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Abstract

We give a complete description of the set of triples (α, β, γ) of
real numbers with the following property. There exists a constant K
such that αn3 + βn2 + γn1 − K is a lower bound for the matching
number ν(G) of every connected subcubic graph G, where ni denotes
the number of vertices of degree i for each i.
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1 Introduction

A graph is said to be subcubic if its maximum degree is at most three. In this
paper we consider lower bounds for the maximum size ν(G) of a matching in
subcubic graphs G.

Various lower bounds on ν(G) for subcubic graphs G appear in the litera-
ture. For example, the following theorem is due to Biedl, Demaine, Duncan,
Fleischer and Kobourov [1]. Here ni denotes the number of vertices of degree
i in G, and `2 denotes the number of end-blocks in the block-cutvertex tree
of G.
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Theorem 1. Let G be a connected graph with n vertices.

1. If G is cubic then ν(G) ≥ 4(n− 1)/9.

2. If G is subcubic then ν(G) ≥ n3/2 + n2/3 + n1/2 − `2/3, and ν(G) ≥
(n− 1)/3.

They also asked whether ν(G) ≥ (3n + n2)/9 for every subcubic graph.
It will turn out below that this is not the case.

Generalisations of [1] to regular graphs of higher degree were given by
Henning and Yeo in [5] (see also O and West [7]). Lower bounds in terms of
other parameters of G have been given, for example, in [7] and [4].

Our aim in this paper is to give a complete description of the set L of
3-tuples of real coefficients (α, β, γ) for which there exists a constant K such
that ν(G) ≥ αn3+βn2+γn1−K for every connected subcubic graphG. (Note
that this is equivalent to saying ν(G) ≥ αn3 + βn2 + γn1 −Kc(G) for every
subcubic graph G, where c(G) denotes the number of components of G.) Our
work here is similar in spirit to a result of Chvátal and McDiarmid [2], who
addressed a similar question for cover numbers of hypergraphs in terms of
their number of vertices and number of edges. We will find, as in [2], that L
is a convex set, but in contrast to [2] where the number of extreme points is
infinite, in our case L is a certain 3-dimensional polyhedron with a relatively
simple description.

We define the polyhedron P ⊂ R3 to be the intersection of the six half-
spaces

x3 ≤ 4/9,

x2 ≤ 1/2,

x3 + x1 ≤ 2/3,

x3 + 3x2/2 ≤ 1,

x3 + x2 + x1 ≤ 1,

x3 + x2/6 ≤ 1/2.

We let P+ be the intersection of P with the nonnegative orthant [0,∞)3 in
R3. It is easily seen that P is unbounded. However, it follows from the
first three inequalities above that P+ is a bounded subset of the nonnegative
orthant.

The main aim of this paper is to prove the following theorem.
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Theorem 2. P = L.

We will prove that P ⊆ L in Section 2, and L ⊆ P in Section 4.
Our proof that P ⊆ L will need the fact that five specific points belong

to L. This is a consequence of the following stronger result, which we prove
in Section 3.

Theorem 3. Let G be a subcubic graph with c = c(G) components. Then

ν(G) ≥ n2/2 + n1/2− c/2, (1)

ν(G) ≥ n2/3 + 2n1/3− c, (2)

ν(G) ≥ n3/4 + n2/2 + n1/4− c/2, (3)

ν(G) ≥ 7n3/16 + 3n2/8 + 3n1/16− c/8, (4)

ν(G) ≥ 4n3/9 + n2/3 + 2n1/9− c/9. (5)

All five of these bounds are sharp: (4) is attained by the triangle, (1) and
(3) by any odd cycle, and (1), (2) and (5) by the claw K1,3. Furthermore,
for a subcubic graph G, each of the bounds is sharp for G if and only if it
is sharp for every component of G. We will give further connected, sharp
examples for (1), (2), (3), (5) in Section 4. The proof of Theorem 3 is given
in Section 3, where we will also note the following corollary concerning the
constant K from the definition of L.

Corollary 4. Let (α, β, γ) be an element of P .

1. If α ≥ 0 then ν(G) ≥ αn3 +βn2 +γn1− 1 for every connected subcubic
graph G.

2. If α < 0 then ν(G) ≥ αn3 + βn2 + γn1− (2|α|+ 1) for every connected
subcubic graph G.

Note in particular that if G is a connected subcubic graph then ν(G) ≥
αn3 + βn2 + γn1 − 1 for every (α, β, γ) ∈ P+. Note also that if we consider
G = K1,3 and (α, β, γ) = (−λ, 0, λ+ 2/3) (which is in P for all λ ≥ 0), then
the first bound in Lemma 4 is sharp for λ = 0, and the second is sharp for
all λ > 0.

In the other direction, the fact that L ⊆ P is a consequence of the fol-
lowing result, which we will prove in Section 4.

Theorem 5. If (α, β, γ) 6∈ P then for every constant K there exists a con-
nected subcubic graph G such that ν(G) < αn3 + βn2 + γn1 −K.
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Our results generalize previous work. For example, the first bound in
Theorem 1 is a special case of (5); the bound ν ≥ (n − 1)/3 follows from
a convex combination of (2) and (5). On the other hand, the answer to
the question of Biedl, Demaine, Duncan, Fleischer and Kobourov [1] as to
whether ν(G) ≥ (3n+n2)/9 for every subcubic graph is negative by Theorem
2: the vector (1/3, 4/9, 1/3) is not in P as it violates the inequality x1 +x2 +
x3 ≤ 1, and Example 3 in Section 4 is a counterexample.

2 P ⊆ L

In this section we prove one direction of Theorem 2, namely that P ⊆ L
(leaving aside the proof of Theorem 3, which we defer to the next section).
We will prove that P ⊆ L in two steps. We first show that it is enough to
consider just P+, and then prove that P+ ⊆ L.

We begin with the following simple but useful observation.

Lemma 6. In any connected subcubic graph G we have n3 ≥ n1 − 2.

Proof. Let T be a spanning tree of G, and let ti denote the number of vertices
of degree i in T . Then t1 ≥ n1, t3 ≤ n3, and t1 = t3+2. Thus n3 ≥ n1−2.

Next we note some closure properties of L.

Lemma 7. 1. L is convex.

2. L is downward closed: if (a3, a2, a1) ∈ L and bi ≤ ai for all i then
(b3, b2, b1) ∈ L.

3. If (x3, x2, x1) ∈ L then (x3 − λ, x2, x1 + λ) ∈ L for all λ ≥ 0.

Proof. Suppose that a = (a3, a2, a1), b = (b3, b2, b1) lie in L, with associated
constants Ka, Kb. Thus for every subcubic graph G, say with parameters
n = (n3, n2, n1) and matching number ν, we have a ·n ≤ ν +Ka and b ·n ≤
ν +Kb. Suppose that λ ∈ [0, 1] and c = λa + (1− λ)b. Then

c · n = λa · n + (1− λ)b · n
≤ λ(ν +Ka) + (1− λ)(ν +Kb)

= ν + λKa + (1− λ)Kb.
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It follows that c ∈ L, with associated constant λKa + (1− λ)Kb. Thus L is
convex.

For the second claim, simply note that if a ∈ P with associated constant
K, then for every subcubic graph G, say with parameters n = (n3, n2, n1)
and matching number ν, we have b · n ≤ a · n ≤ ν + K, so b ∈ L with
associated constant K.

Now for the final part. Let K be such that ν(G) ≥ x3n3+x2n2+x1n1−K
for every connected subcubic graph G. By Lemma 6 we have n3 ≥ n1−2, and
so (x3−λ)n3+x2n2+(x1+λ)n1−(K+2λ) ≤ x3n3+x2n2+x1n1−K ≤ ν(G),
which shows that (x3 − λ, x2, x1 + λ) ∈ L.

The next lemma will allow us to restrict our attention to P+.

Lemma 8. If P+ ⊆ L then P ⊆ L.

Proof. Consider x = (x3, x2, x1) ∈ P \L. Our aim is to find a point in P+\L.
If each xi is non-negative then x is such a point, so we assume the contrary.

First suppose x2 < 0. We claim that x′ = (x3, 0, x1) ∈ P . Since x ∈ P ,
the first and third inequalities defining P are immediate for x′, and the second
is trivial. The fourth and sixth inequalities follow from the first, and the fifth
follows from the third. Therefore x′ ∈ P . Now if x′ ∈ L then x ∈ L because
L is downward closed, contradicting our choice of x. Thus x′ ∈ P \ L.

Therefore we may assume that x2 ≥ 0. Next we consider the case in
which x3 < 0. Set λ = −x3 and let x′ = (x3 +λ, x2, x1−λ) = (0, x2, x1 +x3).
We claim that x′ ∈ P . The first inequality for P is trivial, and the second,
third and fifth are true because x ∈ P . The fourth and sixth inequalities are
implied by the second. Thus x′ ∈ P . If x′ ∈ L then by Lemma 7 the point
(x3 +λ−λ, x2, x1−λ+λ) = x ∈ L, contradicting our choice of x. Therefore
x′ ∈ P \ L and we may assume x3 ≥ 0.

Finally suppose x1 < 0. Then we claim x′ = (x3, x2, 0) ∈ P \L. To check
x′ ∈ P observe that the first, second, fourth and sixth inequalities are true
because x ∈ P . The third follows from the first and the fifth follows from
the first and second. Again we may conclude x′ /∈ L because L is downward
closed. Hence x′ ∈ P \ L as required, completing the proof that P+ ⊆ L
implies P ⊆ L.

It is therefore enough to prove that P+ ⊆ L. Since L is a convex set, it is
enough to show that the extreme points of P+ all belong to L. The extreme
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points of P+ (written as (x3, x2, x1)) are

{(0, 1/2, 1/2), (0, 1/3, 2/3), (1/4, 1/2, 1/4), (7/16, 3/8, 3/16),

(4/9, 1/3, 2/9), (1/4, 1/2, 0), (7/16, 3/8, 0), (0, 1/2, 0), (4/9, 0, 0),

(0, 0, 0), (4/9, 1/3, 0), (0, 0, 2/3), (4/9, 0, 2/9)}.

This can be verified by hand, or (as we did) by using a computational package
such as polymake [3].

Our aim is then to show that all thirteen extreme points of P+ belong to
L. Since L is downward closed, it is enough to consider the points that do not
lie below any others: for instance, (7/16, 3/8, 0) lies below (7/16, 3/8, 3/16),
so (7/16, 3/8, 3/16) ∈ L implies that (7/16, 3/8, 0) ∈ L. This leaves us with
the following five points:

{(0, 1/2, 1/2), (0, 1/3, 2/3), (1/4, 1/2, 1/4), (7/16, 3/8, 3/16), (4/9, 1/3, 2/9)}.

The fact that these points all belong to L follows from Theorem 3, which we
prove in the next section. We conclude that P ⊆ L.

3 Proofs of Theorem 3 and Corollary 4

First we show how Corollary 4 follows from Theorem 3.

Proof. Let G be a connected subcubic graph. Observe that by Theorem 3
and monotonicity, we have ν(G) ≥ αn3 + βn2 + γn1 − 1 for each extreme
point (α, β, γ) of P+. By convexity, the same inequality holds for every point
(α, β, γ) ∈ P+.

Now suppose (α, β, γ) ∈ P and α ≥ 0. Then (arguing as in the proof
of Lemma 8) we know that (α, β′, γ′) ∈ P+ where β′ = max{β, 0} and γ′ =
max{γ, 0}. Hence

ν(G) ≥ αn3 + β′n2 + γ′n1 − 1 ≥ αn3 + βn2 + γn1 − 1.

If α < 0 then set λ = |α|. Then as in the proof of Lemma 8 we find
that (α + λ, β, γ − λ) = (0, β, γ − λ) ∈ P . Hence by the previous paragraph
ν(G) ≥ βn2+(γ−λ)n1−1. By Lemma 6 we have 2λ ≥ λn1−λn3. Summing
these two inequalities and rearranging gives ν(G) ≥ αn3+βn2+γn1−(2λ+1)
as required.

6



The remainder of this section is devoted to the proof of Theorem 3.

Lemma 9. Let G be a connected subcubic graph with n vertices. Suppose
ν(G) ≥ (n− 1)/2. Then G satisfies Theorem 3.

Proof. Bounds (1) and (3) are immediate. Bound (4) holds unless 7n/16 −
1/8 > n/2− 1/2, which implies n ≤ 5. If (5) fails to hold then 4n/9− 1/9 >
n/2−1/2, which means n ≤ 6. These cases are easily checked. For (2), using
Lemma 6 we find n1 ≤ n3 + 2 ≤ n− n1 + 2, and hence n1 ≤ 1 + n/2. Thus
n2/3 + 2n1/3− 1 ≤ n/3 + n1/3− 1 ≤ n/2 + 1/3− 1.

In particular, if G has a perfect matching or if G is hypomatchable (mean-
ing G− v has a perfect matching for every v ∈ V (G)) then Theorem 3 holds.

In our proof we will make use of the Gallai-Edmonds structure theorem
(see, for instance, [6]). In the statement below, the sets A, B and C are
defined as follows (here Γ(A) denotes the neighbourhood of A).

• A = {v ∈ V (G) : ν(G− v) = ν(G)},

• B = Γ(A) \ A,

• C = V (G) \ (A ∪B).

Theorem 10. (Gallai-Edmonds) Let G be a graph. Then

1. every component of G[A] is hypomatchable,

2. every component of G[C] has a perfect matching,

3. every X ⊆ B has neighbours in at least |X|+ 1 components of G[A].

One consequence of Theorem 10 is that we may assume B 6= ∅, otherwise
each component of G has a perfect matching or is hypomatchable, in which
case we are done by Lemma 9. Note also that Part (3) implies that each
vertex of B has degree at least two.

It is easy to check that all the bounds in Theorem 3 hold for graphs with
at most three vertices, so we assume G has n ≥ 4 vertices and that the
theorem is true for graphs with fewer than n vertices. Since we may consider
each component separately, we may assume G is connected. Choose a vertex
v ∈ B, and consider G−v. Since v /∈ A we know ν(G−v) = ν(G)−1. Let ti
denote the number of neighbours of v of degree i for i = 1, 2, 3. Let U denote
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the set of neighbours of v of degree 1, so |U | = t1. Then G′ = G − v − U
satisfies ν(G′) = ν(G)− 1.

Let n′
i denote the number of vertices of degree i in G′. Since each degree-3

neighbour of v becomes a degree-2 vertex, the number of degree-3 vertices
drops by t3, plus one more if v itself has degree 3. Thus n′

3 = n3−t3−(d(v)−
2) = n3−t3−(t1+t2+t3−2) = n3−2t3−t2−t1+2. Each degree-2 neighbour
of v becomes a degree-1 vertex, and if v has degree 2 then the number of
degree-2 vertices drops by one more. Hence n′

2 = n2 + t3 − t2 − (3− d(v)) =
n2 + t3− t2− (3− t1− t2− t3)) = n2 + 2t3 + t1− 3. Finally n′

1 = n1− t1 + t2,
and c′ ≤ t3 + t2. Then by the induction hypothesis,

1. ν(G′) ≥ n′
2/2 + n′

1/2− c′/2
≥ n2/2 + (2t3 + t1 − 3)/2 + n1/2 + (t2 − t1)/2− (t3 + t2)/2

= n2/2 + n1/2− 1/2 + (t3 − 2)/2,

2. ν(G′) ≥ n′
2/3 + 2n′

1/3− c′

≥ n2/3 + (2t3 + t1 − 3)/3 + 2n1/3 + 2(t2 − t1)/3− (t3 + t2)

= n2/3 + 2n1/3− 1− (t3 + t2 + t1)/3,

3. ν(G′) ≥ n′
3/4 + n′

2/2 + n′
1/4− c′/2

≥ n3/4 + (2− 2t3 − t2 − t1)/4 + n2/2 + (2t3 + t1 − 3)/2 + n1/4

+ (t2 − t1)/4− (t3 + t2)/2

= n3/4 + n2/2 + n1/4− 1/2− (t2 + 1)/2,

4. ν(G′) ≥ 7n′
3/16 + 3n′

2/8 + 3n′
1/16− c′/8

≥ 7n3/16 + 7(2− 2t3 − t2 − t1)/16 + 3n2/8 + 3(2t3 + t1 − 3)/8

+ 3n1/16 + 3(t2 − t1)/16− (t3 + t2)/8

= 7n3/16 + 3n2/8 + 3n1/16− 1/4− t3/4− 3t2/8− t1/4
= [7n3/16 + 3n2/8 + 3n1/16− 1/8]− (4t3 + 6t2 + 4t1 + 2)/16,

5. ν(G′) ≥ 4n′
3/9 + n′

2/3 + 2n′
1/9− c′/9

≥ 4n3/9 + 4(2− 2t3 − t2 − t1)/9 + n2/3 + (2t3 + t1 − 3)/3

+ 2n1/9 + 2(t2 − t1)/9− (t3 + t2)/9

= 4n3/9 + n2/3 + 2n1/9− 1/9− (t3 + t2 + t1)/3.
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Since ν(G) = ν(G′) + 1 and t3 + t2 + t1 ≤ 3 it follows from the calculations
above that bounds (1), (2) and (5) hold for G. (In fact (2) alternatively
follows from (5) together with Lemma 7(3)).

We now focus on bounds (3) and (4). Note that in these cases, our
inductive statement gives

ν(G′) ≥ n3/4 + n2/2 + n1/4− 1/2− (t2 + 1)/2,

and

ν(G′) ≥ [7n3/16 + 3n2/8 + 3n1/16− 1/8]− (4t3 + 6t2 + 4t1 + 2)/16.

First we note some consequences of Theorem 10 and the above calcula-
tions.

Lemma 11. 1. Every v ∈ B has at least two neighbours in A.

2. If x ∈ A has exactly two neighbours u and w, and if u ∈ B, then w ∈ B
as well.

3. If (4) fails for G then every v ∈ B has degree 3.

4. If one of (3) and (4) fails for G then every v ∈ B has at least two
degree-2 neighbours.

Proof. We have already noted that the first statement is immediate from
Theorem 10(3). To verify the second claim, observe that if w ∈ A then u
and w are both in a component H of G[A], which is hypomatchable by The-
orem 10. But x has degree 1 in H, which is not possible in a hypomatchable
component. Thus w ∈ B.

If (3) fails then t2 ≥ 2; if (4) fails then 4t3 + 6t2 + 4t1 ≥ 15 and so (as
d(v) ≤ 3) we have t2 ≥ 2 and t1 + t2 + t3 = 3. The last two assertions follow
immediately, as the same calculation holds for any vertex of B.

Next we derive some elementary facts about the neighbours of degree-2
vertices.

Lemma 12. Suppose G fails to satisfy one of (3) and (4). Then no two
degree-2 vertices of G are adjacent. Furthermore every vertex of B has degree
3.

9



Proof. Recall our assumption that G has at least four vertices. If G is a 4-
cycle then (3) and (4) are satisfied (by Lemma 9), so let us assume otherwise.
Suppose u and w are adjacent degree-2 vertices.

If u and w are not in a triangle or 4-cycle then suppressing u and w
(i.e. if u′ and v′ are the other neighbours of u, v then we replace the path
u′uvv′ by the edge u′v′) gives a connected graph G′ with ν(G′) = ν(G)− 1,
n′
3 = n3, n

′
2 = n2−2, and n′

1 = n1. Then by the induction hypothesis for (3),
ν(G′) ≥ n′

3/4 +n′
2/2 +n′

1/4−1/2 = n3/4 +n2/2 +n1/4−1/2−1, showing G
satisfies (3). For (4) we have by induction ν(G′) ≥ 7n′

3/16+3n′
2/8+3n′

1/16−
1/8 = 7n3/16 + 3n2/8 + 3n1/16− 1/8− 6/8, which also suffices.

If uwx is a triangle then form G′ by removing u and w. Then ν(G′) =
ν(G)− 1, n′

3 = n3 − 1, n′
2 = n2 − 2, n′

1 = n1 + 1, and c′ = 1. For (3) we get
ν(G′) ≥ n′

3/4+n′
2/2+n′

1/4−1/2 = n3/4−1/4+n2/2−1+n1/4+1/4−1/2 =
[n3/4 + n2/2 + n1/4− 1/2]− 1, showing G satisfies (3). For (4) we have by
induction ν(G′) ≥ 7n3/16 − 7/16 + 3n2/8 − 6/8 + 3n1/16 + 3/16 − 1/8 =
[7n3/16 + 3n2/8 + 3n1/16− 1/8]− 1, as needed.

If u and w are in a 4-cycle uwxz then by assumption (say) x has degree 3.
Form G′ by removing u and w, so that ν(G′) = ν(G)−1. If d(z) = 3 then G′

has n′
3 = n3 − 2, n′

2 = n2, n
′
1 = n1, and c′ = 1. Then using induction for (3)

we find ν(G′) ≥ n′
3/4+n′

2/2+n′
1/4−1/2 = (n3−2)/4+n2/2+n1/4−1/2 =

n3/4+n2/2+n1/4−1/2−1/2, which suffices. For (4) we get ν(G′) ≥ 7n3/16−
14/16 + 3n2/8 + 3n1/16− 1/8 = [7n3/16 + 3n2/8 + 3n1/16− 1/8]− 14/16 as
required.

If d(z) = 2 the parameters become n′
3 = n3 − 1, n′

2 = n2 − 2, and
n′
1 = n1 + 1, giving for (3) ν(G′) ≥ n′

3/4 + n′
2/2 + n′

1/4− 1/2 = (n3− 1)/4 +
(n2− 2)/2 +n1/4 = 1/4− 1/2 +n3/4 +n2/2 +n1/4− 1/2− 1 as needed. For
(4) we get ν(G′) ≥ 7n3/16 − 7/16 + 3n2/8 − 6/8 + 3n1/16 + 3/16 − 1/8 =
[7n3/16 + 3n2 /8 + 3n1/16 − 1/8] − 1. This completes the proof of the first
statement. The second statement now follows using Lemma 11(3),(4).

Lemma 13. Suppose G fails to satisfy one of (3) and (4). Then each degree-
2 vertex w has two degree-3 neighbours.

Proof. Lemma 12 tells us that w has no degree-2 neighbours. Suppose for
a contradiction that w has a degree-1 neighbour x. Then (recalling G has
at least four vertices) G′ − {w, x} has ν(G′) = ν(G) − 1, n′

3 = n3 − 1,
n′
2 = n2, n

′
1 = n1 − 1, and c′ = 1. Then using induction for (3) gives

ν(G′) ≥ n′
3/4 +n′

2/2 +n′
1/4− c′/2 ≥ n3/4− 1/4 +n2/2 +n1/4− 1/4− 1/2 =

[n3/4 + n2/2 + n1/4 − 1/2] − 1/2, which suffices. For (4) we get ν(G′) ≥
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7n′
3/16+3n′

2/8+3n′
1/16−c′/8 ≥ 7n3/16−7/16+3n2/8+3n1/16−3/16−1/8 =

[7n3/16 + 3n2/8 + 3n1/16− 1/8]− 10/16.

Call a degree-3 vertex v ∈ G good if it has two degree-2 neighbours that
do not have a common neighbour different from v. Observe that if v has
three degree-2 neighbours then either v is good, or G = K2,3, in which case
(3) and (4) hold.

Lemma 14. Suppose G fails to satisfy one of (3) and (4). Then every
good vertex v of G has three degree-2 neighbours, all of which are in different
components of G− v.

Proof. Let w and x be degree-2 neighbours that are not adjacent and have
no common neighbour other than v. As before, we write ti for the number
of degree i neighbours of v, and U for the set of degree 1 neighbours of v.
Let G′ be the graph obtained by removing {v} ∪ U and identifying w and
x into a new vertex of degree 2. Then ν(G′) = ν(G) − 1, n′

3 = n3 − t3 − 1,
n′
2 = n2 − t2 + t3 + 1, n′

1 = n1 − t1 + t2 − 2, and c′ ≤ 2− t1.
The computation for (3) becomes ν(G′) ≥ n′

3/4 + n′
2/2 + n′

1/4 − c′/2 ≥
n3/4− t3/4−1/4+n2/2+(t3 +1− t2)/2+n1/4+(t2− t1−2)/4−(2− t1)/2 =
[n3/4 + n2/2 + n1/4− 1/2] + t3/4− t2/4 + t1/4− 3/4. Then (3) holds unless
t2 = 3 and c′ = 2.

For (4) we get ν(G′) ≥ 7n′
3/16+3n′

2/8+3n′
1/16−c′/8 ≥ 7n3/16−7t3/16−

7/16 + 3n2/8 + 3(t3 + 1− t2)/8 + 3n1/16 + 3(t2 − t1 − 2)/16− (2− t1)/8 =
[7n3/16 + 3n2/8 + 3n1/16− 1/8]− (t3 + 3t2 + t1 + 9)/16, so (4) holds unless
t2 = 3 and c′ = 2.

Hence in both cases we may assume that t2 = 3 and so c′ = 2. Let y
be the third neighbour of v. Since c′ = 2 we know that y is in a different
component of G′ (and hence of G − v) to w and x. In particular, y is not
adjacent to w or x and does not share a second common neighbour with
either of them. Thus we could apply the above argument with w and y and
find that x is in a different component of G − v from both w and y. This
completes the proof.

We may now complete the proof for (3).

Lemma 15. G satisfies (3).

Proof. Suppose the contrary. If any degree-3 vertex has another degree-
3 vertex in its neighbourhood, then we may verify (3) by considering the
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graph G′ obtained by deleting an edge joining two degree-3 vertices. In this
case n′

3 = n3− 2, n′
2 = n2 + 2, n′

1 = n1 and c′ ≤ 2. Hence using induction we
get ν(G) ≥ ν(G′) ≥ n′

3/4 + n′
2/2 + n′

1/4− 2/2 = n3/4 + n2/2 + n1/4− 1/2,
proving (3) as required.

Thus we may assume no two degree-3 vertices are adjacent. Next we check
that no degree-3 vertex has two degree-1 neighbours. If on the contrary x has
degree-1 neighbours v and w, and a third neighbour z (which necessarily has
degree 2, or else G is K1,3 and satisfies (3)), form G′ by removing v, w, and
x. Then n′

3 = n3− 1, n′
2 = n2− 1, n′

1 = n1− 1, c′ = 1 and ν(G) = ν(G′) + 1.
Therefore by induction ν(G) ≥ n′

3/4+n′
2/2+n′

1/4−c′/2+1 ≥ [n3/4+n2/2+
n1/4 − 1/2] − 1/4 − 1/2 − 1/4 + 1, showing (3) holds. Thus every degree-3
vertex has at least two degree-2 neighbours.

Suppose a degree-2 vertex w has neighbours v and z (which both have
degree 3 by Lemma 13). If v is good then z is also good, since otherwise
every other degree-2 neighbour of z (at least one of which exists) is also a
degree-2 neighbour of v, and would therefore be in the same component of
G − v as w, contradicting Lemma 14. Therefore there are no good vertices
at all, since otherwise (since G has at least one degree-3 vertex, in B) by
Lemma 14 we would find that G is a subdivision of a connected 3-regular
graph, but removing any degree-3 vertex results in 3 components. This is
not possible since, in particular, every connected graph has a vertex whose
removal leaves a connected graph.

Since G has no good vertices, in particular no degree-3 vertex can have
three degree-2 neighbours. So every degree 3 vertex has exactly two degree 2
neighbours. It follows that G is a cycle (of even length) with a pendant edge
attached to every second vertex (these are the graphs G3(t) in Example 3 in
the next section). But (3) holds for this graph, completing the proof.

We are left to verify (4). We need one more technical lemma.

Lemma 16. No vertex in B is good.

Proof. Suppose on the contrary that B contains good vertices. Let v ∈ B
be a good vertex. Let W be the union of the vertex sets of all paths of the
form vw1w2 . . . wr where r ≥ 1, each wi with i odd is a degree-2 vertex in A,
and each wi with i even is in B. Let H be the subgraph of G induced by W .
Then H is connected.

We claim that each vertex of W ∩ B is good. To verify this, consider a
good vertex w ∈ W ∩ B (for example w = v). By Lemma 11(1) we know w
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has at least two neighbours u and x in A, and d(u) = d(x) = 2 by Lemma 14.
Also, Lemma 11(2) implies that the other neighbour z of u is in B and hence
is in W ∩ B. Thus d(z) = 3 by Lemma 11(3). If z were not good then
every degree-2 neighbour of z different from u (at least one of which exists,
by Lemma 11(4)) would be a degree-2 neighbour of w, and would hence be
in the same component of G− w as u, contradicting Lemma 14. Hence z is
good. Applying this observation repeatedly (moving along the paths used to
define H) we find that every vertex of W ∩B is good.

By Lemma 11(2) we know that A∩W is independent, and each x ∈ A∩W
has exactly two neighbours in B ∩W . Since each w ∈ B ∩W is good, it
has three degree-2 neighbours in G by Lemma 14, at least two of which are
in A by Lemma 11(1). So by Lemma 11(3) we know B ∩W is independent.
Therefore H is the subdivision of a connected subcubic graph J with vertex
set B ∩W and minimum degree at least 2. (Note that J has no multiple
edges by Lemma 14 and the fact that each w ∈ B ∩W is good.)

Since each w ∈ B ∩W is good, the graph J has the property that J − y
has d(y) ≥ 2 components for every vertex y of J . Such a graph cannot exist,
so the proof is complete.

We may therefore assume that no vertex in B has three degree-2 neigh-
bours. Choose v ∈ B. By Lemma 12 we have d(v) = 3, and by Lemma 11(4)
we know that v has at least two degree-2 neighbours, say w and x. By
Lemma 11(1) at least one of them, say w, is in A. Since v is not good,
the other neighbour z of v is not a degree-2 vertex, and w and x have an-
other common neighbour y. By Lemma 11(2) we know y is in B. Then by
Lemma 11(3) we have that y has another neighbour u, and d(u) 6= 2 since y
is not good. Since (4) holds for K4 with one edge deleted, we may assume
u 6= v. If G consists of a 4-cycle plus two pendant edges attached to non-
adjacent vertices then (4) holds, so we may assume without loss of generality
that z has degree 3.

If z = u remove v, w, x, y. Then n′
3 = n3 − 3, n′

2 = n2 − 2, n′
1 = n1 + 1,

c′ = 1 and ν(G′) = ν(G) − 2. Then by induction ν(G) ≥ ν(G′) + 2 ≥
7n3/16 + 3n2/8 + 3n1/16− 1/8− 30/16 + 2, which implies our result.

If u has degree 1 we remove u, v, w, x, y. Then n′
3 = n3 − 3, n′

2 = n2 − 1,
n′
1 = n1 − 1, c′ = 1 and ν(G′) = ν(G) − 2. Then by induction ν(G) ≥
ν(G′) + 2 ≥ 7n3/16 + 3n2/8 + 3n1/16− 1/8− 30/16 + 2, as needed.

Otherwise z 6= u, and d(z) = d(u) = 3. In this case we remove v, w, x, y.
Then n′

3 = n3 − 4, n′
2 = n2, n

′
1 = n1, c

′ ≤ 2 and ν(G′) = ν(G)− 2. Then by
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induction ν(G) ≥ ν(G′) + 2 ≥ 7n3/16 + 3n2/8 + 3n1/16 − 1/8 − 30/16 + 2,
which completes the proof of Theorem 3.

4 L ⊆ P

The fact that L ⊆ P is an immediate consequence of Theorem 5, which we
prove in this section.

Suppose that (x3, x2, x1) ∈ L, so there is some real number K such that

ν(G) ≥ x3n3(G) + x2n2(G) + x1n1(G)−K (6)

for every connected subcubic graph G (where ni(G) denotes the number of
vertices of G of degree i). We fix a choice of (x3, x2, x1) and K for the rest
of this section.

We will consider six special families of graphs: each family will show that
(x3, x2, x1) must satisfy one of the inequalities in the definition of P . An
example from each family is shown in the figures.

Example 1. Let t be an odd positive integer. The graph G1(t) is the
tree with a root plus t + 1 levels, indexed by i = 0, . . . , t, in which level i
contains 3 · 2i vertices, and all vertices except the leaves have degree 3. Thus
G1(t) is (internally) a cubic tree and has depth t + 1. Then n1 = 3 · 2t,
n2 = 0 and n3 = 1 + 3(2t − 1) = 3 · 2t − 2. Since G1(t) is bipartite with
one partition class S formed by the vertices at levels 0, 2, . . . , t − 1 we see
ν(G1(t)) ≤ |S| = 3(4(t+1)/2 − 1)/3 = 2t+1 − 1. By (6) we must have

(3 · 2t − 2)x3 + 3 · 2tx1 −K ≤ 2 · 2t − 1,

and so, dividing by 3 · 2t and letting t→∞, we see that

x3 + x1 ≤ 2/3.

Example 2. Let J denote the graph obtained by subdividing one edge of
K4, and let x denote the single vertex of degree 2 in J . We define the graph
G2(t), again for odd t, by identifying each leaf in G1(t) with the vertex x
in a copy of the graph J , such that all copies are disjoint from each other
and the rest of the graph. Then for this graph n1 = n2 = 0, and n3 =
3 · 2t − 2 + 15 · 2t = 9 · 2t+1 − 2. The same set S as before now has the
property that removing it leaves 1 + 3(2 + 23 + . . . + 2t) = 1 + 6(4(t+1)/2 −
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G1(1) G2(1)

1)/3 = 2t+2 − 1 odd components. Therefore any maximum matching in G
must leave exposed at least 2t+2 − 1 − |S| = 2t+1 vertices. This tells us
ν(G2(t)) ≤ (9 · 2t+1 − 2 − 2t+1)/2 = (2t+4 − 2)/2 = 2t+3 − 1. So (6) implies
that

(9 · 2t+1 − 2)x3 −K ≤ 2t+3 − 1.

Dividing by 9 · 2t+1 and taking a limit gives

x3 ≤ 4/9.

Example 3. Let t ≥ 2 be a positive integer. The graph G3(t) is obtained
from the cycle with 2t vertices by attaching a pendant edge to every second
vertex. Then n1 = n2 = n3 = t. The graph is bipartite with one vertex class
consisting of the vertices of degree 3, so ν(G3(t)) ≤ n3 = t. Thus

x3t+ x2t+ x1t−K ≤ t.

Dividing by t and taking a limit gives

x3 + x2 + x1 ≤ 1.

Example 4. The graph G4(t) is obtained from G3(t) by adding t disjoint
copies of J , identifying the vertex x in each copy with the leaf of a pendant
edge. Then n1 = 0, n2 = t and n3 = 6t. The set of degree-3 vertices on
the cycle has size t and leaves 2t odd components when deleted, showing
ν(G4(t)) ≤ (7t− t)/2 = 3t. Thus

6x3t+ x2t−K ≤ 3t.
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G3(2) G4(2) G5(4) G6(3)

Dividing by 6t and taking a limit gives

x3 + x2/6 ≤ 1/2.

Example 5. For each even integer t ≥ 4, let G5(t) be obtained from a cubic
graph H on t vertices by subdividing every edge of H exactly once (for sake
of definiteness, we may may take H to be a cycle of length t with opposite
vertices joined). Then n1 = 0, n2 = e(H) = 3t/2 and n3 = t. Then G5(t) is
bipartite with one vertex class V (H) of size t, so ν(G) ≤ t. Thus

x3t+ 3x2t/2−K ≤ t.

Dividing by t and taking a limit gives

x3 + 3x2/2 ≤ 1.

Example 6. Finally, for odd integers t ≥ 3, we let G6(t) be the odd cycle
of length t. Then n1 = n3 = 0 and n2 = t, while ν = (t− 1)/2. Thus

x2t/2−K ≤ t/2− 1/2.

Dividing by t/2 and taking a limit gives

x2 ≤ 1/2.

The proof of Theorem 5 is now immediate.

Proof of Theorem 5. If (x3, x2, x1) 6∈ P then it fails to satisfy one of the
inequalities used to define P . Therefore, taking the example above that cor-
responds to this inequality (and noting that all the examples are connected)
we see that by taking t large we can force K to be arbitrarily large.
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In fact it is easy to see that equality holds in each expression bounding
ν(Gi(t)), but we do not need this fact. Finally, we note that Example 1 is
sharp for (2) and (5); Example 2 is sharp for (5); and Example 6 is sharp for
(1) and (3).

Acknowledgements. The authors would like to thank Günter Ziegler for
recommending polymake, and also an anonymous referee for a very careful
reading.

References

[1] T. Biedl, E. Demaine, C. Duncan, R. Fleischer, S. Kobourov, Tight
bounds on maximal and maximum matchings, Discrete Math. 285
(2004), 7–15.
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[4] M. Henning, C. Löwenstein, D. Rautenbach, Independent sets and
matchings in subcubic graphs, Discrete Math. 312 (2012), 1900–1910.

[5] M. Henning, A. Yeo, Tight lower bounds on the size of a matching in a
regular graph, Graphs Comb. 23 (2007), 647–657.

[6] L. Lovász, M. D. Plummer, Matching theory. North-Holland Mathe-
matics Studies 121, Annals of Discrete Mathematics 29, North-Holland
Publishing Co., Amsterdam; Akadémiai Kiadó (Publishing House of the
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