ON RYSER’S CONJECTURE
P.E. HAXELL AND A.D. SCOTT

ABSTRACT. Motivated by an old problem known as Ryser’s Con-
jecture, we prove that for r = 4 and r = 5, there exists ¢ > 0
such that every r-partite r-uniform hypergraph H has a cover of
size at most (r — €)v(H), where v(H) denotes the size of a largest
matching in H.

1. INTRODUCTION

In this paper we are concerned with a packing and covering problem
in hypergraphs. A hypergraph consists of a vertex set V and a set H
of edges, where each edge is a nonempty subset of V' = V(H). We
say ‘H has rank r if the largest size of an edge is r, and that H is
r-uniform if every edge has size r. The packing number (also called
matching number) v(H) of H is the size of a largest matching in H,
where a matching is a set of pairwise disjoint edges in H. The covering
number T(H) of H is the size of a smallest cover of H, where a cover is
a subset W C V such that every edge of H contains a vertex of W. It
is clear that if ‘H has rank r then 7(H) < rv(H), and this is attained
for example by the complete r-uniform hypergraph K, _; with 2r — 1
vertices, which has v(K5, ;) =1 and 7(K%,._,) = 7.

Our focus here is on a long-standing open problem known as Ryser’s
Conjecture, which states that if H is an r-partite r-uniform hypergraph
then 7(H) < (r — 1)v(H) (see e.g. [4, 9]; a stronger version of the
conjecture was proposed by Lovész [6]). Here H being r-partite means
that its vertex set has a partition V3 U--- UV, and every edge contains
exactly one vertex of each V;. When r = 2 this is the classical theorem
of Konig, and for r = 3, after a number of partial results [8, 10, 5],
the conjecture was proved by Aharoni [1]. Apart from these two cases,
very little is known about the problem. If true, the statement is best
possible whenever r — 1 is a prime power (see e.g. [9]). Until now no
nontrivial bound of the form 7(H) < (r — €)v(#H) for € > 0 and any
r > 4 was known.
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2 ON RYSER’S CONJECTURE

A hypergraph H is said to be intersecting if v(H) = 1. Even for
intersecting hypergraphs, Ryser’s Conjecture is open for all » > 6.
There are many examples showing the result would be best possible
in this case, and they can be quite sparse (see [7]). For r < 5, how-
ever, the conjecture has been proved in the special case of intersecting
hypergraphs.

Theorem 1.1. (Tuza [9]) If H is an intersecting r-partite hypergraph
of rank r and r <5 then 7(H) <r — 1.

Our aim in this paper is to prove the following theorem, the proof
of which depends on Theorem 1.1, and thus give a nontrivial upper
bound for Ryser’s problem in the cases r = 4 and r = 5.

Theorem 1.2. For each of r = 4 and r = 5, there exists a positive
constant € such that T(H) < (r — €)v(H) for every r-partite r-uniform
hypergraph H.

2. GENERAL 1

We begin the proof of Theorem 1.2 in this section, arguing in terms of
general . We then complete the proof for r = 4 and r» = 5 respectively
in the next two sections.

Let J be an r-partite r-uniform hypergraph, with a fixed partition
ViU...UV,.. Let B be a matching of size v(J) in J. It is clear that
V(B) is a cover of J of size rv(J). For B; € B we let H; denote the
set of edges of J that intersect V(B) only in vertices of B;. Note then
that H; is intersecting and B; € H;.

We call an edge A € J badif ANV (B) = {v} for some v. The vertex
v is also called bad, and we say A is i-bad where v is in the ith colour
class V; of the r-partition of J. Note that each bad edge is in H; for
some j. Let By = {B; € B : B; has r bad vertices}.

Lemma 2.1. If 7(J) > (r — 1/2r)|B| then |By| > |B|/2.

Proof. Suppose that |Bi| < |B|/2. Then there is a colour class i such
that at least |B|/2r of the B; ¢ B; have no i-bad vertex. Let B* denote
the set of these B;. But then Up ¢5. Bj U Up,ep- Bj \ Vi 1s a cover of

J of size at most r(|B| — |B*|) + (r — 1)|B*| < (r — 1/2r)|B]. O

Lemma 2.1 indicates how our proof of Theorem 1.2 will proceed.
Either 7 has a suitably small cover, or we can find a special subset
of B whose size is a positive proportion of |B| (in this case ; which
is at least half of B) about which we can make a further assumption.
We may then cover all edges of J that intersect any edge of B that
is not in the special subset by taking every vertex of every edge of B
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not in the special subset. This will not change the hypergraphs #,;, or
the notion of bad, for the edges of J that remain. We then focus on
showing that the remaining edges have a suitably small cover (in this
case of size at most (r — «)|B;| for some fixed positive ). In our proof
of Theorem 1.2 we will apply this procedure r + 2 times for r = 4, and
r + 3 times for r = 5.

By Lemma 2.1 we may assume that |B;| > |B|/2. As outlined in the
previous paragraph, we let J; = {A € J : AN B; = 0 for all B; €
B\ Bi}. Then v(7y) = |Bi], and 7(T) < r(|B| — |B1|) + 7(J1).

Lemma 2.2. If7(J,) > (r—1/2)|By| then there is a matching of 1-bad
edges in Jy of size at least |By|/2r.

Proof. Let M = {M, ..., M,;} be a maximum matching of 1-bad edges
in J;. Note that since each H; is intersecting, all edges of M are in
distinct H;, say Hi,...,H;. Then

¢
U uB)ulBi\ W
Jj=1 j>t
is a cover of J; of size at most (2r — 1)| M|+ (r — 1)(|B1| — M| = (r —
D)|By|+r|M]). If IM| < |By|/2r then this is at most (r—1/2)|B;|. O

By Lemma 2.2 we may assume that there is a matching M of 1-bad
edges in J; of size at least |By|/2r. Let By = {B; € By : B; N M), #
() for some M; € M}. Then |By| = |[M| > |By]/2r. Let Jo = {4 €
Ji: ANB; = Oforall B € By \ By}. Then v(J%) = |Bs|, and
7(Jh) < r(|Bi] — |B2|) + 7(J2). We may repeat this argument another
r — 1 times for colour classes V5, ..., V, until we reach a hypergraph
Jr+1 and a matching B,,; in J.,1, in which there exists a matching
M, of i-bad edges with |M;| = |B,1] for each i. Each edge of M, is
in a distinct H;, and v(J,41) = |B,4+1|. To prove Theorem 1.2 it will
suffice to show that 7., has a cover of size at most (r — «)|B,11]| for
some fixed positive a.

We denote by C; the hypergraph consisting of the r edges of |J,_, M;
in J,41 that intersect Bj, together with the edge B; itself. Then C; C
H;.

Lemma 2.3. For each C; we have 7(C;) > 2, and no cover of C; of
size two consists of vertices from distinct colour classes.

Proof. If on the contrary 7(C;) = 1 then without loss of generality we
may assume that the vertex of B; of colour 1 covers C;. But then the
My-edge in C; is not covered. Thus 7(C;) > 2.
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Suppose now that vertices v € V; and w € V5 form a cover of C;. We
may assume without loss of generality that v is in B;. Then the Mj
edge in C; is not covered by v, hence w must not be in B;. But then
the M, edge in C; is not covered by {v,w}. O

Next we would like to restrict to a hypergraph in which V(H;) N
V(Cy) # 0 if and only if j = k. To do this we will need to consider
a more general setting in which our r-uniform hypergraph is replaced
with a hypergraph of rank r.

A sunflower with centre C' in a hypergraph is a set S of edges such
that SNS" = C for all S # S’ in S. Each edge of S is called a petal. A
classical theorem of Erdés and Rado [3] tells us that every hypergraph
of rank r with more than (¢t —1)"r! edges contains a sunflower of size t.

Let H be a hypergraph of rank r. We call a set § of ¢ edges in H a
giant sunflower if it forms a sunflower and ¢ > r(2r —4) + 1. Note that
since t > r, if an intersecting hypergraph H contains a giant sunflower
S with centre C, then H' = H\SU{C'} is also intersecting. We refer to
the hypergraph H’ as the hypergraph obtained by picking the sunflower
S.

We apply the following procedure to each H; where B; € B,4i.
If H; = 7—[? contains a giant sunflower Sy, we pick it to obtain 7-[]1
We repeat this process with the current hypergraph Hf to get 7-[;”1,
until for some u we obtain a hypergraph D; = H} that is free of
giant sunflowers. Then in particular each D; is intersecting. Let J' =
(Jr1\U; H;)UU, D;. For every edge A € H,; there exists a unique edge
A € 7' and a sequence of edges A = A%, ... A* = A with A* € HS
such that for i = 1,...,u, either A* = A™! or A"! is a petal of S;_;
and A° is its centre. We extend this definition to every A € J,,;1 by
setting A= A for each A € Jr4+1 that is not in any H;.

Note that J' has rank at most r but may not be r-uniform. Also,
we do not know that v(J") < v(Jr41).

Lemma 2.4. Any cover of J' is also a cover of J, 1.
Proof. Every edge A of J,,1 has a subset A that is an edge of J7'. O

Thus to prove Theorem 1.2 it will suffice to find a cover of J' of size
(r — a)|B,11]| for some a > 0.

Lemma 2.5. Let {A},..., AL} be a matching of size s < 2r —3 in J'.
Then there exists a matching {Ay, ..., As € Jr41} such that

o AL C A; for each i,

° ZfA; S Dj then A; € Hj.
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Proof. 1If every A, € J,41 then we set A; = A. for each i. Otherwise,
since each D; is intersecting, we may assume that A},..., A, _; € J41,
and that there are distinct D; for ¢ < ¢ < s such that A, € D;. Set
A=Al foreach 1 <i<c—1

Let A; for ¢ <17 < s be such that the following hold.

o A C A, for each 1,

o A, € Hf for some k;,

o Ay, ... A, are all disjoint,

e > _k; is as small as possible.
Such a choice of A; exists because A/, ..., Al satisfy the conditions.
We claim that k; = 0 for each i, which implies the lemma.

Suppose on the contrary that A; € Hf’ for some i, where k; > 1.
Since S°7__k; is as small as possible we know that 4; ¢ H™', which
implies that it is the centre of a giant sunflower S in HF* ™. Let A €
Hf"fl be a petal of § that is disjoint from all of Ay,..., A;_1 and all
of A;y1,...,As. This is possible because the union of these edges has
size at most r(s — 1) < r(2r —4), and S has at least r(2r — 4) + 1
petals. But then replacing A; by A! gives a new family satisfying the
conditions, contradicting the fact that ) ;__k; was as small as possible.
Thus k; = 0 for each i, completing the proof. O

In fact it follows from the proof of Lemma 2.5 that A} = A; for each
7.
Lemma 2.6. Each D; has at most 7" (2r — 4)"r! vertices.
Proof. In particular there is no sunflower of size r(2r —4)+1 in D;, so

by the Erdés-Rado theorem D; has at most (r(2r — 4))"r! edges, and
hence at most r"1(2r — 4)"r! vertices. O

Lemma 2.7. For each B; € B,11 we have Ej = B;.

Proof. Suppose the contrary. Then for some £ we have that B; is a petal
of a sunflower Sy in ’Hf We may assume without loss of generality that
the centre C of S;, does not contain a vertex of colour 1. Let M be
the Mj-edge in C;. Then M NC = (), contradicting the fact that D; is
intersecting. 0

Lemma 2.7 implies that if an edge A € J’ intersects exactly one
B] € Br+1 then A c Dy

Lemma 2.8. V(B,;1) is a cover of J'.

Proof. Suppose on the contrary that an edge A € J' is disjoint from
V(B,4+1). Since each D; is intersecting and B; € D;, we know that
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A ¢ D; for any j, so A € J,4+1. But then since V(B,41) is a cover of
Jr+1 we find a contradiction. O

For each j let C; = {A:Aec;}, so C; C D; for each j. To restrict
to our hypergraph in which C; shares a vertex with Dy if and only
if j = k, for convenience we define an auxiliary directed graph G as
follows. The vertex set of G is B,y1. We put an arc from By, to B; if
and only if Dy and C} share a vertex.

Lemma 2.9. The graph G has an independent set B" of vertices of
size at least |B,1]/(2r3(2r — 4)"r! + 1). Thus for any B;, By, € B”,
if C; shares a vertex with Dy then j = k.

Proof. Since each M, is a matching, no vertex can be in more than r+1
edges of J;C; = U{B;} U {M : M e M, for some 1 < i < r}. By
Lemma 2.6 each Dy has fewer than r"™1(2r — 4)"r! vertices, and so can
share a vertex with at most 7" "2(2r —4)"r! C;’s. Thus the outdegree of

G is at most r"3(2r — 4)"r!, which implies that it has an independent
set of size at most |V (G)|/(2r"3(2r — 4)"r! + 1). O

Let 7" ={A € J : AnBj =0 for all B; € B,;;\B"}. Then B" is a
matching in J” such that V(B”) covers J”, and to prove Theorem 1.2
it suffices to prove that 7(J") < (r — a)|B”| for some fixed positive a.
One important consequence of the definition of B” is the fact that if

Bj, By € B” then V(Cj) N V(C;) = 0.
Lemma 2.10. Every edge of J" contains a cover of C; for some j.

Proof. Suppose not. Then since the C; are all vertex-disjoint, some
edge A together with an edge A; in C; for each j forms a matching
of size |B"| + 1 in J". Except for the set I of at most r indices j for
which A NV(C}) # 0, we may assume A; = B;j. Then Lemma 2.5
applied to A together with {A; : j € I} gives a matching in J,4; of
size |I| + 1, which by our construction of J” consists of edges that do
not intersect any edge of B,41 except {B; : j € I}. But then together
with {B; : j ¢ I} this forms a matching in J,41 of size |B,41] + 1, a
contradiction. U

Lemma 2.10 tells us that for every edge A € J” there exists j such
that A contains a cover of C. Since every cover of C} is a cover of C;,
Lemma 2.3 tells us that this cover is of size at least 3. Thus j is unique
for r =4 and r = 5. Let C; = {A € J" : A contains a cover of C}}, so
since C} is intersecting we have C} C C;. Then J" = Uj C;, where the
union is a disjoint union.



ON RYSER’S CONJECTURE 7

Lemma 2.11. Suppose that AN A" = for A, A" € C;. Then there
exists k # j such that AU A" contains a cover of Cj,.

Proof. Suppose the contrary. Let I denote the set of at most 2(r—3)+1
indices such that (AUA")NV(C}) # 0. Then A and A’ together with an
edge of C, for all k € I'\ {j} forms a matching of size |I|+ 1, consisting
of edges that are disjoint from each B; with j ¢ I. Then as in the
proof of Lemma 2.10 this leads to a matching in J,,; that is larger
than B,,;. This contradiction completes the proof. 0

3. r=4

We have now done essentially all the required work to prove Theo-
rem 1.2 for r = 4.

Lemma 3.1. Suppose r = 4. Then each C; is intersecting.

Proof. Suppose on the contrary that AN A" = () where A, A" € Cj. By
Lemma 2.3, each of A and A" must have three vertices in V(C}). By
Lemma 2.11 we know A U A’ covers C; for some k # j. Since every
cover of Cj, is a cover of Cy, and V(Cj) N V(C;) = 0, we may assume
that the vertices of colour 1 in A and A’ form a cover of C;. But then
one of these vertices is not in By, so one of the edges, say A, contains
3 vertices of C; and one vertex of C; that is not in By. Thus A € H;,
which implies A € D;. But then A cannot intersect C; by Lemma
2.9. O

We close this section with the r = 4 case of Theorem 1.2.

Theorem 3.2. Suppose r = 4. Then there exists ¢ > 0 such that
T(J) < (4 —eu(T).

Proof. Since J" = Uj C;, by Lemma 3.1 we may apply Theorem 1.1 to
conclude that each C; has a cover of size 3. Therefore 7(J") < 3|B"|,
completing the proof. O

4. r=25

Our approach for the case r = 5 will be to start with the hypergraph
J" and the matching B” as defined in Section 2, and restrict once more
to a portion of J" in which all the hypergraphs C; are intersecting.

We begin by fixing B; € B”, and considering how the edges in C;
can intersect other sets C,. In particular, we will need some technical
information on pairs of disjoint edges in C;. We will make use of the
following classical theorem of Bollobés [2].
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Theorem 4.1. (Bollobds [2]) Suppose sets Fi, ..., F, and F},..., F!
satisfy F; N F] =0 if and only if i = h. Then

ﬁé | 5| + | F| 4<1
| F3| -

i=1

We say that a set of vertices is multicoloured if no two of its elements
come from the same partition class V;. For B; € B”, suppose (S, 95’) is
a pair of disjoint multicoloured covers of Cj. Since every cover of C; is
a cover of C;, by Lemma 2.3 we know each of S and S has size at least
three. Let

A(S,S") = {(AA") - A, A € C,AnA" = 0, ANV (C)) = S, ANV (C}) = S'}.
Our key lemma in this section is the following.

Lemma 4.2. Let B; € B”, and suppose (S, S") is a fived pair of disjoint
multicoloured covers of C;. Let

U={By € B"\{B;}: AUA covers C,, for some (A,A") € A(S,S")}.

Then there exist B, B" € B" \ {B;} such that for all but at most 42
elements By € U, if AU A" covers C, where (A, A") € A(S,S’) then
(AUAYN(BUB') #0.

Proof. Note that since | S|, |S’| > 3, for any (A, A") € A(S,S") we know
that each of A and A" has at most two vertices outside V/(C’).

Let Uy be the set of By, in U for which there is some (A, A") € A(S, S")
with AU A’ covering C;, such that AU A’ has at least 3 vertices in Cj.
Let U1 =U \ U(].

Suppose that |Up| > 3. For each By € Uy pick (A, A}) € A(S,S")
with [(Ax UAL) NV (C;)| > 3. Then one of Ay, A} must have 2 vertices
in C;, and the other must have at least 1. Without loss of generality, we
may assume that there are at least two sets Ay, say Aj, Ao, such that
Ay has 2 vertices in C;. In particular, for ¢ = 1,2, A; is contained in
SUV(C)). Now consider Aj: if it has no vertex in C; then A% and A;
are disjoint and contradict Lemma 2.11. On the other hand, A} has at
most one vertex outside B; U V(Cj). So we must have |Uy| < 2.

Now we consider U;. For each By, € Uy and (A, A}) € A(S,S’) that
covers Cy, by Lemma 2.3 we know that the vertices y; and y; are of
the same colour, where Ay NV (C,) = {yx} and A, NV (C},) = {v.}
Case 1. Suppose that there exist B, € U; and associated (A, A},)
such that for some B, € B"” \ {B,, By}, the vertices x), and zj, exist
and are both in Cj, where {z;} = Ay \ (V(C,) UV(C))) and {z}} =
AL\ (V(C) U V(C))). We claim that B = By, and B’ = B, satisfy the

lemma in this case. To verify this, we first observe that by Lemma 2.3,
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one of Ay and A} (say Ai) does not contain a vertex of By. If z € Ay
is not a vertex of B, then since its other three vertices are in C’, and
the Cj, are all vertex-disjoint, we find A, € D;. But this contradicts
Lemma 2.9. Therefore x, € Ap N By, so {xg, z).} N B; # (. We know
{Yk, Y.} N By # 0 since {yx,y;,} covers C,. Then to prove our claim we
show that for every B, € U; and every associated (A, A}), if the colour
of {yt,y;} is the same as the colour of {yy,y; } then {x, 2} C AU A,
and if the colour of {y:,y,} is not the same as the colour of {y, vy}
then either {yx,y,} C At U A; or {zy, 2.} N B, C Ay U Aj.

Let B; # By in U; be given, and first assume that the colour of
{y,y;} (say 2) is the same as the colour of {yi,y;}. Then A; and
Aj are both in C;. If they are not disjoint then A; must contain .
Suppose they are disjoint. Then by Lemma 2.11 the vertex z} where
A, = S"U{y;} U{z;} must exist and {xy, z;} must cover C], and hence
xy and x} are the same colour (say 1). (Note that {y, x}} cannot cover
C,. because they are different colours, contradicting Lemma 2.3.) But
then since A = 5" U {y,} U {z}} and y; has colour 2, we see that x)
has colour 1. Therefore x} = zj, since otherwise there is an edge of C;
containing z}, € V(C]) that is not covered by {xy, z}}. Thus z} € Aj.
Now the same argument applies to the pair A} and A;. Therefore since
AyN A, = 0 we find that {zy,z}.} C A, U A,

If the colour of {y;, y;} (say 2) is not the same as the colour of {ys, y;.}
(say 1) then both elements of {x, 2 } also have colour 2. If C; # C] then
consider Aj, and Aj. If they are disjoint then, since A N V(C;) = 0,
by Lemma 2.11 they must cover C;. Thus y;, € Aj. If they are not
disjoint then y, € A}. The same argument applies to A) and A;, then
since A; N A}, = 0 we conclude {yi,y,.} € A, U A}, If C; = (], recall
that one of x; and z}, is the vertex of colour 2 in B;. But then since
{ys, y;} covers C] it must contain the vertex of colour 2 in B;. Therefore
{zk, 2.} N B; C {ys,y;} € Ay U AL This finishes the proof for Case 1.

Case 2. Suppose that for each By € U; and associated (A, A}), the
vertices xj, and =}, (if they exist) do not lie in a common C;. To finish
the proof we will show that |U;| < 40. Suppose not, then there is a
subset U, of Uy of size at least 21 in which all {yx,y;} are the same
colour. For each zj, that exists and lies in a cover of size two of the C] it
isin, set z; to be the other vertex of the cover. Note that z;, is unique by
Lemma 2.3. Define z;, similarly for each z}. Define F}, = (Ax\S)U{z}
and Fy = (A, \S")U{z.} for each k (if z; or 2, do not exist then simply
set F = (A \ S), F| = (A, \ S")). We claim that these pairs of sets
satisfy the conditions for Theorem 4.1. Since zj and zj, do not lie in
a common By, we have that F, N F} = () for each k. Suppose that
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F,NF) = 0. Then A and Aj are disjoint edges in C; that do not cover
any C;, contradicting Lemma 2.11. Therefore by Theorem 4.1 we find
that |Us| < (§) = 20. This contradiction completes the proof. O

We define an auxiliary directed graph G on the vertex set B” as
follows. Consider a vertex B; and a pair (5, .5") of disjoint multicoloured
covers of C; of size at least three (and at most four), and let U be the
set defined in Lemma 4.2 for this choice of B; and (5,5"). If |U| < 42
then we put an arc (B}, By) for each B, € U. If |[U| > 43 then, for
B, B' guaranteed by Lemma 4.2, we put arcs (B;, B) and (B, B'), and
an arc (B;, By,) for each By, € U that fails to satisfy the conclusion of
Lemma 4.2. We do this for each B; and each pair (5,5") of disjoint
multicoloured covers of C’.

Lemma 4.3. The directed graph G has outdegree less than 44(5)', and
hence has an independent set B of size at least |B"|/100(5)6.

Proof. Since |V (C})| < [V(C;)| < 7%, the number of distinct choices of

(8,8") in C} is less than (|V(C))[*)* < (f)z < r'6 = 51 Thus the
outdegree of G is less than 49(5)'. Therefore G has an independent

set of size at least |V (G)|/(98(5)'° + 1) < [B”]|/100(5)*°. O

Let JT={Ae J": AnB; = for all B; € B”\ B'}. Then B is a
matching in JT such that V(B") covers J', and to prove Theorem 1.2
for » = 5 it suffices to prove that 7(J1) < (r — «)|B'| for some fixed
positive a.

Lemma 4.4. Each C; N JT is intersecting.

Proof. Suppose on the contrary that A and A" € C; are edges of J f
that do not intersect. We know by Lemma 2.11 that A U A" covers
some Cy, k # j. Since then (AU A") NV(C},) # 0, it must be true that
By €B'. Let S=AnN V(C;) and S" = A'NV(C}). Since Bj, By € B
there cannot be an arc (B, B;) in G. The construction of G implies
then that for this choice of B; and (5,5"), the set U satisfies |U| > 47
and that B and B’ exist satisfying the conclusion of Lemma 4.2. Since
B is an independent set in G and B; € Bf we know that B, B’ ¢ B.
But then by Lemma 4.2 one of A and A’ intersects B or B’, and hence
it is not an edge of J' by definition. This contradiction completes the
proof. O

The r = 5 case of Theorem 1.2 follows.

Theorem 4.5. Suppose r = 5. Then there exists a fired € > 0 such
that T(H) < (5 — €)v(H).
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Proof. Since J' = GNT . by Theorem 1.1 we conclude that each
Cy N J" has a cover of size 4. Therefore 7(J') < 4|B'|, completing the
proof. U

We end with the remark that for each of r = 4 and r = 5, an explicit
lower bound for e could be computed by following the steps of our
proof. However, as this value is probably very far from the truth we
make no attempt to do this here.
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