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Abstract

A matrix is given in “shredded” form if we are presented with the multiset
of rows and the multiset of columns, but not told which row is which or which
column is which. The matrix is reconstructible if it is uniquely determined by this
information. Let M be a random binary n × n matrix, where each entry indepen-
dently is 1 with probability p = p(n) ⩽ 1

2 . Atamanchuk, Devroye and Vicenzo
introduced the problem and showed that M is reconstructible with high probability
for p ⩾ (2 + ε) 1

n log n. Here we find that the sharp threshold for reconstructibility
is at p ∼ 1

2n log n.

1 Introduction

Let M be an n × n matrix with entries all either 0 or 1 and let R and C be the collections
(multisets) of the n binary strings of length n representing the rows and columns of M
respectively. When is it possible to reconstruct M just from the knowledge of R and C?

The matrix M is reconstructible (or weakly reconstructible) if M is uniquely determined
by the multisets R and C of its rows and columns. We say M is strongly reconstructible
if the positions of all rows and columns are determined by R and C, that is, for each
row r = (r1, . . . , rn) ∈ R we can determine a unique i such that Mi,j = rj for all j,
and similarly for columns. Clearly a weakly reconstructible matrix M is strongly
reconstructible if and only if there are no two identical rows and no two identical
columns, i.e., R and C are actually sets.

We study the threshold for reconstructibility when entries of M are random, indepen-
dently chosen to be 1 with probability p ⩽ 1

2 . Note that corresponding results for
p ⩾ 1

2 can be obtained by exchanging 0 and 1; so we will always assume p ⩽ 1
2 . In

[ADV23], Atamanchuk, Devroye and Vicenzo showed that for any ε > 0, M is strongly
reconstructible with high probability whenever (2 + ε) 1

n log n ⩽ p ⩽ 1
2 . (We say that an

event E happens with high probability (w.h.p.) if P(E) → 1 as n → ∞.)

As mentioned above, a simple obstruction to strong reconstructibility is when two rows
or two columns are equal, and p ∼ 1

n log n is a sharp threshold for such an event (see
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Lemma 7). Here we show that this is the main obstacle, locating the threshold for strong
reconstructibility at p ∼ 1

n log n. In fact, we show a stronger statement. We prove that
the threshold for (weak) reconstructibility is p ∼ 1

2n log n, so above this value of p, with
high probability, the only likely obstruction to strong reconstructibility is the presence
of duplicate rows and/or columns. Moreover, we also identify the main obstacle to
weak reconstructibility as a pair of 1s in M, each of which is the only 1 in its row and
column. The threshold p ∼ 1

2n log n for weak reconstructibility is simply the threshold
for the disappearance of these obstacles (see Lemma 8).

Our main result is the following.

Theorem 1. Suppose that p = 1
2n (log n + log log n + cn) ⩽ 1

2 .

(a) If cn → ∞ as n → ∞, then with high probability M is reconstructible from the collection
of its rows and columns.

(b) If cn → −∞ as n → ∞, and assuming that M has at least two 1’s, then with high
probability M is not reconstructible from the collection of its rows and columns.

(c) If cn → c as n → ∞, then the probability that M is reconstructible tends to an explicit
constant depending on c that is strictly between 0 and 1.

The proof of Theorem 1 runs in two phases. We begin by knowing the “row values” R
and “column values” C, but not where the rows and columns are placed. In the first
phase, we attempt to assign most of the rows and columns to the correct “row position”
or “column position” using “local” information. It is helpful here to consider the matrix
as the adjacency matrix of a bipartite graph G with bipartition (I ,J ), where the vertex
class I corresponds to the indices of the rows of M, the vertex class J corresponds
to the indices of the columns of M, and the edges correspond to the 1s in the matrix.
Hence for i ∈ I , j ∈ J , ij is an edge if and only if Mi,j = 1. (We assume I and J are
disjoint, but both have natural bijections to [n] := {1, 2, . . . , n}.) We deduce information
about the local structure of G in two different ways:

• For row values r ∈ R, we deduce the structure of the ball of radius 3 around r by
looking at the multiset R of rows of M, which gives the adjacencies in G between
the row values in R and the column indices (positions) in J .

• For row positions i ∈ I , we deduce the structure of the ball of radius 3 around
the ith row of M by looking at the multiset C of columns of M, which gives the
adjacencies between the row indices in I and the column values in C.

We complete the first part of the argument by matching up most row values with their
row positions and most column values with their column positions. To do this we
show that with high probability (for p > δ

n log n with any δ > 0), the ball of radius 3
is enough to uniquely identify most vertices of G. Here we use a method similar to
Johnston, Kronenberg, Roberts, and Scott [JKRS23] for reconstructing Erdős-Renyi
random graphs.

Once we have identified the correct position for most rows and columns, we show in
the second phase that we now have enough information to fill in the remaining rows
and columns with high probability unless certain substructures occur, and identify the
thresholds for these substructures occurring.
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In [ADV23], Atamanchuk, Devroye and Vicenzo also proved that for p ⩾ (16+ε) log2 n
n(log log n)2

there is an algorithm that succeeds in producing a strong reconstruction of the matrix
in O(n2) time with high probability and in expectation. Our proof gives an algorithm
that also produces the matrix in O(n2) time with high probability above the threshold
for weak reconstructibility. See Lemma 18 for more details.

As mentioned above, in light of Lemma 7, we obtain the threshold for strong recon-
structibility as a simple corollary of Theorem 1.

Corollary 2. Suppose that p = 1
n (log n + cn) ⩽ 1

2 .

(a) If cn → ∞ as n → ∞, then with high probability, M is strongly reconstructible from the
collection of its rows and columns.

(b) If cn → −∞ as n → ∞, then with high probability, M is not strongly reconstructible
from the collection of its rows and columns.

(c) If cn → c as n → ∞, then the probability that M is strongly reconstructible tends to an
explicit constant depending on c that is strictly between 0 and 1.

1.1 Discussion and related results

Reconstruction of binary matrices is closely connected to graph reconstruction.

Reconstruction of bipartite graphs. We note that every binary matrix can be viewed
as a bipartite graph where one part acts as the rows of the graph, and the other as the
columns. There is an edge ij in this graph if there is 1 at the (i, j) entry of the matrix.
Thus, reconstruction of a binary matrix by the collection of its rows and columns, can
be achieved by the reconstruction of the corresponding balanced bipartite graph from
the collection of its 1-balls, where the centred vertex is unlabelled, but the other vertices
are labelled. We will use this connection in our proofs. Our main theorem thus also
says the following.

Corollary 3. Suppose that p = 1
2n (log n + log log n + cn) ⩽ 1

2 and let G be a random
subgraph of Kn,n obtained by keeping each edge independently with probability p.

(a) If cn → ∞ as n → ∞, then with high probability G is reconstructible from the collection
of its 1-balls with unlabelled centres.

(b) If cn → −∞ as n → ∞, and assuming that G has at least two edges, then with high
probability M is not reconstructible from the collection of its 1-balls with unlabelled
centres.

(c) If cn → c as n → ∞, then the probability that G is reconstructible from the collection
of its 1-balls with unlabelled centres tends to an explicit constant depending on c that is
strictly between 0 and 1.

Reconstruction of directed graphs. Every n× n binary matrix is equivalent to a directed
graph on n vertices, where a directed edge i⃗ j appears if and only if there is 1 in the (i, j)
entry of the matrix (possibly with self-loops). Thus, reconstruction of a binary matrix
by the collection of its rows and columns, is equivalent to the reconstruction of the a
directed graph by the collection of its in- and out- neighbourhoods, where the centre
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vertex is unlabelled, but the other vertices are labelled. As above, it is straightforward
to write down a corollary of Theorem 1 for random directed graphs.

Reconstruction of (random) graphs. There is a huge literature on graph reconstruction,
and a growing body of work on reconstructing random graphs and other random
combinatorial structures. Kelly and Ulam conjectured in 1941 that every finite simple
graph on at least 3 vertices can be determined (up to isomorphism) by its collection of
vertex-deleted subgraphs, that is the multiset {G \ {v} : v ∈ V(G)} of subgraphs of G
obtaining by deleting one vertex each time [Kel42, Ula60]. The Reconstruction Conjec-
ture has a long history and was proved in some special cases, but the general statement
is still open (see e.g., [BH77, Bon91, AFLM10, LS16] for surveys and background).

Müller [Mül76] proved in 1976 that the Reconstruction Conjecture holds for almost all
graphs, in the sense that it holds with high probability for the binomial random graph
G(n, 1

2). Bollobás [Bol90] subsequently showed a much stronger result: in fact, with
high probability, the graph can be reconstructed from any three of the subgraphs G \ v.
This led to the understanding that for the reconstruction of random combinatorial
objects, much less information is needed.

A significant line of recent research looks at when graphs can be reconstructed from
“local” information. Mossel and Ross [MR19] introduced the “shotgun reconstruction”
problem. The terminology was motivated by the shotgun assembly problem for DNA
sequences, where the goal is to reconstruct a DNA sequence from random local “reads”,
corresponding to short subsequences (see [DFS94, AMRW96, MBT13] among many
references). In the context of graphs, the goal is to reconstruct the graph from balls of
small radius. For a graph G and a vertex v of G, let Nr

G(v) be the induced graph of the
vertices of distance at most r from v (where only v is labelled). Then G is r-reconstructible
if every graph with the same multiset of r-balls as G is isomorphic to G. In other words,
G can be identified up to isomorphism from the multiset {Nr

G(v) : v ∈ V(G)}.

Mossel and Ross [MR19] proved that if p = λ
n , for λ > 1, then r = Θ(log n) is enough

for r-reconstruction of G(n, p) with high probability. Sharp asymptotics was obtained
by Ding, Jiang, and Ma in 2021 [DYM22]. Mossel and Ross also looked at the problem
of reconstructing from balls of constant radius. They showed that if np/ log2 n → ∞,
then r = 3 is enough for G(n, p) with high probability. This was later improved by
Gaudio and Mossel [GM22] who also obtained bounds on p for the cases r = 1 and 2.
The case r = 1 was improved by Huang and Tikhomorov [HT21], who showed that
there is a phase transition in 1-reconstructibility around p = n−1/2, where the upper
and lower bounds differ by a polylogarithmic factor. In [JKRS23], this problem was
settled for r ⩾ 3, and improved bounds were obtained for r = 1 and 2.

There is also work on other graph models including random regular graphs [MS15],
random geometric graphs [AC22b] and random simplicial complexes [AC22a].

Going back to reconstruction of matrices, one may see this study as the complement
of the previous one. Here, the subgraphs given have all vertices labelled except of the
centre, while in the Mossel-Ross type of random graph reconstruction the only labelled
vertex in each given subgraph is the middle one. As we will see later, the fact that in
the matrix case the neighbourhood is labelled, will allow us to obtain information on
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larger and larger balls, and by that to apply some of the techniques that were presented
in [JKRS23] for r-reconstruction, where r ⩾ 3. In this case, however, the notion of
r-neighbourhoods is slightly different, as all vertices at odd distance from the root of the
ball are labelled but all vertices at even distance are not. But the informative structure
of the matrix does allow us to obtain statistics on the vertices of distance at most r of
each vertex, which will be sufficient for reconstruction.

1.2 Organisation

The paper is organised as follows. In Section 2 we give classical probabilistic results
and thresholds for the substructures that provide obstacles to either weak or strong
reconstructibility. In Section 3 we start the proof of Theorem 1 by showing how to
reconstruct almost all rows and columns. In Section 4 we show that we can complete
this into a full reconstruction unless some specific substructures occur, and complete the
proof of Theorem 1. Finally in Section 5 we show that reconstruction can be achieved
w.h.p. in O(n2) time.

2 Preliminaries

In this section we state probabilistic bounds which will be useful later in the paper.

We make frequent use of the following well-known bounds on the tails of the binomial
distribution, known as Chernoff bounds (see e.g., [MU17], Theorem 4.4).

Lemma 4. Let 0 < p ⩽ 1
2 , X ∼ Bin(n, p) and ε > 0. Then,

P
(
X ⩾ (1 + ε)np

)
⩽ exp

(
− ε2np

2+ε

)
,

P
(
X ⩽ (1 − ε)np

)
⩽ exp

(
− ε2np

2

)
.

We will also be interested in tail bounds for binomial distributions where np → 0 as
n → ∞, for which we use the following simple observation.

Lemma 5. Let X ∼ Bin(n, p) and k ∈ N. Then

P(X ⩾ k) ⩽ (n
k)pk .

Proof. Indeed, P(X ⩾ k) is at most the expected number of k-tuples of trials that all
succeed, which is (n

k)pk.

We now quote the following result on convergence to a Poisson distribution which
follows directly from [Bol01, Theorem 1.23]. Here we use the falling factorial notation
(n)r := n(n − 1) · · · (n − r + 1).

Lemma 6. Let λ1, . . . , λk be non-negative reals and X(i)
n , i = 1, . . . , k, be sequences of random

variables such that for all k-tuples (r1, . . . , rk) of non-negative integers,

E
[
(X(1)

n )r1 · · · (X(k)
n )rk

]
→ λr1

1 · · · λ
rk
k as n → ∞,
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Then (X(1)
n , . . . , X(k)

n ) converges jointly in distribution to independent Poisson random variables
with means λ1, . . . , λk. Namely, for any non-negative integers s1, . . . , sk,

lim
n→∞

P
(
X(1)

n = s1, . . . , X(k)
n = sk

)
=

k

∏
i=1

e−λi λ
si
i

si!
.

Recall that M is an n × n matrix with i.i.d. Bernoulli random entries that are 1 with
probability p. The following lemma gives the probability for the main obstruction to
strong reconstructibility, which is the appearance of two identical rows or two identical
columns.

Lemma 7. Assume p = 1
n (log n + cn) ⩽ 1

2 . Then, in the matrix M,

P(∃ two equal rows or two equal columns) →


1, if cn → −∞,

1 −
(
(1 + e−c)e−e−c)2, if cn → c,

0, if cn → ∞.

Proof. Let N be the number of pairs of identical rows in M that are not entirely zero.
The probability that two given rows are identical is ((1 − p)2 + p2)n and the probability
that the two rows are identically zero is (1 − p)2n. Hence,

E[N] =

(
n
2

)((
(1 − p)2 + p2)n −

(
(1 − p)2)n

)
⩽ n2 · np2 ·

(
(1 − p)2 + p2)n−1

⩽ n2 · np2 · e−2(n−1)p(1−p),

where we have used comparison with a geometric series (or the Mean Value Theorem)
in the second line, and the inequality 1 − x ⩽ e−x in the third line. This last expression
tends to zero except in the case p ⩽ (1

2 + o(1)) 1
n log n, in which case cn → −∞.

Hence it is enough to consider pairs of identically zero rows or columns. As the number
of zero rows and/or zero columns is stochastically decreasing as p increases, it is
enough to prove the result just in the case when cn → c as the other two cases follow
from stochastic domination and taking limits c → ±∞.

Let X be the number of zero rows and Y the number of zero columns. Then for r, s ⩾ 0,
(X)r(Y)s counts the number of choices of r-tuples of rows and s-tuples of columns, all
filled with zero. Such a configuration consists of a union of r rows and s columns with
all rn + sn − rs entries equal to zero. There are (n)r r-tuples of distinct rows and (n)s
s-tuples of distinct columns so, for fixed r and s,

E
[
(X)r(Y)s] = (n)r(n)s(1 − p)rn+sn−rs → e−c(r+s) as n → ∞,

as (n)r/nr, (n)s/ns, (1 − p)−rs → 1 and n(1 − p)n = exp(log n − pn + O(p2n)) → e−c

as n → ∞. Thus by Lemma 6, (X, Y) converges in distribution to i.i.d. Po(e−c) random
variables. The probability that there are either two empty rows or two empty columns
is P(X ⩾ 2 or Y ⩾ 2), which converges to the expression given in the statement of the
lemma.
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Similarly, the following lemma gives the probability of the main obstruction to weak
reconstructibility. We say an entry in M is an isolated 1 if the entry is a 1 but all other
entries in the same row or column are zero. In the graph G this corresponds to an
isolated edge, i.e., a component consisting of a single edge. The main obstruction to
weak reconstructibility turns out to be the appearance of two or more isolated 1s in the
matrix. Indeed, in such a case the isolated 1s must appear in distinct rows and columns,
and any permutation of their rows, say, results in a matrix distinct from M, but with
identical multisets of rows and columns.

Lemma 8. Suppose p = 1
2n (log n + log log n + cn) ⩽ 1

2 . Let X be the number of 1s in the
matrix M and let Y be the number of isolated 1s in M. Then,

P(Y ⩾ 2 or X < 2) →


1, if cn → −∞,
1 − (1 + e−c/2)e−e−c/2, if cn → c,
0, if cn → ∞.

Proof. Note that X ∼ Bin(n2, p), so the X < 2 condition is only significant if n2p is
bounded, i.e., only in the cn → −∞ case.

Now (Y)r counts the number of r-tuples of isolated 1s, all of which must lie in distinct
rows and columns. Hence,

E
[
(Y)r

]
= (n)r(n)r pr(1 − p)2nr−r2−r.

If cn → ∞ then when p ⩽ n−1/2,

E[Y] = n2p(1 − p)2n−2 = n2pe−2np−O(np2+p) =
np

log n
e−cn+O(1) → 0,

and clearly E[Y] = O(n2e−2np) → 0 for larger p. Hence P(Y ⩾ 2) → 0 by Markov and,
as noted above, P(X < 2) → 0 as well.

If cn → c then,

n2p(1 − p)2n = n2pe−2np−O(np2) =
np

log n
e−cn+o(1) → e−c/2.

As r is fixed and p → 0, we then have E[(Y)r] → (e−c/2)r. Thus Y tends in distribution
to a Po(e−c/2) random variable. Also P(X < 2) → 0, so P(Y ⩾ 2 or X < 2) converges
to the expression given.

If cn → −∞ but n2p → ∞ then E[Y] → ∞. However,

E[Y(Y − 1)]
E[Y]2 =

(n − 1)2

n2 (1 − p)−2 → 1.

Thus Var[Y] = E[Y(Y − 1)] +E[Y]−E[Y]2 = o(E[Y]2). Hence by Chebychev’s inequal-
ity (i.e., the second moment method),

P(Y < 2) ⩽ P
(
|Y −E[Y]| > E[Y]− 2

)
⩽

Var[Y]
(E[Y]− 2)2 → 0,
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so P(Y ⩾ 2) → 1.

Finally we may assume n2p = O(1), in which case Y = X w.h.p. as the probability of
any row or column containing at least two 1s is O(n3p2) = o(1). Hence in this case
P(Y ⩾ 2 or X < 2) ⩾ P(X = Y) → 1.

The following lemma will allow us to bound the probability that two multisets of i.i.d.
random variables are the same. We shall use the notation [x1, . . . , xd] to denote the
multiset consisting of the elements x1, . . . , xd.

Lemma 9. Let X1, . . . , Xd be i.i.d. discrete random variables with P(Xi = x) ⩽ p0 for all x.
Then for any multiset M of d possible values of Xi,

P
(
[X1, . . . , Xd] = M

)
⩽

(2πd + 2)1/2

(2πp0d + 1)1/(2p0)
= O

(√
d(2πp0d)−1/(2p0)

)
.

We note that if p0d ⩽ 1 then we have a better simple bound of d!pd
0 obtained by

summing over all permutations σ ∈ Sd the probability P(X1 = xσ(1), . . . , Xd = xσ(d)),
where M = [x1, . . . , xd].

Proof. Let the multiset M with the highest probability have di copies of an element
xi where xi occurs with probability pi, i = 1, 2, . . . . We use the following version of
Stirling’s formula which holds for all d ⩾ 0,

(d/e)d
√

2πd + 1 ⩽ d! ⩽ (d/e)d
√

2πd + 2.

We note that this clearly holds for d = 0 (with the interpretation that 00 = 1) and
follows easily for d ⩾ 1 from the explicit bounds

(d/e)d
√

2πd e1/(12d+1) ⩽ d! ⩽ (d/e)d
√

2πd e1/12d

proved by Robbins [Rob55]. Thus,

P
(
[X1, . . . , Xd] = M

)
=

d!
d1! · · · dn!

pd1
1 · · · pdn

n ⩽
√

2πd + 2 ·
n

∏
i=1

(dpi

di

)di 1√
2πdi + 1

.

where, without loss of generality, d1, . . . , dn > 0 and di = 0 for i > n. Now set
αi = pi/p0 and d′i = di/αi. We note that dpi/di = dp0/d′i and 2πdi + 1 ⩾ (2πd′i + 1)αi

as 0 < αi ⩽ 1. Hence we can rewrite the bound as

logP
(
[X1, . . . , Xd] = M

)
⩽ log

√
2πd + 2 + ∑

i
αi

(
d′i log dp0

d′i
− 1

2 log
(
2πd′i + 1

))
.

Now maximise over the d′i, assumed just to be non-negative reals with ∑ αid′i = d
(and include d′i with i > n here as well). It is easy to check that f (x) = x log dp0

x −
1
2 log(2πx + 1) is concave, where we set f (0) = 0. Indeed f (x) → 0 as x → 0+ and

f ′′(x) = − 1
x + 2π2

(2πx+1)2 = − (2πx−1)2+(4−π)(2πx)
x(2πx+1)2 < 0 for all x > 0. Hence to maximise
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∑ αi f (d′i) subject to ∑ αid′i = d requires taking all d′i to be equal, say d′i = d′. We do this
for all i, even i > n. But then d

d′ = ∑ αi = ∑ pi
p0

= 1
p0

, so all d′i = d′ = p0d. Thus,

logP
(
[X1, . . . , Xd] = M

)
⩽ log

√
2πd + 2 − 1

2p0
log

(
2πp0d + 1

)
,

as required.

3 Reconstructing almost all rows and columns

For this section, let M be a binary matrix whose entries are i.i.d. Bernoulli random
variables taking value 1 with probability p, where δ

n log n ⩽ p ⩽ 1
2 for some fixed small

constant δ > 0.

Recall that the matrix M corresponds to a bipartite graph G with vertex classes I and
J , both of size n, corresponding to the indices of the rows and columns. For i ∈ I ,
j ∈ J , ij is an edge of G if and only if the matrix M has 1 in the entry (i, j).

Given the multisets R and C, we can reconstruct two graphs, both isomorphic to G.
The first is GR, which is a bipartite graph with vertex classes R and J where the row
value r ∈ R, which is a binary vector r = (r1, . . . , rn), is joined to all columns j ∈ J
where rj = 1. The second is GC, which is a bipartite graph with vertex classes I and C
where the column value c = (c1, . . . , cn)T ∈ C is joined to all rows i ∈ I where ci = 1.
Clearly GR and GC are both isomorphic to G by the correct identification of the row
values in R with their indices in I , and the column values in C with their indices in J
respectively.

For a vertex v of G (or GR or GC), define its kth degree statistics inductively as follows:

D0(v) = deg(v),
Dk+1(v) = [Dk(u) : u ∈ N(v)], for k > 0.

Note that as GR and GC are isomorphic to G, Dk(v) can be reconstructed from R, C,
and either the index or the value of the row or column v. In particular, we observe that
the index of a row value r, say, can be correctly identified if for all rows r′ ̸= r there is
some k such that Dk(r) ̸= Dk(r′).

We first show that for large p, w.h.p. even D1(v) is enough to uniquely identify all rows
and columns.

Lemma 10. There exists a C > 0 such that for C
n log2 n ⩽ p ⩽ 1

2 and any two distinct rows r
and r′ of M,

P
(
D1(r) = D1(r′)

)
= o(n−2).

In particular, w.h.p. M is strongly reconstructible.

Proof. Let r, r′ ∈ R. If deg(r) ̸= deg(r′) then clearly D1(r) ̸= D1(r′), so we may
assume deg(r) = deg(r′). If D1(r) = D1(r′) then the multiset M1 of degrees of
vertices (columns) in N(r) \ N(r′) is the same as the multiset M2 of degrees of vertices
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in N(r′) \ N(r). The multiset of degrees of vertices in N(r) ∩ N(r′) contributes equally
to D1(r) and D1(r′), so we can ignore these.

If we condition on N(r) and N(r′) (i.e., the entries in rows r and r′) and write d =
|N(r) \ N(r′)| = |N(r′) \ N(r)| then M1 and M2 are i.i.d. random multisets of size d,
each of which consists of i.i.d. Bin(n − 2, p) + 1 random variables. The +1 is because
we have exactly one of r or r′ counted in the degrees. The elements of the multisets
and the multisets themselves are independent as they depend only on distinct columns,
respectively disjoint rectangles (I \ {r, r′})× (N(r) \ N(r′)) and (I \ {r, r′})× (N(r′) \
N(r)), of unconditioned entries in M.

Now if X ∼ Bin(n − 2, p) then p0 := maxx P(X = x) = Θ(1/
√

np), which we may
assume is at most 1/(4 log n) if C is large enough. Hence, by Lemma 9,

P(M1 = M2) = O(
√

d) exp
(
− 1

2p0
log(2πp0d)

)
= O

(
n1−2 log(2πp0d)) = o(n−2),

provided p0d > 2, say. But d ∼ Bin(n, p(1 − p)) stochastically dominates Bin(n, p/2)
and thus by Lemma 4,

P(d < np/4) ⩽ exp(−np/16) = o(n−2).

But d ⩾ np/4 implies p0d = Θ(
√

np) > 2 for large n. Hence unconditionally,

P
(
D1(r) = D1(r′)

)
= P

(
M1 = M2

)
= o(n−2).

The union bound now shows that the probability that there are two rows with the
same value of D1(r) is o(1), and the same also holds for columns. Since the D1(v) can
be determined either from the values or the indices of the rows or columns v, w.h.p.
each row or column value can be associated with a unique index, and so M is strongly
reconstructible.

For smaller values of p we will need to consider D2(v). Before we do so, it will be con-
venient to prove some results about the typical structure of M when p = O( 1

n (log n)2).

Lemma 11. Let p = O( 1
n log2 n). Then with high probability, every pair of distinct rows r

and r′ satisfy |N(r) ∩ N(r′)| ⩽ 2.

Proof. We have |N(r) ∩ N(r′)| ∼ Bin(n, p2), so

P
(
|N(r) ∩ N(r′)| ⩾ 3

)
⩽ (n

3)p6 = o(n−2).

A union bound now shows that w.h.p. there is no pair of rows r, r′ for which |N(r) ∩
N(r′)| ⩾ 3.

The next fact roughly states that the 2-balls in our bipartite graph are essentially cycle-
free. We will use this to argue that the degree distributions of leaves in these balls are
essentially independent.

Lemma 12. For p = O( 1
n log2 n) w.h.p. there does not exist a pair r, r′ of rows for which there

are more than two rows s ̸= r, r′ with at least two neighbours in N(r) ∪ N(r′).

10



Proof. Consider a pair of rows r and r′. If rows s1, s2, s3 ̸= r, r′ all have at least two
neighbours in N(r) ∪ N(r′), then choose two such neighbours for each of these rows to
form a subset C ⊆ N(r) ∪ N(r′) of columns of size k := |C| ⩽ 6 with at least 6 edges
from {s1, s2, s3} to C. Adding r and r′, it follows that there is a set of 5 rows and k
columns with k + 6 entries equal to 1. The expected number of these configurations is
O(nk+5pk+6) = o(1). Summing over k ⩽ 6, we see that with high probability there is
no configuration of this type, and so no choice of r, r′ and the si.

A standard Chernoff bound argument shows the following bound on the maximum
number of 1s in any row or column.

Lemma 13. Fix δ > 0. Then there exists a constant K = K(δ) such that for p ⩾ δ
n log n,

w.h.p., no row or column has degree more than Knp in G.

Proof. Set ε = K − 1 in Lemma 4 and note that ε2np
2+ε ⩾ (K−1)2δ

K+1 log n ⩾ 2 log n for
sufficiently large K. Thus the probability that a fixed row or column has degree more
than Knp is at most e−2 log n = 1/n2. The result follows from the union bound over the
2n rows and columns.

Call a row or column heavy if it has at least 1
2 np ones, and light otherwise.

Lemma 14. Fix δ > 0 and assume p ⩾ δ
n log n. Then w.h.p. there are at most n1−δ/9 = o(n)

light rows. Moreover, w.h.p. each row r is adjacent to at most K′ = K′(δ) light columns.

Proof. By Lemma 4, each row is light with probability at most e−np/8 ⩽ n−δ/8, so by
Markov there are w.h.p. at most n1−δ/9 light rows.

Now given a column c and a row index i0 ∈ I , Lemma 4 gives

P
(

∑
i ̸=i0

ci <
1
2 np − 1

)
⩽ P

(
∑
i ̸=i0

ci <
1
2(n − 1)p

)
⩽ e−(n−1)p/8,

as ∑i ̸=i0 ci ∼ Bin(n − 1, p). Therefore, given a row r, we have that, conditioned on N(r),
the probability that a fixed column c ∈ N(r) is light is at most e−(n−1)p/8. Hence, as
distinct columns are independent,

P
(
There are at least K′ light columns in N(r)

)
⩽

(
|N(r)|

K′

)(
e−(n−1)p/8)K′

.

Now w.h.p. every row r satisfies |N(r)| ⩽ Knp by Lemma 13, so for K′ := ⌈9/δ⌉, say,
we have (

|N(r)|
K′

)(
e−(n−1)p/8)K′

⩽ eK′(log(Knp)−(n−1)p/8) = o(n−1).

Taking a union bound over the rows of M finishes the argument.

Thus, it is enough to reconstruct only heavy rows and columns in order to reconstruct
(1 − o(1)) of the matrix.

11



Lemma 15. Fix C, δ > 0 and suppose δ
n log n ⩽ p = p(n) ⩽ C

n log2 n. Then w.h.p. for any
pair of distinct rows r and r′ with r heavy, D2(r) ̸= D2(r′). In particular, w.h.p. all heavy row
and column values can be matched with their indices.

Proof. We may assume deg(r) = deg(r′) as otherwise D2(r) ̸= D2(r′). We may also
assume the conclusions of Lemmas 11–14 all hold. Reveal all entries in columns of
N(r) ∪ N(r′) and in rows of N(N(r′)), so that the full information determining D2(r′)
is revealed. For the second degree statistics to coincide, there needs to be a matching
σ : N(r) → N(r′) such that D1(c) = D1(σ(c)) for all columns c ∈ N(r). We take a
union bound over all d! such matchings where d = |N(r)| = |N(r′)|.

P
(
D2(r) = D2(r′)

)
⩽ ∑

σ

P
(
∀c ∈ N(r), D1(c) = D1(σ(c))

)
⩽ d! · max

σ
P
(
∀c ∈ N(r), D1(c) = D1(σ(c))

)
.

It now suffices to bound the last probability for any matching σ.

We first show that essentially all degree distributions D1(c) are independent from each
other and crucially from the information revealed so far. The probability of each D1(c)
hitting its prescribed degree distribution is bounded by Lemma 9. Taking a product
over the valid c yields the desired bound.

Say that a column c ∈ N(r) is admissible if none of the following occurs:

(i) c ∈ N(r′),
(ii) there is a c′ ∈ N(r) ∪ N(r′) with c′ ̸= c such that (N(c′) ∩ N(c)) \ {r, r′} ̸= ∅,

(iii) deg(c) < 1
2 np.

By Lemma 11, N(r) and N(r′) share at most two elements, so at most two columns
c fail because of condition (i). By Lemma 12 there are at most two rows s ̸= r, r′

whose neighbourhood intersects N(r) ∪ N(r′) in at least two columns. Since these
intersections have size at most 4 each, there are at most 8 columns c ∈ N(r) ∪ N(r′) for
which there is a c′ ∈ N(r) ∪ N(r′), c′ ̸= c, with N(c) ∩ N(c′) containing such a row s.
In other words, there are at most 8 columns which fail the condition (ii). Lastly, by
Lemma 14, only constantly many c ∈ N(r) fail condition (iii).

As r is assumed heavy, for large n there are at least 1
3 np admissible vertices in N(r).

Notice that if a column c is admissible, then, after omitting r, all rows in its neighbour-
hood N(c) \ {r} have had exactly one non-zero entry revealed so far. In particular,
the degree of each such row only depends on its N := n − |N(r) ∪ N(r′)| entries yet
to be revealed, so there are i.i.d. random variables X1, . . . , Xdeg(c) ∼ Bin(N, p) such
that D1(c) = [deg(r), X1 + 1, . . . , Xdeg(c) + 1]. Additionally, the second admissibility
condition ensures that neighbourhoods of distinct admissible columns are disjoint.
Namely, the degrees of the neighbours of distinct admissible columns c, c′ depend on
disjoint subsets of unconditioned entries and are therefore independent.

Now for any admissible c and choosing any fixed choice of D1(σ(c)) we have that

P(D1(c) = D1(σ(c))) = O(deg(c)1/2)(2πp0 deg(c))−1/p0 ,

12



where p0 = Θ(1/
√

Np). However, |N(r) ∪ N(r′)| ⩽ 2Knp, so p0 = Θ(1/
√

np) and by
assumption deg(c) ⩾ 1

2 np. Hence,

P(D1(c) = D1(σ(c))) ⩽ exp
(
− Θ(

√
np log(np))

)
.

Now, if D1(c) = D1(σ(c)) holds for every c ∈ N(r) then certainly it holds for every
admissible c, so,

P
(
∀c ∈ N(r), D1(c) = D1(σ(c))

)
⩽ P

(
∀c admissible, D1(c) = D1(σ(c))

)
= ∏

c admissible
P
(
D1(c) = D1(σ(c))

)
= exp

(
− Ω((np)3/2 log(np))

)
,

where we used that there are at least np/3 admissible columns. Finally, note that
d! ⩽ (Knp)! = exp

(
O(np log(np))

)
, so that

P
(
D2(r) = D2(r′)

)
⩽ exp

(
− Ω((np)3/2 log(np)) + O(np log(np))

)
⩽ exp

(
− Ω(log3/2 n)

)
= o(n−2).

Taking a union bound over all choices of r and r′ then gives the result.

4 Full reconstruction

In this section we show that once all but o(n) of the rows and columns have been
reconstructed, then with high probability the remaining entries of M can be deduced
unless there is some simple obstruction. Recall that we say an entry in M is an isolated 1
if the entry is a 1 but all other entries in the same row or column are zeros.

Lemma 16. Fix ε, C > 0 and suppose (1
3 + ε) 1

n log n ⩽ p ⩽ C
n log2 n. Then w.h.p. every row

and column of M can be determined except possibly for rows and columns where there is an
isolated 1.

Proof. We can assume, by Lemma 15, that we have already placed all heavy rows and
columns in their correct positions. Write X for the set of rows and Y for the set of
columns that have been placed.

We note that we can place any row r which has a unique neighbourhood N(r) ∩ Y in
the already placed columns as we can determine this set from either the value or the
index of r. Moreover, we may assume that in the k × ℓ submatrix A formed from the
unplaced rows and columns that every row and every column contains a 1. Indeed,
if A contained a zero row, corresponding to the row r of M, say, then N(r) = N(r) ∩ Y .
But for any row r′ with N(r′) ∩ Y = N(r) ∩ Y , either |N(r′)| > |N(r)|, in which case
the rows are distinguished by their degrees (and we can determine the degrees of rows
in any position from C), or N(r′) = N(r), in which case the row values of r and r′ are
identical. Thus the position of any row value r is uniquely identified up to permutation
of equal rows.
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Now suppose the row r is still unplaced but N(r) ∩ Y ̸= ∅. Then there must be
another row r′ with |N(r)| = |N(r′)| and N(r) ∩ Y = N(r′) ∩ Y , but N(r) ̸= N(r′).
As |N(r)| = |N(r′)| there are distinct columns c, c′ with c ∈ N(r) \ N(r′) and c′ ∈
N(r′) \ N(r). Clearly c, c′ /∈ Y so are also unplaced. We may also choose c and c′ so that
N(c) ∩ X = N(c′) ∩ X as otherwise r and r′ could be distinguished by the multisets
[N(c) ∩ X : c ∈ N(r) \ N(r′)] and [N(c) ∩ X : c ∈ N(r′) \ N(r)], both of which can be
identified from either the values or positions of r and r′.

We now bound the number of 4-tuples (r, r′, c, c′) which could satisfy these conditions.
More specifically we count the number of 4-tuples (r, r′, c, c′) satisfying the following
slightly weaker conditions.

(i) c ∈ N(r) \ N(r′) and c′ ∈ N(r′) \ N(r).
(ii) N(r) ∩ N(r′) ̸= ∅.

(iii) N(r) ∩ C = N(r′) ∩ C where C = {c′′ ̸= c, c′ : |N(c′′) \ {r, r′}| ⩾ 1
2 np}.

(iv) N(c) ∩ R = N(c′) ∩ R where R = {r′′ ̸= r, r′ : |N(r′′) ∩ C| ⩾ 1
2 np}.

Note that all columns in C and all rows in R are heavy, so assumed already placed.
Fixing (r, r′, c, c′), we note that by a similar calculation as in Lemma 14, any column
c′′ ̸= c, c′ lies in C with probability at least 1 − n−1/25 independently of (i) and (ii).
Indeed, even conditioned on N(r) and N(r′), for any c′′ ̸= c, c′,

P(c′′ /∈ C) = P
(

Bin(n − 2, p) < 1
2 np

)
⩽ e−(1−o(1))np/8 ⩽ n−1/25,

independently for each c′′. Let E be the event that |C| < n − 2 − 2n24/25 = (1 − o(1))n.
Then as the number of c′′ ̸= c, c′ not in C is stochastically dominated by a Bin(n −
2, n−1/25) random variable, by Lemma 4,

P(E) ⩽ e−(1/3)(n−2)n−1/25
= n−ω(1).

Now conditioned on N(r), N(r′) and C, and assuming E does not hold, any row
r′′ ̸= r, r′ lies in R with probability at least 1 − n−1/25. Indeed,

P(r′′ /∈ R) ⩽ P
(

Bin(|C|, p) < 1
2 np

)
⩽ e−(1−o(1))np/8 ⩽ n−1/25,

as an entry being 1 in row r′′ is positively correlated with the condition that its column
is in C.

Now, given (r, r′, c, c′), the probability that (i) holds is p2(1 − p)2. Conditioned on this,
(ii) holds with probability at most np2. Conditioned on (i) and (ii), (iii) holds with
probability at most(

(1 − p)2 + p2 + 2p(1 − p)n−1/25)n−2
= e−2pn+o(1) ⩽ n−2/3−2ε+o(1).

Conditioned on this the probability that (iv) holds but E does not occur is then at most(
(1 − p)2 + p2 + 2p(1 − p)n−1/25)n−2

= e−2pn+o(1) ⩽ n−2/3−2ε+o(1).

Thus the expected number of such 4-tuples is at most

n4 ·
(
P(E) + p2(1 − p)2 · np2 · n−2/3−2ε+o(1) · n−2/3−2ε+o(1)) = n−1/3−4ε+o(1) = o(1).
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Hence we may assume N(r)∩Y = ∅ for all unplaced rows r and similarly N(c)∩X =
∅ for all unplaced columns c.

Now consider the graph G restricted to the unplaced rows and columns. The above
argument shows that we can assume this forms a union of components in G of total
cardinality at most o(n). Isolated vertices correspond to zero rows or zero columns.
Isolated edges correspond to isolated 1s in M. Thus is is enough to show that G contains
no components with between 3 and o(n) vertices. We count the expected number of
such components by counting the number of possible choices of spanning trees for such
components. We get that the expected number of these components is then at most

o(n)

∑
k=3

(
2n
k

)
pk−1kk−2(1 − p)k(n−k) ⩽

o(n)

∑
k=3

(
2ne · e−p(n−k))k pk−1

⩽
o(n)

∑
k=3

n1−(1/3+ε+o(1))k = o(1).

Remark 17. For p < 1
3n log n another obstruction to reconstructibility appears, namely

pairs of rows (or columns) each of which contains two 1s which themselves are the
unique 1 in their column (or row). In graph terms these consist of at least two compo-
nents that are isomorphic to a path on 3 vertices (with the central vertices both in the
same bipartite class). In general more complex tree components on k vertices appear
for p < 1

kn log n and if two isomorphic copies of a tree T exist (with the isomorphism
respecting the bipartition of G) then the matrix M fails to be reconstructible as we can
interchange the vertices in one bipartite class of T with their counterparts in another
copy of T without affecting the multisets of rows and columns. This does however
affect the matrix M for k ⩾ 2. For k = 1 pairs of isolated vertices in the same class
correspond to pairs of zero rows or zero columns which is the main obstacle to strong
reconstructibility, but do not prevent reconstructing M as no edges are changed when
they are swapped. It should be noted that isolated tree components are not the only
obstacle to reconstructibilty. For example, for p < 1

4n log n can have paths on 5 vertices
with only the middle vertex possibly joined to other vertices. This corresponds to say
two rows r, r′ and three columns c, c′, c′′ with N(c) = {r}, N(c′) = {r′}, N(r) = {c, c′′},
N(r′) = {c′, c′′}. In this case r and r′ can be swapped giving a different matrix with the
same multisets of rows and columns.

Proof of Theorem 1. If (1
3 + ε) 1

n log n ⩽ p ⩽ 1
2 then by Lemma 10 or Lemma 16 we can

w.h.p. reconstruct M up to rows and columns with isolated 1s. If there is at most
one isolated 1 then clearly we can reconstruct the whole of M. If there are two or
more isolated 1s then we can’t reconstruct M as permuting the rows containing these
isolated 1s will give a different matrix with the same row and column multisets. Hence
the result follows from Lemma 8, with the explicit constant in part (c) being as in
Lemma 8.

If p < (1
3 + ε) 1

n log n then again by Lemma 8 we have that w.h.p. there are either two
isolated 1s or the matrix has fewer than two 1s in total.
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5 A fast algorithm for reconstruction

Lemma 18. There exists an algorithm that w.h.p. either identifies all rows and columns, or
finds a pair of isolated 1s and takes O(n2) time.

Proof. We will restrict our attention to the case when p = O( 1
n log2 n) as for larger p the

result follows from [ADV23].

Constructing a list of all neighbours of every row and column index and every row and
column value in GR and GC takes O(n2) time as we have to scan every vector in R∪ C.
As w.h.p. there are only O(log2 n) neighbours of any index or value, constructing
D2(v) for every v then takes only O(n polylog n) time. Sorting and finding matches
between indices and values then again takes O(n polylog n) time. Identifying any
isolated 1s also takes O(n polylog n) time. So unless p ⩾ (1

3 + ε) 1
n log n by Lemma 8

we will w.h.p. have terminated with either a pair of isolated 1s which demonstrates
non-reconstructibility or a reconstructed matrix with at most one non-zero entry. We
may thus assume p ⩾ (1

3 + ε) 1
n log n from now on.

The final part of the algorithm relies on calculating the multisets [N(c) ∩ X : c ∈ N(r)]
for rows r and similarly for columns and identifying rows or columns that are uniquely
determined. Again, calculating these multisets takes only O(n polylog n) time. If this
fails to identify all rows and columns then as in the proof of Lemma 16 w.h.p. the
remaining rows and columns all contain isolated 1s, which we can easily check.

Thus overall the algorithm takes O(n2) time (with most of the time taken up in the
initial scanning of rows and columns to find their neighbours) and correctly identifies
M w.h.p. or finds a pair of isolated 1s showing that reconstruction is impossible.

6 Conclusion

We have shown that there is a sharp threshold for reconstructibility at p ∼ 1
2n log n, and

a sharp threshold for strong reconstructibility at p ∼ 1
n log n. These results both assume

that we know all the rows and columns in R and C. But what if we are missing some
of the rows and columns? For example, suppose we are given R, but only a (random)
subset of cn elements from C: for what range of c and p can we reconstruct M with
high probability?

It would also be very interesting to investigate the problem when there are errors in
our data. For example, suppose every entry in each row from R is given incorrectly
with probability q: when can we reconstruct M with high probability? This seems to be
interesting even when p = 1/2 and q is a small constant.

A similar question arises when we have missing data for both rows and columns: when
can we reconstruct almost all of M? And, in a different direction, what happens if the
data is corrupted adversarially?
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