graph G− (u−4v−) is isomorphic to G
but has two rank 1 vertices of infinite in-degree which, in the counterpart of HI ,
are non-adjacent and have the same neighbourhood. Thus, HI is the infinite
edgeless graph. In other words, the in-neighbourhoods in G of the vertices in I
differ pairwise only by finite sets.

Claim 4.7 Every vertex in L0 has an out-neighbour in I.

Proof. Denote by Y the set of vertices in L0 with no out-neighbour in I.
Extend (Y, (L0 \ Y )∪ I) to a rank-preserving partition (A,B) of V . Since G[A]
has no rank 1 vertex of infinite in-degree, G is isomorphic to G[B]. The claim
follows. §

To conclude the proof of Lemma 4.1, let us derive a final contradiction. Pick
u ∈ I, and extend (u−, L0 \ u−) to a rank-preserving partition (A,B) of V . If
G ' G[B], then G[B] has a rank 1 vertex v of infinite in-degree. Then v ∈ I,
and v− \ u− is infinite. But then uv is an edge of HI , a contradiction. Hence
G ' G[A], by property P. As u must be in A, we deduce that G has a rank 1
vertex v with v− = L0.

Next, we show that G has a rank 1 vertex with only one in-neighbour. Pick
a vertex u ∈ L0 that sends an edge to a vertex v ∈ L1. By property P, G is
isomorphic to the graph obtained from G by deleting all vertices in L0 except u.
In this graph, v still has rank 1 but has no in-neighbour other than u.

Let C be the set of all vertices of G with infinitely many in-neighbours in L0.
Let (A,B) be a Bernstein partition of L0 with respect to {v− ∩ L0 | v ∈ C}.
Now G 6' G[A ∪ C], because G[A ∪ C] has no rank 1 vertex with only one
in-neighbour. By property P, therefore, G is isomorphic to G − A − C. But,
unlike G, this graph has no vertex v whose in-neighbourhood is the entire set
of sources. (Since that set includes B, this would put v in C.)

This completes the proof of Lemma 4.1.
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5 Rank ω vertices of infinite in-degree

Let F :=
S

i<ω Li denote the set of vertices of finite rank in G. Recall that, by
Lemmas 3.6 and 4.1, every vertex in F has finite in-degree.

By Lemma 3.3, our proof of Theorem 2.3 will be complete once we have
shown the following:

Lemma 5.1 Lω = ∅.

This entire section is devoted to the proof of Lemma 5.1. Suppose Lω 6= ∅.
Then Lω must be infinite: otherwise, deleting F would leave an isomorphic copy
of G with only finitely many sources, which would contradict Lemma 3.2.

Claim 5.2 Let v ∈ V be any vertex of infinite in-degree. Then every infinite
subset X of v− contains an ω-tournament.

Proof. If X contains an infinite independent set A (i.e., a set inducing no edge),
we consider the graph G0 obtained from G by deleting the in-section generated
by v, except A and v itself. By property P, this graph G0 is isomorphic to G.
But in G0, v is a rank 1 vertex of infinite in-degree, contradicting Lemma 4.1.
Hence by Ramsey’s theorem, X contains an ω-tournament or its inverse. The
latter case is impossible, because G is well-founded. §

Corollary 5.3 For every v ∈ V and every α, the set v− ∩ Lα is finite. §

Corollary 5.4 If an induced subgraph H of G contains a vertex v and infinitely
many vertices from v−, then v has infinite rank in H. In particular, if V (H)∩F
is one side of a Bernstein partition of F with respect to {v− | v ∈ Lω}, then the
vertices of Lω will have rank ω also in H. §

Claim 5.5 There exists a vertex u ∈ Lω such that the in-section generated
by u− in G does not exceed u−.

Proof. Pick v ∈ Lω, and let G0 be obtained from G by deleting F \ v−. By
Claim 5.4, v still has rank ω in G0. As vertices of infinite rank in G may drop to
finite rank in G0, the set F 0 of vertices of finite rank in G0 may be a proper su-
perset of v−. However, no vertex of F 0 \ v− lies below v− (i.e. in the in-section
generated by v−) in G0. So the in-section generated by v− in G0 is exactly
v− = v−G0 . Now the claim follows as G0 ' G by property P. §

More generally, we have the following for all vertices in Lω:

Claim 5.6 For every v ∈ Lω, the in-section generated by v in G exceeds v−

only by a finite set.

Proof. Let U denote the set of all v ∈ Lω such that the in-section Fv generated
by v exceeds v− by an infinite set. In every such set Fv we can inductively
find an infinite set Ev = {xi → yi | i < ω} of independent edges such that
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yi ∈ v− and xi /∈ v−. (Indeed, by König’s infinity lemma our assumption that
all vertices in F have finite in-degree implies that the in-section S generated by
{y1, . . . , yn} is finite; we can therefore find xn+1 → yn+1 in Fv \ S.)

As in the standard construction of Bernstein partitions, we can construct a
partition (A,B) of F such that for every v ∈ Lω both A and B meet v− in an
infinite set, and for every v ∈ U both A and B contain infinitely many edges
from Ev. By Corollary 5.4, the vertices of infinite rank in G also have infinite
rank in both G−A and G−B. We can therefore extend (A∪U, B∪(Lω \U)) to
a partition (X,Y ) of V that preserves the rank of all vertices that have infinite
rank in G. Now G 6' G[X] by Claim 5.5, since in G[X] every vertex v of rank ω
generates an in-section that exceeds v−G[X] by an infinite set. So G is isomorphic
to G[Y ], where the in-section generated by any vertex v of rank ω exceeds v−G[Y ]

only finitely. §

Let Gω denote the simple undirected graph on Lω in which uv is an edge if
and only if u− ∩ v− is finite.

Claim 5.7 Gω has property P.

Proof. Let (X,Y ) be any bipartition of Lω. Let (A,B) be a Bernstein partition
of F with respect to {v− : v ∈ Lω}∪ {u− ∩ v− : u, v ∈ Lω and |u− ∩ v−| =1}.
By Corollary 5.4, X and Y are exactly the sets of rank ω vertices in G[A∪X] and
G[B∪Y ], respectively. Extend (A∪X,B∪Y ) to a partition (VA, VB) of V that
preserves the ranks of all vertices of infinite rank. By P for G, we may assume
that G ' G[VA]. By the choice of (A,B), this implies Gω ' G[VA]ω = Gω[X],
where G[VA]ω is defined for G[VA] as Gω is defined for G. §

Claim 5.8 Gω is the infinite complete graph.

Proof. From Claim 5.7 and [5] we know that Gω is either the Rado graph R,
or the infinite complete graph, or the infinite edgeless graph.

If Gω ' R, then Gω has two non-adjacent vertices u, v ∈ Lω. Deleting
F \ (u−∩v−) from G yields a graph G0 ' G such that u−G0 = u−∩v− = v−G0 . By
Corollary 5.4 this implies that u and v have rank ω also in G0 (since u− ∩ v− is
infinite by the choice of u and v), and in the graph G0

ω defined for G0 in analogy
to Gω for G, the vertices u, v have the same neighbourhood. But this cannot
happen in the Rado graph.

Suppose now that Gω is the infinite edgeless graph. Pick v ∈ Lω, and let
G0 := G− (F \ v−). Then G0 ' G. As |u− ∩ v−| = 1 for every u ∈ Lω, every
u ∈ Lω still has rank ω in G0, and hence every vertex of infinite rank in G still has
infinite rank in G0. In other words, the vertices of finite rank in G0 are only those
in v−. In particular, all the sources of G0 (which form an infinite independent
set by Lemma 3.2) send an edge to v, contradicting Corollary 5.3. §
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Let J := {v ∈ V : |v− ∩ F | = 1}. Since the vertices in F have finite in-
degrees, we have J ∩ F = ∅. Let GJ be the graph on J in which u, v ∈ J are
adjacent if and only if u− ∩ v− ∩ F is infinite.

By Claim 5.8, Lω is an independent set of vertices in GJ . More generally,
we have the following:

Claim 5.9 Adjacent vertices of GJ are also adjacent in G.

Proof. Suppose u, v ∈ J are adjacent in GJ but not in G. Let G0 be obtained
from G by deleting (u−∪v−)\F . Then u, v ∈ G0, and both vertices have rank ω
in G0. As G0 ' G by property P and u−G0 ∩ v−G0 = u− ∩ v− ∩ F is infinite, this
contradicts Claim 5.8. §

Claim 5.10 For every v ∈ J , there is an ω-tournament K(v) ⊆ G[v−∩F ] that
contains all but finitely many vertices of the in-section generated by v−∩F in G.

Proof. We first prove the claim for all v ∈ Lω =: {v1, v2, . . .}. By Claim 5.2,
every v−i has a subset Ki that induces an ω-tournament in G. Put Di := v−i \Ki.
Let G0 be the graph obtained from G by deleting, inductively for all i < ω, the
sets Di \ (v−1 ∪ . . . ∪ v−i−1). By Claim 5.8, each of the ω-tournaments K(vi) :=
Ki \ (D1 ∪ . . . ∪Di−1) is infinite and differs from the in-neighbourhood of vi in
G0 only by a subset of Di ∩ (v1 ∪ . . .∪ v−i−1), which is finite. By Claim 5.6, then,
K(vi) differs only finitely from the entire in-section generated by vi in G0. As
G0 ' G by property P, and every v ∈ Lω has rank ω also in G0, this proves the
claim for all v ∈ Lω.

To reduce the case of arbitrary v ∈ J to the special case above, delete v− \F
to obtain a subgraph G0 ⊆ G in which v has rank ω and v−G0 = v− ∩F . This set
generates identical in-sections in G0 and in G: although G0 can have vertices of
finite rank that are not in F , no such vertices can lie below v− ∩ F in G0. As
G0 ' G by property P, the in-section generated by v−G0 in G0 differs only finitely
from an ω-tournament KG0(v) ⊆ G0[v−G0 ] = G[v− ∩ F ]. §

Claim 5.11 Whenever u, v ∈ J are adjacent in GJ , the sets u−∩F and v−∩F
differ only finitely.

Proof. Let X := u− ∩ v− ∩F ; as u, v are adjacent in GJ , this is an infinite set.
By Claim 5.10, all but finitely many of these vertices lie in K(u); in particular,
X ∩ V (K(u)) is infinite. As K(u) is an ω-tournament, this implies that the in-
section Y generated by X includes V (K(u)). But Y is a subset of the in-section
generated by u− ∩F , which by Claim 5.10 exceeds V (K(u)) only finitely. So Y
includes V (K(u)) but exceeds it only finitely. Now the same is true for the set
u− ∩ F (again by Claim 5.10), so this set differs from Y only finitely.

In the same way, Y differs only finitely from v− ∩ F . Hence u− ∩ F and
v− ∩ F differ only finitely, as claimed. §
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Claim 5.12 The components of GJ are complete subgraphs of GJ . Their vertex
sets induce (well-ordered) tournaments in G.

Proof. By Claim 5.11, adjacency in GJ is transitive. This implies the first
assertion. The second follows from Claim 5.9, because G is well-founded. §

Claim 5.13 GJ has an isolated vertex.

Proof. Pick v ∈ Lω, and let C be the subgraph of G induced by the component
of GJ containing v. By Claim 5.12, C is a (well-ordered) tournament. Hence
G 6' C − v, so G is isomorphic to G− (C − v). And in this graph, v is a vertex
of rank ω that is isolated in the counterpart to GJ (ie., v shares only finitely
many in-neighbours of finite rank with any other vertex). §

Claim 5.14 GJ has no edge.

Proof. Let (A,B) be a Bernstein partition of F with respect to {v− | v ∈ J}.
By Claim 5.11, this partition also splits any infinite set of the form u− ∩ v− ∩F
with u, v ∈ J into two infinite sets. Extend this partition by adding every
isolated vertex of GJ to A and the rest of J to B. Then extend this partition
inductively, level by level, so that every new vertex again has infinite rank in
the graph induced by its side. Let this partition of V be denoted by (VA, VB).

By construction of (VA, VB), the vertices of finite rank in G[VA] are only
those in A. Hence the vertices of G[VA] that have infinitely many in-neighbours
of finite rank are precisely those in J∩VA =: JA. Let G[VA]JA be the undirected
graph on JA defined in analogy to GJ ; then two vertices from JA are adjacent
in G[VA]JA if and only if they are adjacent in GJ . The same remarks apply,
with the analogous definitions, to G[VB]JB .

Now G 6' G[VB] by Claim 5.13, because G[VB]JB has no isolated vertex. So
G ' G[VA], and hence GJ ' G[VA]JA . But in G[VA]JA every vertex is isolated.

§

Claim 5.15 If u and v are distinct vertices of G, then u− ∩ v− is finite.

Proof. Suppose |u− ∩ v−| = 1. By Claim 5.2, u− ∩ v− has a subset X that
spans an ω-tournament in G. Assume that u has rank at most the rank of v, and
let G0 be obtained from G by deleting all vertices of smaller rank except those
in X. Then u−G0 = X, so u has rank ω in G0. Moreover, G0 ' G by property P.
Let J 0 and G0

J0 be defined for G0 as J and GJ are defined for G. Then u and v
are adjacent vertices of G0

J0 ' GJ , contradicting Claim 5.14. §

12



To complete the proof of Lemma 5.1, let us now show that every vertex
in G has finite in-degree. Let x1, x2, . . . be an enumeration of V . For each i, put
Xi := x−i ∪{xi}. Define a partition (A,B) of V in ω steps, as follows. Let Ai and
Bi denote the sets of vertices that have been assigned to A respectively B until
(and including) step i. These sets will be chosen so that Ai∪Bi = X1∪ . . .∪Xi.

At step i+1, check whether xi+1 ∈ Ai∪Bi; if not, assign xi+1 arbitrarily to A
or B. Now assume that xi+1 has already been assigned to A. (Otherwise, swap
the roles of A and B in what follows.) By Ai ⊆ X1 ∪ . . . ∪Xi and Claim 5.15,
the set Xi+1 ∩Ai is finite. We now define Ai+1 and Bi+1 by keeping A as it is
(ie., putting Ai+1 := Ai ∪ {xi+1}) and letting Bi+1 := Bi ∪ (x−i+1 \ Ai). Then
again Ai+1 ∪Bi+1 = X1 ∪ . . . ∪Xi+1, as required for the induction.

By construction of (A,B), every xi has only finitely many in-neighbours in
its own partition set. Since G is isomorphic to G[A] or to G[B] by property P,
every vertex of G has finite in-degree.

This completes the proof of Lemma 5.1, and of Theorem 2.3. §

Let us close by mentioning that we do not know whether or not the Rado
graph R is ‘edge-indivisible’, in the sense that whenever we partition the edges
of R into two classes then the subgraph formed by one of the classes contains
a copy of R as an induced subgraph. If we insist that the copy of R should be
induced in the whole of R (rather than just in its class) then this is known to be
false: Erdős, Hajnal and Pósa [6] constructed a partition of the edges of R into
two classes such that every induced copy of R contains edges from both classes.
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Laboratoire LaPCS
UFR de Mathématiques
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