Independent sets and repeated degrees

B. Bollobás and A.D. Scott

Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge,
16 Mill Lane, Cambridge,
CB2 1SB, England.
and
Department of Mathematics,
Louisiana State University,
Baton Rouge, Louisiana 70803, U.S.A.

Abstract

We answer a question of Erdős, Faudree, Reid, Schelp and Staton by showing that for every integer $k \geq 2$ there is a triangle-free graph G of order n such that no degree in G is repeated more than k times and $\operatorname{ind}(G)=(1+o(1)) n / k$.

§1. Introduction

In [2], Erdős, Fajtlowicz and Staton proved that every triangle-free graph G in which no degree is repeated more than twice is bipartite and thus has independence number at least $|G| / 2$. In this paper, we consider triangle-free graphs in which no degree is repeated more than k times. What can one say about the independence number of such graphs? As observed in [3], if G is a triangle-free graph of order n, and no degree in G is repeated more than k times, then some vertex v has degree at least $(n / k)-1$; if G has no isolated vertices then some vertex v has degree at least n / k. Then, since $\Gamma(v)$ is an independent set, we must have $\operatorname{ind}(G) \geq n / k$. In fact, Erdős, Faudree, Reid, Schelp and Staton [3] asked whether this inequality is best possible. In other words, are there graphs G of arbitrarily large order n such that G is triangle-free, no degree in G is repeated more than k times, and $\operatorname{ind}(G)=(1+o(1)) n / k$? In [3] it is shown that for $k=2$ and $k=4$ this is indeed the case. Our main aim is to prove that the inequality is essentially best possible for all values of k.

Theorem 1. For every integer $k \geq 2$, and for every $\epsilon>0$, there is an $n_{0}(k, \epsilon)$ such that if $n \geq n_{0}(k, \epsilon)$ then there is a triangle-free graph G of order n such that no degree in G is repeated more than k times and

$$
\operatorname{ind}(G) \leq(1+\epsilon)|G| / k
$$

Erdős, Faudree, Reid, Schelp and Staton [3] investigated K_{r}-free graphs with few repeated degrees. They showed that, for $r \geq 5$ and $k \geq 2$, there exist K_{r}-free graphs of order n with independence number $o(n)$ and no degree repeated more than k times, but that no such graphs exist for $r=4$ and $k=3$. In [1] it is proved that there exist K_{4}-free graphs of order n with independence number $o(n)$ and no degree repeated more than 5 times. This leaves open only the case $k=4$.

§2. Proof of Theorem 1

We will make use of the following immediate consequence of the Max-Flow MinCut Theorem.

Lemma 2. Suppose $d_{1} \geq d_{2} \geq \cdots \geq d_{n}>0$ and $e_{1} \geq e_{2} \geq \cdots \geq e_{n}>0$ are two sequences such that

$$
\begin{equation*}
\sum_{i=1}^{n} d_{i}=\sum_{i=1}^{n} e_{i} \tag{1}
\end{equation*}
$$

Then there is a bipartite graph with bipartition $\left(V_{1}, V_{2}\right)$ and degrees d_{1}, \ldots, d_{n} in V_{1} and e_{1}, \ldots, e_{n} in V_{2} iff, for all $1 \leq i, j \leq n$, we have

$$
\begin{equation*}
\sum_{h=1}^{i} d_{h}-\sum_{h=n-j+1}^{n} e_{h} \leq i j . \tag{2}
\end{equation*}
$$

The other result that we shall need below is the following lemma about trianglefree graphs (we note that we could prove a much stronger result, but this is all we shall need).

Lemma 3. Let $k \geq 2$ be an integer and let $\epsilon>0$. If n is even and sufficiently large then there exists a k-partite triangle-free graph with n vertices in each vertex class such that every vertex has degree $\lceil\log n\rceil$ and the largest independent set has size at most $(1+\epsilon) n$.

Proof. Let $n=2 n_{0}$, and let p be the maximal integer such that

$$
\binom{k}{2} p+1<\lceil\log n\rceil
$$

Fix $0<c<1 / 2$ such that $2 c k<\epsilon$. Let G be the random k-partite graph with vertex classes V_{1}, \ldots, V_{k}, each of size n_{0}, obtained by taking the union of p independent random matchings between each pair of vertex classes. Clearly

$$
\Delta(G) \leq\binom{ k}{2} p<\lceil\log n\rceil
$$

If $\operatorname{ind}(G)>(1+c k) n_{0}$ then there exists $i \neq j$ and sets $W_{i} \subset V_{i}$ and $W_{j} \subset V_{j}$ such that $\left|W_{i}\right| \geq c n_{0},\left|W_{j}\right| \geq c n_{0}$ and $e\left(W_{i}, W_{j}\right)=0$. Let $X(G)$ be the number of such pairs with $\left|W_{i}\right|=\left|W_{j}\right|=\left\lceil c n_{0}\right\rceil$. Then

$$
\begin{align*}
\mathbb{E}(X(G)) & =\binom{k}{2}\binom{n_{0}}{c n_{0}}^{2}\left(\left(1-\frac{1}{n_{0}}\right)^{p}\right)^{\left\lceil c n_{0}\right\rceil^{2}} \\
& <k^{2} \frac{1}{2 \pi n_{0} c(1-c) c^{2 c n_{0}}(1-c)^{2(1-c) n_{0}}} e^{-\left(1 / n_{0}\right) p c^{2} n_{0}^{2}} \\
& <\left(\frac{(1+o(1)) e^{-p c^{2}}}{c^{2 c}(1-c)^{2(1-c)}}\right)^{n_{0}} \\
& <2^{-n_{0}} \tag{3}
\end{align*}
$$

for n sufficiently large, since $p \rightarrow \infty$ as $n_{0} \rightarrow \infty$. Thus, with probability $1-o(1)$, G contains no independent set of size $(1+c k) n_{0}$.

Now let $Y(G)$ denote the number of triangles in G. Then

$$
\begin{align*}
\mathbb{E}(Y(G)) & =\binom{k}{3} n_{0}^{3}\left(1-\left(1-\frac{1}{n_{0}}\right)^{p}\right)^{3} \\
& <\binom{k}{3} n_{0}^{3}\left(\frac{p}{n_{0}}\right)^{3} \\
& =\binom{k}{3} p^{3} \\
& <\lceil\log n\rceil^{3} \tag{4}
\end{align*}
$$

Thus, with probability greater than $1 / 2, G$ contains at most $\lceil\log n\rceil^{3}$ triangles. We deduce from (3) and (4) that we can find some G_{0} with

$$
\operatorname{ind}\left(G_{0}\right) \leq(1+c k) n_{0}
$$

and

$$
Y\left(G_{0}\right)<\lceil\log n\rceil^{3}
$$

Now pick one edge from each triangle in G and delete it. Note that this increases $\operatorname{ind}(G)$ by less than $\lceil\log n\rceil^{2}<c k n_{0}$, provided n_{0} is sufficiently large. We get a triangle-free k-partite graph G_{1} with vertex classes V_{1}, \ldots, V_{k} such that

$$
\left|V_{1}\right|=\cdots=\left|V_{k}\right|=n_{0}
$$

and

$$
\Delta(G) \leq\binom{ k}{2} p<\lceil\log n\rceil-1
$$

and

$$
\operatorname{ind}(G)<(1+2 c k) n_{0}
$$

Let G_{2} be another copy of G_{1}, with vertex classes W_{1}, \ldots, W_{k}. We will add edges between V_{i} and W_{i}, for each i, so as to get a $\lceil\log n\rceil$-regular graph. Suppose $V_{i}=\left\{v_{1}, \ldots, v_{n_{0}}\right\}$ and $W_{i}=\left\{w_{1}, \ldots, w_{n_{0}}\right\}$, and let $d_{j}=\lceil\log n\rceil-d\left(v_{j}\right)$, for $j=1, \ldots, n$. Now $1 \leq d_{j} \leq\lceil\log n\rceil$ for each j, so it follows easily from Lemma 3 that there is a bipartite graph B_{i} with degrees $d_{1}, \ldots, d_{n_{0}}$ in each vertex class. We add this graph B_{i} between V_{i} and W_{i}, for each i, and call the resulting graph H. We now have a $\lceil\log n\rceil$-regular graph. For $i=1, \ldots, k$, let

$$
S_{i}=V_{i} \cup W_{i+1}
$$

where we define $W_{k+1} \equiv W_{1}$. Then each S_{i} is an independent set of size n, H is triangle-free and

$$
\operatorname{ind}(H) \leq \operatorname{ind}\left(G_{1}\right)+\operatorname{ind}\left(G_{2}\right)<(1+2 c k) n<(1+\epsilon) n
$$

Armed with these lemmas, we are now ready to prove Theorem 1.
Proof of Theorem 1. We prove the theorem for numbers n of a specific form; the graphs we obtain can easily be modified for other values of n.
(i) For $k=2$ the theorem is easily seen to be true. We define the bipartite graph B_{n} with vertex classes $\left\{x_{1}, \ldots, x_{n}\right\}$ and $\left\{y_{1}, \ldots, y_{n}\right\}$ by

$$
x_{i} y_{j} \in B_{n} \text { iff } i \leq j
$$

Then no degree is repeated more than twice, and it is easily seen that $\operatorname{ind}\left(B_{n}\right)=$ $\left|B_{n}\right| / 2$.
(ii) For $k \geq 3$ we need a more complicated construction than for the bipartite case. Pick integers m and l such that

$$
m n^{2}=(k-2) l^{2},
$$

which means

$$
l \sim n \sqrt{m /(k-2)} .
$$

We can do this for arbitrarily large values of l, m and n. Let G_{0} be a $\lceil\log n\rceil$ regular triangle free k-partite graph with vertex classes V_{1}, \ldots, V_{k} such that $\left|V_{1}\right|=$ $\cdots=\left|V_{k}\right|=n$, and $\operatorname{ind}(G)<(1+\epsilon) n$. We know from Lemma 3 that such a graph exists. Now, for $i=1, \ldots, 2 m$ let G_{i} be a copy of G_{0} with vertex classes $V_{1}^{i}, \ldots, V_{k}^{i}$. For $i=1, \ldots, k$, let R_{0}^{i} be an independent set of size $k l$, and let $R_{1}^{i}, \ldots, R_{k}^{i}$ be independent sets of size l. We will write superscripts mod k, so for instance $V_{j}^{k+1} \equiv V_{j}^{1}$. Note that the largest independent set in this graph has size at most $2 m(1+\epsilon) n+2 k^{2} l<2 m n\left(1+3 k^{2} \epsilon\right.$), provided m is sufficiently large ($m>k^{3}$ will do). Thus the independence condition is fulfilled. We will add further edges to get a triangle-free graph in which no degree is repeated more than k times.

For $i=1, \ldots, k$ we add edges

$$
\bigcup\left\{K\left(V_{a}^{i}, V_{b}^{i+1}\right): m+1 \leq a<b \leq 2 m\right\} \cup K\left(\bigcup_{j=m+1}^{2 m} V_{j}^{i}, \bigcup_{j=1}^{k} R_{j}^{i+1}\right)
$$

and

$$
\bigcup\left\{K\left(R_{a}^{i}, R_{b}^{i+1}\right): 1 \leq a<b \leq k\right\} \cup \bigcup_{h \neq i} K\left(R_{h}^{i}, R_{h}^{i+1}\right) .
$$

(The condition $h \neq i$ ensures that we do not get triangles when $k=3$.)
For each i, let

$$
A_{i}=R_{0}^{i} \cup \bigcup_{j=1}^{m} V_{j}^{i}
$$

and

$$
B_{i}=\bigcup_{j=1}^{k} R_{j}^{i} \cup \bigcup_{j=m+1}^{2 m} V_{j}^{i}
$$

Then, for each $i, A_{i} \cup B_{i}$ is an independent set. There are $k l$ vertices in A_{i} with degree 0 and $m n$ vertices with degree

$$
\begin{equation*}
\lceil\log n\rceil . \tag{5}
\end{equation*}
$$

There are $m n$ vertices in B_{i} with degree

$$
\begin{equation*}
(m-1) n+\lceil\log n\rceil+k l, \tag{6}
\end{equation*}
$$

$2 l$ vertices with degree

$$
\begin{equation*}
m n+k l \tag{7}
\end{equation*}
$$

and $(k-2) l$ vertices with degree

$$
\begin{equation*}
m n+(k+1) l \tag{8}
\end{equation*}
$$

Now the sums of the degrees in A_{i} is

$$
m n\lceil\log n\rceil,
$$

while the sum of the degrees in B_{i} is

$$
\begin{align*}
m n((m-1) n+\lceil\log n\rceil+k l) & +2 l(m n+k l)+(k-2) l(m n+(k+1) l) \\
& =m n\lceil\log n\rceil+(m n+k l)^{2}-m n^{2}+k l^{2}-2 l^{2} \\
& =m n\lceil\log n\rceil+(m n+k l)^{2}, \tag{9}
\end{align*}
$$

provided $m n^{2}=(k-2) l^{2}$, which is true by our choice of m and l. For each i, We will add a bipartite graph between A_{i} and B_{i} so that the vertices in A_{i} have degrees

$$
1, \ldots, m n+k l
$$

and the vertices in B_{i} have degrees

$$
m n+k l+1, \ldots, 2 m n+2 k l .
$$

If we can do this, then no degree in the resulting graph is repeated more than k times. It follows from (5)-(8) that it is enough to find a bipartite graph with degrees

$$
\begin{equation*}
1, \ldots, k l, k l-\lceil\log n\rceil+1, \ldots, k l+m n\lceil\log n\rceil \tag{10}
\end{equation*}
$$

in one class, and

$$
\begin{align*}
& n-\lceil\log n\rceil+1, \ldots, n-\lceil\log n\rceil+m n, \\
& m n+1, \ldots, m n+2 l \tag{11}\\
& m n+l, \ldots, m n+(k-1) l
\end{align*}
$$

in the other class.
We claim that this is possible. We will prove this by a straightforward, although rather tedious, application of Lemma 2. Note first that it follows from (9) that the sequences (10) and (11) have the same total, so (1) is satisfied. We now check condition (2).

Rearranging (10), we get

$$
\begin{align*}
& 1, \ldots, k l-\lceil\log n\rceil \\
& k l-\lceil\log n\rceil+1, k l-\lceil\log n\rceil+1, \ldots, k l, k l \\
& k l+1, k l+2, \ldots, k l+m n-\lceil\log n\rceil \tag{12}
\end{align*}
$$

and rearranging (11) we get

$$
\begin{align*}
& n-\lceil\log n\rceil+1, \ldots, m n, \\
& m n+1, m n+1, \ldots, m n+n-\lceil\log n\rceil, m n+n-\lceil\log n\rceil, \\
& m n+n-\lceil\log n\rceil+1, \ldots, m n+l+1, \tag{13}\\
& m n+l, m n+l, \ldots, m n+2 l, m n+2 l, \\
& m n+2 l+1, \ldots, m n+(k-1) l .
\end{align*}
$$

Let us relabel (12) and (13) as e_{N}, \ldots, e_{1} and d_{N}, \ldots, d_{1} respectively, where $N=$ $m n+k l$. Note that in (2), for a given value of i, the only value of j we need check is $j(i)=\min \left\{h: e_{h} \geq i\right\}$. For $i=1, \ldots, k l-\lceil\log n\rceil$, we have

$$
j(i)=N-i ;
$$

for $i=k l-\lceil\log n\rceil+1, \ldots, k l$ we have

$$
j(i)=N-2 i+k l-\lceil\log n\rceil ;
$$

and for $i=k l+1, \ldots, m n+k l$, we have

$$
j(i)=\max \{N-i-\lceil\log n\rceil, 1\} .
$$

It is now an easy but tedious calculation to check that (12) and (13) satisfy (2).

We remark that it is straightforward to give bounds for $n_{0}(k, \epsilon)$ in Theorem 1 (and so bound the $o(1)$ term in $(1+o(1)) n / k)$. We do not, however, know the best possible bound. In particular, it would be of interest to determine whether for every k there is some $c(k)$ such that for every n there is a triangle-free graph of order n with no degree repeated more than k times and independence number at most $n / k+c(k)$.

The proof we have given for Theorem 1 is essentially probabilistic, so it does not give a construction. It would be interesting to find a constructive proof of the theorem, although this might not be particularly easy.

There are many further questions of the same type: given a graph H and integer k, what can we say about the independence number of graphs that have no degree occurring more than k times and contain no induced copy of H ?

References

[1] B. Bollobás, Degree multiplicities and independent sets in K_{4}-free graphs, to appear.
[2] P. Erdős, S. Fajtlowicz and W. Staton, Degree sequences in triangle-free graphs, Discrete Math. 92 (1991), 85-88.
[3] P. Erdős, R. Faudree, T.J. Reid, R. Schelp and W. Staton, Degree sequence and independence in $K(4)$-free graphs, Discrete Math. 141 (1995), 285-290.

