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Abstract. Motivated by an old problem known as Ryser’s Con-
jecture, we prove that for r = 4 and r = 5, there exists ε > 0
such that every r-partite r-uniform hypergraph H has a cover of
size at most (r − ε)ν(H), where ν(H) denotes the size of a largest
matching in H.

1. Introduction

In this paper we are concerned with a packing and covering problem
in hypergraphs. A hypergraph consists of a vertex set V and a set H
of edges, where each edge is a nonempty subset of V = V (H). We
say H has rank r if the largest size of an edge is r, and that H is
r-uniform if every edge has size r. The packing number (also called
matching number) ν(H) of H is the size of a largest matching in H,
where a matching is a set of pairwise disjoint edges in H. The covering
number τ(H) of H is the size of a smallest cover of H, where a cover is
a subset W ⊂ V such that every edge of H contains a vertex of W . It
is clear that if H has rank r then τ(H) ≤ rν(H), and this is attained
for example by the complete r-uniform hypergraph Kr

2r−1 with 2r − 1
vertices, which has ν(Kr

2r−1) = 1 and τ(Kr
2r−1) = r.

Our focus here is on a long-standing open problem known as Ryser’s
Conjecture, which states that ifH is an r-partite r-uniform hypergraph
then τ(H) ≤ (r − 1)ν(H) (see e.g. [4, 9]; a stronger version of the
conjecture was proposed by Lovász [6]). Here H being r-partite means
that its vertex set has a partition V1 ∪ · · · ∪Vr and every edge contains
exactly one vertex of each Vi. When r = 2 this is the classical theorem
of König, and for r = 3, after a number of partial results [8, 10, 5],
the conjecture was proved by Aharoni [1]. Apart from these two cases,
very little is known about the problem. If true, the statement is best
possible whenever r − 1 is a prime power (see e.g. [9]). Until now no
nontrivial bound of the form τ(H) ≤ (r − ε)ν(H) for ε > 0 and any
r ≥ 4 was known.
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2 ON RYSER’S CONJECTURE

A hypergraph H is said to be intersecting if ν(H) = 1. Even for
intersecting hypergraphs, Ryser’s Conjecture is open for all r ≥ 6.
There are many examples showing the result would be best possible
in this case, and they can be quite sparse (see [7]). For r ≤ 5, how-
ever, the conjecture has been proved in the special case of intersecting
hypergraphs.

Theorem 1.1. (Tuza [9]) If H is an intersecting r-partite hypergraph
of rank r and r ≤ 5 then τ(H) ≤ r − 1.

Our aim in this paper is to prove the following theorem, the proof
of which depends on Theorem 1.1, and thus give a nontrivial upper
bound for Ryser’s problem in the cases r = 4 and r = 5.

Theorem 1.2. For each of r = 4 and r = 5, there exists a positive
constant ε such that τ(H) ≤ (r − ε)ν(H) for every r-partite r-uniform
hypergraph H.

2. General r

We begin the proof of Theorem 1.2 in this section, arguing in terms of
general r. We then complete the proof for r = 4 and r = 5 respectively
in the next two sections.

Let J be an r-partite r-uniform hypergraph, with a fixed partition
V1 ∪ . . . ∪ Vr. Let B be a matching of size ν(J ) in J . It is clear that
V (B) is a cover of J of size rν(J ). For Bj ∈ B we let Hj denote the
set of edges of J that intersect V (B) only in vertices of Bj. Note then
that Hj is intersecting and Bj ∈ Hj.

We call an edge A ∈ J bad if A∩V (B) = {v} for some v. The vertex
v is also called bad, and we say A is i-bad where v is in the ith colour
class Vi of the r-partition of J . Note that each bad edge is in Hj for
some j. Let B1 = {Bj ∈ B : Bj has r bad vertices}.
Lemma 2.1. If τ(J ) > (r − 1/2r)|B| then |B1| > |B|/2.

Proof. Suppose that |B1| ≤ |B|/2. Then there is a colour class i such
that at least |B|/2r of the Bj /∈ B1 have no i-bad vertex. Let B∗ denote
the set of these Bj. But then

⋃
Bj /∈B∗ Bj ∪

⋃
Bj∈B∗ Bj \ Vi is a cover of

J of size at most r(|B| − |B∗|) + (r − 1)|B∗| ≤ (r − 1/2r)|B|. �

Lemma 2.1 indicates how our proof of Theorem 1.2 will proceed.
Either J has a suitably small cover, or we can find a special subset
of B whose size is a positive proportion of |B| (in this case B1 which
is at least half of B) about which we can make a further assumption.
We may then cover all edges of J that intersect any edge of B that
is not in the special subset by taking every vertex of every edge of B
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not in the special subset. This will not change the hypergraphs Hj, or
the notion of bad, for the edges of J that remain. We then focus on
showing that the remaining edges have a suitably small cover (in this
case of size at most (r−α)|B1| for some fixed positive α). In our proof
of Theorem 1.2 we will apply this procedure r+ 2 times for r = 4, and
r + 3 times for r = 5.

By Lemma 2.1 we may assume that |B1| > |B|/2. As outlined in the
previous paragraph, we let J1 = {A ∈ J : A ∩ Bj = ∅ for all Bj ∈
B \ B1}. Then ν(J1) = |B1|, and τ(J ) ≤ r(|B| − |B1|) + τ(J1).

Lemma 2.2. If τ(J1) > (r−1/2)|B1| then there is a matching of 1-bad
edges in J1 of size at least |B1|/2r.

Proof. LetM = {M1, . . . ,Mt} be a maximum matching of 1-bad edges
in J1. Note that since each Hj is intersecting, all edges of M are in
distinct Hj, say H1, . . . ,Ht. Then

t⋃
j=1

(Mj ∪Bj) ∪
⋃
j>t

Bj \ V1

is a cover of J1 of size at most (2r− 1)|M|+ (r− 1)(|B1|− |M| = (r−
1)|B1|+r|M|). If |M| < |B1|/2r then this is at most (r−1/2)|B1|. �

By Lemma 2.2 we may assume that there is a matchingM of 1-bad
edges in J1 of size at least |B1|/2r. Let B2 = {Bj ∈ B1 : Bj ∩Mk 6=
∅ for some Mk ∈ M}. Then |B2| = |M| ≥ |B1|/2r. Let J2 = {A ∈
J1 : A ∩ Bj = ∅ for all Bj ∈ B1 \ B2}. Then ν(J2) = |B2|, and
τ(J1) ≤ r(|B1| − |B2|) + τ(J2). We may repeat this argument another
r − 1 times for colour classes V2, . . . , Vr until we reach a hypergraph
Jr+1 and a matching Br+1 in Jr+1, in which there exists a matching
Mi of i-bad edges with |Mi| = |Br+1| for each i. Each edge of Mi is
in a distinct Hj, and ν(Jr+1) = |Br+1|. To prove Theorem 1.2 it will
suffice to show that Jr+1 has a cover of size at most (r − α)|Br+1| for
some fixed positive α.

We denote by Cj the hypergraph consisting of the r edges of
⋃r

i=1Mi

in Jr+1 that intersect Bj, together with the edge Bj itself. Then Cj ⊂
Hj.

Lemma 2.3. For each Cj we have τ(Cj) ≥ 2, and no cover of Cj of
size two consists of vertices from distinct colour classes.

Proof. If on the contrary τ(Cj) = 1 then without loss of generality we
may assume that the vertex of Bj of colour 1 covers Cj. But then the
M2-edge in Cj is not covered. Thus τ(Cj) ≥ 2.
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Suppose now that vertices v ∈ V1 and w ∈ V2 form a cover of Cj. We
may assume without loss of generality that v is in Bj. Then the M3

edge in Cj is not covered by v, hence w must not be in Bj. But then
the M2 edge in Cj is not covered by {v, w}. �

Next we would like to restrict to a hypergraph in which V (Hj) ∩
V (Ck) 6= ∅ if and only if j = k. To do this we will need to consider
a more general setting in which our r-uniform hypergraph is replaced
with a hypergraph of rank r.

A sunflower with centre C in a hypergraph is a set S of edges such
that S ∩S ′ = C for all S 6= S ′ in S. Each edge of S is called a petal. A
classical theorem of Erdős and Rado [3] tells us that every hypergraph
of rank r with more than (t− 1)rr! edges contains a sunflower of size t.

Let H be a hypergraph of rank r. We call a set S of t edges in H a
giant sunflower if it forms a sunflower and t ≥ r(2r− 4) + 1. Note that
since t > r, if an intersecting hypergraph H contains a giant sunflower
S with centre C, then H′ = H\S∪{C} is also intersecting. We refer to
the hypergraphH′ as the hypergraph obtained by picking the sunflower
S.

We apply the following procedure to each Hj where Bj ∈ Br+1.
If Hj = H0

j contains a giant sunflower S0, we pick it to obtain H1
j .

We repeat this process with the current hypergraph Hk
j to get Hk+1

j ,
until for some u we obtain a hypergraph Dj = Hu

j that is free of
giant sunflowers. Then in particular each Dj is intersecting. Let J ′ =
(Jr+1\

⋃
jHj)∪

⋃
j Dj. For every edge A ∈ Hj there exists a unique edge

Â ∈ J ′ and a sequence of edges A = A0, . . . , Au = Â with Ak ∈ Hk
j

such that for i = 1, . . . , u, either Ai = Ai−1 or Ai−1 is a petal of Si−1
and Ai is its centre. We extend this definition to every A ∈ Jr+1 by
setting Â = A for each A ∈ Jr+1 that is not in any Hj.

Note that J ′ has rank at most r but may not be r-uniform. Also,
we do not know that ν(J ′) ≤ ν(Jr+1).

Lemma 2.4. Any cover of J ′ is also a cover of Jr+1.

Proof. Every edge A of Jr+1 has a subset Â that is an edge of J ′. �

Thus to prove Theorem 1.2 it will suffice to find a cover of J ′ of size
(r − α)|Br+1| for some α > 0.

Lemma 2.5. Let {A′1, . . . , A′s} be a matching of size s ≤ 2r− 3 in J ′.
Then there exists a matching {A1, . . . , As ∈ Jr+1} such that

• A′i ⊆ Ai for each i,
• if A′i ∈ Dj then Ai ∈ Hj.
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Proof. If every A′i ∈ Jr+1 then we set Ai = A′i for each i. Otherwise,
since each Dj is intersecting, we may assume that A′1, . . . , A

′
c−1 ∈ Jr+1,

and that there are distinct Di for c ≤ i ≤ s such that A′i ∈ Di. Set
Ai = A′i for each 1 ≤ i ≤ c− 1.

Let Ai for c ≤ i ≤ s be such that the following hold.

• A′i ⊆ Ai for each i,
• Ai ∈ Hki

i for some ki,
• A1, . . . , As are all disjoint,
•
∑s

i=c ki is as small as possible.

Such a choice of Ai exists because A′c, . . . , A
′
s satisfy the conditions.

We claim that ki = 0 for each i, which implies the lemma.
Suppose on the contrary that Ai ∈ Hki

i for some i, where ki ≥ 1.
Since

∑s
i=c ki is as small as possible we know that Ai /∈ Hki−1

i , which

implies that it is the centre of a giant sunflower S in Hki−1
i . Let A∗i ∈

Hki−1
i be a petal of S that is disjoint from all of A1, . . . , Ai−1 and all

of Ai+1, . . . , As. This is possible because the union of these edges has
size at most r(s − 1) ≤ r(2r − 4), and S has at least r(2r − 4) + 1
petals. But then replacing Ai by A∗i gives a new family satisfying the
conditions, contradicting the fact that

∑s
i=c ki was as small as possible.

Thus ki = 0 for each i, completing the proof. �

In fact it follows from the proof of Lemma 2.5 that A′i = Âi for each
i.

Lemma 2.6. Each Dj has at most rr+1(2r − 4)rr! vertices.

Proof. In particular there is no sunflower of size r(2r− 4) + 1 in Dj, so
by the Erdős-Rado theorem Dj has at most (r(2r − 4))rr! edges, and
hence at most rr+1(2r − 4)rr! vertices. �

Lemma 2.7. For each Bj ∈ Br+1 we have B̂j = Bj.

Proof. Suppose the contrary. Then for some k we have thatBj is a petal
of a sunflower Sk in Hk

j . We may assume without loss of generality that
the centre C of Sk does not contain a vertex of colour 1. Let M be
theM1-edge in Cj. Then M̂ ∩C = ∅, contradicting the fact that Dj is
intersecting. �

Lemma 2.7 implies that if an edge A ∈ J ′ intersects exactly one
Bj ∈ Br+1 then A ∈ Dj.

Lemma 2.8. V (Br+1) is a cover of J ′.

Proof. Suppose on the contrary that an edge A ∈ J ′ is disjoint from
V (Br+1). Since each Dj is intersecting and Bj ∈ Dj, we know that
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A /∈ Dj for any j, so A ∈ Jr+1. But then since V (Br+1) is a cover of
Jr+1 we find a contradiction. �

For each j let C ′j = {Â : A ∈ Cj}, so C ′j ⊆ Dj for each j. To restrict
to our hypergraph in which C ′j shares a vertex with Dk if and only
if j = k, for convenience we define an auxiliary directed graph G as
follows. The vertex set of G is Br+1. We put an arc from Bk to Bj if
and only if Dk and C ′j share a vertex.

Lemma 2.9. The graph G has an independent set B′′ of vertices of
size at least |Br+1|/(2rr+3(2r − 4)rr! + 1). Thus for any Bj, Bk ∈ B′′,
if C ′j shares a vertex with Dk then j = k.

Proof. Since eachMi is a matching, no vertex can be in more than r+1
edges of

⋃
j C ′j =

⋃
j{Bj} ∪ {M̂ : M ∈ Mi for some 1 ≤ i ≤ r}. By

Lemma 2.6 each Dk has fewer than rr+1(2r− 4)rr! vertices, and so can
share a vertex with at most rr+3(2r−4)rr! Cj’s. Thus the outdegree of
G is at most rr+3(2r− 4)rr!, which implies that it has an independent
set of size at most |V (G)|/(2rr+3(2r − 4)rr! + 1). �

Let J ′′ = {A ∈ J ′ : A∩Bj = ∅ for all Bj ∈ Br+1\B′′}. Then B′′ is a
matching in J ′′ such that V (B′′) covers J ′′, and to prove Theorem 1.2
it suffices to prove that τ(J ′′) < (r − α)|B′′| for some fixed positive α.
One important consequence of the definition of B′′ is the fact that if
Bj, Bk ∈ B′′ then V (C ′j) ∩ V (C ′k) = ∅.

Lemma 2.10. Every edge of J ′′ contains a cover of C ′j for some j.

Proof. Suppose not. Then since the C ′j are all vertex-disjoint, some
edge A together with an edge Aj in C ′j for each j forms a matching
of size |B′′| + 1 in J ′′. Except for the set I of at most r indices j for
which A ∩ V (C ′j) 6= ∅, we may assume Aj = Bj. Then Lemma 2.5
applied to A together with {Aj : j ∈ I} gives a matching in Jr+1 of
size |I|+ 1, which by our construction of J ′′ consists of edges that do
not intersect any edge of Br+1 except {Bj : j ∈ I}. But then together
with {Bj : j /∈ I} this forms a matching in Jr+1 of size |Br+1| + 1, a
contradiction. �

Lemma 2.10 tells us that for every edge A ∈ J ′′ there exists j such
that A contains a cover of C ′j. Since every cover of C ′j is a cover of Cj,
Lemma 2.3 tells us that this cover is of size at least 3. Thus j is unique
for r = 4 and r = 5. Let C∗j = {A ∈ J ′′ : A contains a cover of C ′j}, so
since C ′j is intersecting we have C ′j ⊆ C∗j . Then J ′′ =

⋃
j C∗j , where the

union is a disjoint union.
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Lemma 2.11. Suppose that A ∩ A′ = ∅ for A,A′ ∈ C∗j . Then there
exists k 6= j such that A ∪ A′ contains a cover of C ′k.

Proof. Suppose the contrary. Let I denote the set of at most 2(r−3)+1
indices such that (A∪A′)∩V (C ′j) 6= ∅. Then A and A′ together with an
edge of C ′k for all k ∈ I \{j} forms a matching of size |I|+ 1, consisting
of edges that are disjoint from each Bj with j /∈ I. Then as in the
proof of Lemma 2.10 this leads to a matching in Jr+1 that is larger
than Br+1. This contradiction completes the proof. �

3. r = 4

We have now done essentially all the required work to prove Theo-
rem 1.2 for r = 4.

Lemma 3.1. Suppose r = 4. Then each C∗j is intersecting.

Proof. Suppose on the contrary that A ∩ A′ = ∅ where A,A′ ∈ C∗j . By
Lemma 2.3, each of A and A′ must have three vertices in V (C ′j). By
Lemma 2.11 we know A ∪ A′ covers C ′k for some k 6= j. Since every
cover of C ′k is a cover of Ck, and V (C ′j) ∩ V (C ′k) = ∅, we may assume
that the vertices of colour 1 in A and A′ form a cover of C ′k. But then
one of these vertices is not in Bk, so one of the edges, say A, contains
3 vertices of C ′j and one vertex of C ′k that is not in Bk. Thus A ∈ Hj,
which implies A ∈ Dj. But then A cannot intersect C ′k by Lemma
2.9. �

We close this section with the r = 4 case of Theorem 1.2.

Theorem 3.2. Suppose r = 4. Then there exists ε > 0 such that
τ(J ) ≤ (4− ε)ν(J ).

Proof. Since J ′′ =
⋃

j C∗j , by Lemma 3.1 we may apply Theorem 1.1 to

conclude that each C∗j has a cover of size 3. Therefore τ(J ′′) ≤ 3|B′′|,
completing the proof. �

4. r = 5

Our approach for the case r = 5 will be to start with the hypergraph
J ′′ and the matching B′′ as defined in Section 2, and restrict once more
to a portion of J ′′ in which all the hypergraphs C∗j are intersecting.

We begin by fixing Bj ∈ B′′, and considering how the edges in C∗j
can intersect other sets C ′k. In particular, we will need some technical
information on pairs of disjoint edges in C∗j . We will make use of the
following classical theorem of Bollobás [2].
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Theorem 4.1. (Bollobás [2]) Suppose sets F1, . . . , Fm and F ′1, . . . , F
′
m

satisfy Fi ∩ F ′h = ∅ if and only if i = h. Then
m∑
i=1

(
|Fi|+ |F ′i |
|Fi|

)−1
≤ 1.

We say that a set of vertices is multicoloured if no two of its elements
come from the same partition class Vi. For Bj ∈ B′′, suppose (S, S ′) is
a pair of disjoint multicoloured covers of C ′j. Since every cover of C ′j is
a cover of Cj, by Lemma 2.3 we know each of S and S ′ has size at least
three. Let

A(S, S ′) = {(A,A′) : A,A′ ∈ C∗j , A∩A′ = ∅, A∩V (C ′j) = S,A′∩V (C ′j) = S ′}.
Our key lemma in this section is the following.

Lemma 4.2. Let Bj ∈ B′′, and suppose (S, S ′) is a fixed pair of disjoint
multicoloured covers of C ′j. Let

U = {Bk ∈ B′′ \ {Bj} : A ∪ A′ covers C ′k for some (A,A′) ∈ A(S, S ′)}.
Then there exist B,B′ ∈ B′′ \ {Bj} such that for all but at most 42
elements Bk ∈ U , if A ∪ A′ covers C ′k where (A,A′) ∈ A(S, S ′) then
(A ∪ A′) ∩ (B ∪B′) 6= ∅.

Proof. Note that since |S|, |S ′| ≥ 3, for any (A,A′) ∈ A(S, S ′) we know
that each of A and A′ has at most two vertices outside V (C ′j).

Let U0 be the set of Bk in U for which there is some (A,A′) ∈ A(S, S ′)
with A ∪A′ covering C ′k, such that A ∪A′ has at least 3 vertices in C ′k.
Let U1 = U \ U0.

Suppose that |U0| ≥ 3. For each Bk ∈ U0 pick (Ak, A
′
k) ∈ A(S, S ′)

with |(Ak ∪A′k)∩V (C ′k)| ≥ 3. Then one of Ak, A′k must have 2 vertices
in C ′k and the other must have at least 1. Without loss of generality, we
may assume that there are at least two sets Ak, say A1, A2, such that
Ak has 2 vertices in C ′k. In particular, for i = 1, 2, Ai is contained in
S ∪ V (C ′i). Now consider A′3: if it has no vertex in C ′i then A′3 and Ai

are disjoint and contradict Lemma 2.11. On the other hand, A′3 has at
most one vertex outside Bj ∪ V (C ′3). So we must have |U0| ≤ 2.

Now we consider U1. For each Bk ∈ U1 and (Ak, A
′
k) ∈ A(S, S ′) that

covers C ′k, by Lemma 2.3 we know that the vertices yk and y′k are of
the same colour, where Ak ∩ V (C ′k) = {yk} and A′k ∩ V (C ′k) = {y′k}.
Case 1. Suppose that there exist Bk ∈ U1 and associated (Ak, A

′
k)

such that for some Bl ∈ B′′ \ {Bj, Bk}, the vertices xk and x′k exist
and are both in C ′l, where {xk} = Ak \ (V (C ′k) ∪ V (C ′j)) and {x′k} =
A′k \ (V (C ′k) ∪ V (C ′j)). We claim that B = Bk and B′ = Bl satisfy the
lemma in this case. To verify this, we first observe that by Lemma 2.3,
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one of Ak and A′k (say Ak) does not contain a vertex of Bk. If xk ∈ Ak

is not a vertex of Bl, then since its other three vertices are in C ′j, and
the C ′h are all vertex-disjoint, we find Ak ∈ Dj. But this contradicts
Lemma 2.9. Therefore xk ∈ Ak ∩ Bl, so {xk, x′k} ∩ Bl 6= ∅. We know
{yk, y′k} ∩Bk 6= ∅ since {yk, y′k} covers C ′k. Then to prove our claim we
show that for every Bt ∈ U1 and every associated (At, A

′
t), if the colour

of {yt, y′t} is the same as the colour of {yk, y′k} then {xk, x′k} ⊂ At∪A′t,
and if the colour of {yt, y′t} is not the same as the colour of {yk, y′k}
then either {yk, y′k} ⊂ At ∪ A′t or {xk, x′k} ∩Bl ⊂ At ∪ A′t.

Let Bt 6= Bk in U1 be given, and first assume that the colour of
{yt, y′t} (say 2) is the same as the colour of {yk, y′k}. Then Ak and
A′t are both in C∗j . If they are not disjoint then A′t must contain xk.
Suppose they are disjoint. Then by Lemma 2.11 the vertex x′t where
A′t = S ′ ∪ {y′t} ∪ {x′t} must exist and {xk, x′t} must cover C ′l, and hence
xk and x′t are the same colour (say 1). (Note that {yk, x′t} cannot cover
C ′k because they are different colours, contradicting Lemma 2.3.) But
then since A′k = S ′ ∪ {y′k} ∪ {x′k} and y′k has colour 2, we see that x′k
has colour 1. Therefore x′k = x′t, since otherwise there is an edge of C ′l
containing x′k ∈ V (C ′l) that is not covered by {xk, x′t}. Thus x′k ∈ A′t.
Now the same argument applies to the pair A′k and At. Therefore since
At ∩ A′t = ∅ we find that {xk, x′k} ⊂ At ∪ A′t.

If the colour of {yt, y′t} (say 2) is not the same as the colour of {yk, y′k}
(say 1) then both elements of {xk, x′k} also have colour 2. If C ′t 6= C ′l then
consider Ak and A′t. If they are disjoint then, since Ak ∩ V (C ′t) = ∅,
by Lemma 2.11 they must cover C ′k. Thus y′k ∈ A′t. If they are not
disjoint then yk ∈ A′t. The same argument applies to A′k and At, then
since At ∩ A′t = ∅ we conclude {yk, y′k} ⊂ At ∪ A′t. If C ′t = C ′l, recall
that one of xk and x′k is the vertex of colour 2 in Bl. But then since
{yt, y′t} covers C ′l it must contain the vertex of colour 2 in Bl. Therefore
{xk, x′k} ∩Bl ⊂ {yt, y′t} ⊂ At ∪ A′t. This finishes the proof for Case 1.

Case 2. Suppose that for each Bk ∈ U1 and associated (Ak, A
′
k), the

vertices xk and x′k (if they exist) do not lie in a common C ′l. To finish
the proof we will show that |U1| ≤ 40. Suppose not, then there is a
subset U2 of U1 of size at least 21 in which all {yk, y′k} are the same
colour. For each xk that exists and lies in a cover of size two of the C ′l it
is in, set zk to be the other vertex of the cover. Note that zk is unique by
Lemma 2.3. Define z′k similarly for each x′k. Define Fk = (Ak\S)∪{zk}
and F ′k = (A′k \S ′)∪{z′k} for each k (if zk or z′k do not exist then simply
set Fk = (Ak \ S), F ′k = (A′k \ S ′)). We claim that these pairs of sets
satisfy the conditions for Theorem 4.1. Since xk and x′k do not lie in
a common Bl, we have that Fk ∩ F ′k = ∅ for each k. Suppose that
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Fk ∩F ′l = ∅. Then Ak and A′l are disjoint edges in C ′j that do not cover
any C ′t, contradicting Lemma 2.11. Therefore by Theorem 4.1 we find
that |U2| ≤

(
6
3

)
= 20. This contradiction completes the proof. �

We define an auxiliary directed graph G on the vertex set B′′ as
follows. Consider a vertexBj and a pair (S, S ′) of disjoint multicoloured
covers of C ′j of size at least three (and at most four), and let U be the
set defined in Lemma 4.2 for this choice of Bj and (S, S ′). If |U | ≤ 42
then we put an arc (Bj, Bk) for each Bk ∈ U . If |U | ≥ 43 then, for
B,B′ guaranteed by Lemma 4.2, we put arcs (Bj, B) and (Bj, B

′), and
an arc (Bj, Bk) for each Bk ∈ U that fails to satisfy the conclusion of
Lemma 4.2. We do this for each Bj and each pair (S, S ′) of disjoint
multicoloured covers of C ′j.

Lemma 4.3. The directed graph G has outdegree less than 44(5)16, and
hence has an independent set B† of size at least |B′′|/100(5)16.

Proof. Since |V (C ′j)| ≤ |V (Cj)| < r2, the number of distinct choices of

(S, S ′) in C ′j is less than (|V (C ′j)|4)2 <
(
r2

4

)2
< r16 = 516. Thus the

outdegree of G is less than 49(5)16. Therefore G has an independent
set of size at least |V (G)|/(98(5)16 + 1) < |B′′|/100(5)16. �

Let J † = {A ∈ J ′′ : A ∩ Bj = ∅ for all Bj ∈ B′′ \ B†}. Then B† is a
matching in J † such that V (B†) covers J †, and to prove Theorem 1.2
for r = 5 it suffices to prove that τ(J †) < (r − α)|B†| for some fixed
positive α.

Lemma 4.4. Each C∗j ∩ J † is intersecting.

Proof. Suppose on the contrary that A and A′ ∈ C∗j are edges of J †
that do not intersect. We know by Lemma 2.11 that A ∪ A′ covers
some C ′k, k 6= j. Since then (A ∪A′) ∩ V (C ′k) 6= ∅, it must be true that
Bk ∈ B†. Let S = A ∩ V (C ′j) and S ′ = A′ ∩ V (C ′j). Since Bj, Bk ∈ B†,
there cannot be an arc (Bj, Bk) in G. The construction of G implies
then that for this choice of Bj and (S, S ′), the set U satisfies |U | ≥ 47
and that B and B′ exist satisfying the conclusion of Lemma 4.2. Since
B† is an independent set in G and Bj ∈ B† we know that B,B′ /∈ B†.
But then by Lemma 4.2 one of A and A′ intersects B or B′, and hence
it is not an edge of J † by definition. This contradiction completes the
proof. �

The r = 5 case of Theorem 1.2 follows.

Theorem 4.5. Suppose r = 5. Then there exists a fixed ε > 0 such
that τ(H) ≤ (5− ε)ν(H).
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Proof. Since J † =
⋃

j C∗j ∩ J †, by Theorem 1.1 we conclude that each

C∗j ∩J † has a cover of size 4. Therefore τ(J †) ≤ 4|B†|, completing the
proof. �

We end with the remark that for each of r = 4 and r = 5, an explicit
lower bound for ε could be computed by following the steps of our
proof. However, as this value is probably very far from the truth we
make no attempt to do this here.
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