Powers of paths in tournaments

Nemanja Draganić∗ François Dross† Jacob Fox‡ António Girão§
Frédéric Havet∥ Dániel Korándi∗∗ William Lochet†† David Munhá Correia∗
Alex Scott∥ Benny Sudakov∗

Abstract

In this short note we prove that every tournament contains the k-th power of a directed path of linear length. This improves upon recent results of Yuster and of Girão. We also give a complete solution for this problem when $k = 2$, showing that there is always a square of a directed path of length $\lceil 2n/3 \rceil - 1$, which is best possible.

1 Introduction

One of the main themes in extremal graph theory is the study of embedding long paths and cycles in graphs. Some of the classical examples include the Erdős–Gallai theorem [3] that every n-vertex graph with average degree d contains a path of length d, and Dirac’s theorem [2] that every graph with minimum degree $n/2$ contains a Hamilton cycle. A famous generalization of this, conjectured by Pósa and Seymour, and proved for large n by Komlós, Sárközy and Szemerédi [5], asserts that if the minimum degree is at least $kn/(k + 1)$, then the graph contains the k-th power of a Hamilton cycle.

In this note, we are interested in embedding directed graphs in a tournament. A tournament is an oriented complete graph. The k-th power of the directed path $\overrightarrow{P}_\ell = v_0 \ldots v_\ell$ of length ℓ is the graph $\overrightarrow{P}^k_\ell$ on the same vertex set containing a directed edge $v_i v_j$ if and only if $i < j \leq i + k$. The k-th power of a directed cycle is defined analogously. An old result of Bollobás and Häggkvist [1] says that, for large n, every n-vertex tournament with all indegrees and outdegrees at least $(1/4 + \varepsilon)n$ contains the k-th power of a Hamilton cycle.

∗Department of Mathematics, ETH Zurich, Zurich, Switzerland. Emails: {nemanja.draganic, daniel.munhacanascorreia, benjamin.sudakov}@math.ethz.ch. Research supported in part by SNSF grant 200021_196965
†Université de Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400, Talence, France. Email: francois.dross@u-bordeaux.fr. Research supported in part by ERC grant No 714704.
‡Department of Mathematics, Stanford University, Stanford, CA, USA. Email: jacobfox@stanford.edu. Research supported by a Packard Fellowship and by NSF award DMS-185563.
§Institut für Informatik, Universität Heidelberg, Germany. E-mail: tzgirao@gmail.com.
∥CNRS, Université Côte d’Azur, I3S, INRIA, Sophia Antipolis, France. Email: frederic.havet@inria.fr. Research supported in part by Agence Nationale de la Recherche under contract Digraphs ANR-19-CE48-0013-01.
∗∗Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, United Kingdom. Emails: {korandi, scott}@maths.ox.ac.uk.
††Department of Informatics, University of Bergen, Norway. Email: william.lochet@uib.no. Research supported by ERC grant No 819416.
(the constant $1/4$ is optimal). However, we cannot expect to find powers of directed cycles in general, as the transitive tournament contains no cycles at all.

What about powers of directed paths? A classical result, which appears in every graph theory book (see, e.g., [7]), says that every tournament contains a directed Hamilton path. On the other hand, Yuster [6] recently observed that some tournaments are quite far from containing the square of a Hamilton path. In particular, there is an n-vertex tournament that does not even contain the square of $P_{2n/3}$, and more generally, for every $k \geq 2$, there are tournaments with n vertices and no k-th power of a path with more than $nk/2^{k/2}$ vertices. In the other direction, Yuster proved that every tournament with n vertices contains the square of a path of length $n^{0.205}$. This was improved very recently by Girão [4], who showed that for fixed k, every tournament on n vertices contains the k-th power of a path of length $n^{1-o(1)}$. Both papers noted that no sublinear upper bound is known. Our main result shows that the maximum length is in fact linear in n.

Theorem 1. For $n \geq 2$, every n-vertex tournament contains the k-th power of a directed path of length $n/2^{2k+6k}$.

The proof of this theorem combines Kővári–Sós–Turán style arguments, used for the bipartite Turán problem, and median orderings of tournaments. A median ordering is a vertex ordering that maximizes the number of forward edges. Theorem 1 and Yuster’s construction show that an optimal bound on the length has the form $n/2^{\Theta(k)}$. It would be interesting to find the exact value of the constant factor in the exponent. Optimizing our proof can yield a lower bound of $n/2^{c+o(k)}$ with $c \approx 3.9$, but is unlikely to give the correct bound.

We also improve the exponential constant in the upper bound from $1/2$ to 1.

Theorem 2. Let $k \geq 5$ and $n \geq k(k+1)2^k$. There is an n-vertex tournament that does not contain the k-th power of a directed path of length $k(k+1)n/2^k$.

Note that this theorem also holds trivially for $k \leq 4$, when $k(k+1)n/2^k > n$.

Finally, we can solve the problem completely in the special case of $k = 2$. Once again, the proof uses certain properties of median orderings.

Theorem 3. For $n \geq 1$, every n-vertex tournament contains the square of a directed path of length $\ell = \lceil 2n/3 \rceil - 1$, but not necessarily of length $\ell + 1$.

Theorems 1, 2 and 3 are proved in Sections 2, 3 and 4 respectively.

2 Lower bound

We will need the following Kővári–Sós–Turán style lemma.

Lemma 4. Let G be a directed graph with disjoint vertex subsets A and B with $|A| = 2k + 1$, $|B| \geq 2^{4k+4k}$, and every vertex in A has at least $(1 - \frac{1}{2k+1})|B|/2$ outneighbours in B. Then A contains a subset A' of size k that has at least $(2k+1)2^{2k}$ common outneighbours in B.

Proof. Suppose there is no such set A'. Then every k-subset of A appears in the inneighbourhood of less than $(2k+1)2^{2k}$ vertices in B. So if $d^-(v)$ denotes the number of inneighbours a vertex $v \in B$ has in A, then we have

$$\binom{2k+1}{k} \cdot (2k+1)2^{2k} = \binom{|A|}{k} \cdot (2k+1)2^{2k} > \sum_{v \in B} \binom{d^-(v)}{k}.$$ \hfill (1)

On the other hand, $\sum_{v \in B} d^-(v) \geq |A|(1 - \frac{1}{2k+1})|B|/2 = k|B|$. By Jensen’s inequality, $\sum_{v \in B} \binom{d^-(v)}{k} \geq |B| \cdot \left(\frac{\sum_{v \in B} d^-(v)/|B|}{k} \right) = |B| \geq 2^{2k+4} k$. This contradicts (1). \hfill \square

One more ingredient we need for the proof of Theorem [1] is the folklore fact that every tournament on 2^m vertices contains a transitive subtournament of size $m+1$. This is easily seen by taking a vertex of outdegree at least 2^{m-1} as the first vertex of the subtournament, and then recursing on the outneighbourhood.

Proof of Theorem [2] Order the vertices as $0, 1, \ldots, n - 1$ to maximize the number of forward edges, i.e., the number of edges ij such that $i < j$. As was mentioned in the introduction, we will refer to such a sequence as a median ordering of the vertices. We denote an “interval” of vertices with respect to this ordering by $[i, j] = \{i, \ldots, j - 1\}$, where $0 \leq i < j \leq n$.

We will embed P_{ℓ}^k inductively using the following claim.

Claim. Let $t = 2^{k+4}k$ and $t \leq i \leq n - (2k+1)t$. For every subset $A^* \subseteq [i - t, i)$ of size 2^k, there is an index $i + t \leq j \leq i + (2k+1)t$ and a set $A' \subseteq A^*$ of size k such that A' induces a transitive tournament and its vertices have at least 2^k common outneighbours in $[j - t, j)$.

Proof. There is a subset $A \subseteq A^*$ of size $2k+1$ that induces a transitive tournament. Let $B = [i, i + (2k+1)t)$. Then every vertex $v \in A$ has at least $kt = \left(1 - \frac{1}{2k+1} \right) |B|/2$ outneighbours in B. Indeed, otherwise v would have more than $(k + 1)t$ inneighbours in the interval B, so moving v to the end of this interval would increase the number of forward edges in the ordering, contradicting our choice of the vertex ordering.

We can thus apply Lemma 3 to find a k-subset $A' \subseteq A$ with at least $(2k+1)2^k$ common outneighbours in B. Partition B into $2k+1$ intervals of size t, and we can choose j accordingly so that A' has at least 2^k common outneighbours in the interval $[j - t, j)$. \hfill \square

The theorem trivially holds for $n < 2^{2k}$, so assume $n \geq 2^{2k}$. Let $i_0 = 2^{2k}$ and $A_0 = [0, 2^{2k})$, and apply the Claim with $i = i_0$ and $A^* = A_0$. We get a set $A' \subseteq A_0$ of size k that induces a transitive tournament, i.e., the k-th power of some path $v_0 \ldots v_{k-1}$. Moreover, this A' has at least 2^k common outneighbours in some interval $[j - t, j]$ with $i_0 + t \leq j \leq i_0 + (2k+1)t$.

Let us define $i_1 = j$, and choose A_1 to be any 2^k of the common outneighbours.

At step s, we apply the Claim again with $i = i_s$, $A^* = A_s$ to find the k-th power of some path $v_{sk} \ldots v_{(s+1)k-1}$ in A_s with 2^k common outneighbours in some $[i_{s+1} - t, i_{s+1}]$ with $i_s + t \leq i_{s+1} \leq i_s + (2k+1)t$, and repeat this process until some step ℓ with $i_\ell > n - (2k+1)t$. Note that intervals $[i_s - t, i_s]$ and $[i_{s+1} - t, i_{s+1}]$ are always disjoint. Finally, A_ℓ must also contain a transitive tournament of size $2k+1$. Call these vertices $v_{\ell k}, \ldots, v_{(\ell+2)k}$. Observe that $n - (2k+1)t < i_\ell \leq 2^{k+\ell}(2k+1)t$, so $n < (\ell + 2)(2k+1)t$.

Then \(v_0 \ldots v_{(\ell+2)k} \) is a directed path of length \((\ell+2)k \geq kn/(2k+1)t \geq n/(2^{4k+6}k)\) whose \(k \)-th power is contained in the tournament. In fact, we proved a bit more: the tournament contains all edges of the form \(v_a v_b \) with \(a < b \) and \(\lfloor a/k \rfloor + 1 \geq \lfloor b/k \rfloor \).

\[\square \]

3 Upper bound

Let \(\ell_k(n) \) denote the smallest integer \(\ell \) such that there is an \(n \)-vertex tournament that does not contain \(\overrightarrow{P}_k^\ell \), or in other words, the largest integer such that every \(n \)-vertex tournament contains the \(k \)-th power of a directed path on \(\ell \) vertices.

To prove Theorem 3, we first note that \(\ell_k(n) \) is subadditive.

Lemma 5. For any \(k, n, m \geq 1 \), we have \(\ell_k(n + m) \leq \ell_k(n) + \ell_k(m) \).

Proof. Let \(T_1 \) and \(T_2 \) be extremal tournaments on \(n \) and \(m \) vertices, respectively, not containing the \(k \)-th power of any directed path of length \(\ell_k(n) \) and \(\ell_k(m) \). Let \(T \) be the tournament on \(n + m \) vertices, obtained from the disjoint union of \(T_1 \) and \(T_2 \) by adding all remaining edges directed from \(T_1 \) to \(T_2 \). Then any \(k \)-th power of a path in \(T \) must be the concatenation of the \(k \)-th power of a path in \(T_1 \) and the \(k \)-th power of a path in \(T_2 \), and hence it must have length at most \((\ell_k(n) - 1) + (\ell_k(m) - 1) + 1 < \ell_k(n) + \ell_k(m) \).

Our improved upper bound is based on the following construction.

Lemma 6. For every \(k \geq 5 \), we have \(\ell_k(2^{k-1}) < \frac{k(k+1)}{2} \).

Proof. Let \(n = 2^{k-1} \) and \(\ell = \frac{k(k+1)}{2} \), and note that \(\overrightarrow{P}_{\ell-1}^k \) has \(k\ell - \ell \) edges.

Let \(T \) be a random \(n \)-vertex tournament obtained by orienting the edges of \(K_n \) independently and uniformly at random. The probability that a fixed sequence of \(\ell \) vertices \(v_0 \ldots v_{\ell-1} \) forms a copy of \(\overrightarrow{P}_{\ell-1}^k \) is \(2^{-(k-1)\ell} \). There are \(\binom{n}{\ell} \cdot \ell! \) such sequences, so the probability that \(T \) contains the \(k \)-th power of a path of length \(\ell - 1 \) is at most \(\binom{n}{\ell} \cdot \ell! \cdot 2^{-(k-1)\ell} < n^{\ell} \cdot 2^{-(k-1)\ell} = 1 \). So with positive probability \(T \) does not contain \(\overrightarrow{P}_{\ell-1}^k \), therefore \(\ell_k(2^{k-1}) \leq \ell - 1 \).

Combining Lemmas 5 and 6 and using the monotonicity of \(\ell_k(n) \), we get

\[
\ell_k(n) \leq \left\lfloor \frac{n}{2^{k-1}} \right\rfloor \cdot \ell_k(2^{k-1}) \leq \left(\frac{n}{2^{k-1}} + 1 \right) \left(\frac{k(k+1)}{2} - 1 \right) \leq \frac{k(k+1)n}{2^k}
\]

for \(n \geq k(k+1)2^k \), establishing Theorem 3.

4 The square of a path

Proof of Theorem 3 Recall that \(\ell_2(n) \) is the largest integer such that every \(n \)-vertex tournament contains the square of a path on \(\ell \) vertices. Proving Theorem 3 is therefore equivalent to showing \(\ell_2(n) = \lceil 2n/3 \rceil \) for every \(n \geq 1 \).

It is easy to check that \(\ell_2(1) = 1 \) and \(\ell_2(2) = \ell_2(3) = 2 \), so \(\ell_2(n) \leq \lceil 2n/3 \rceil \) follows from Lemma 5 by induction, as \(\ell_2(n) \leq \ell_2(n-3) + \ell_2(3) = \ell_2(n-3) + 2 \) holds for every \(n > 3 \). For the lower bound we need to take a closer look at median orderings.
Claim. Every median ordering \(x_1, \ldots, x_n \) of a tournament has the following properties:

(a) All edges of the form \(x_ix_{i+1} \) are in the tournament.

(b) If \(x_ix_{i-2} \) is an edge of the tournament, then “rotating” \(x_{i-2}x_{i-1}x_i \) gives two other median orderings \(x_1, \ldots, x_{i-3}, x_{i-1}, x_i, x_{i-2}, x_{i+1}, \ldots, x_n \) and \(x_1, \ldots, x_{i-3}, x_i, x_{i-2}, x_{i-1}, x_{i+1}, \ldots, x_n \).

(c) If \(x_ix_{i-2} \) is an edge of the tournament, then each of \(x_{i-2}, x_{i-1}, x_i \) is an inneighbour of \(x_{i+1} \), and at most one of them is an outneighbour of \(x_{i+2} \).

Proof. Property (a) holds, as otherwise we could swap \(x_i \) and \(x_{i+1} \) to get an ordering with more forward edges, contradicting our assumption. Property (b) holds because rotating \(x_{i-2}x_{i-1}x_i \) has no effect on the number of forward edges.

These two properties together imply that each of \(x_{i-2}, x_{i-1}, x_i \) is an inneighbour of \(x_{i+1} \). Suppose, to the contrary of (c), that two of them are outneighbours of \(x_{i+2} \). By rotating \(x_{i-2}x_{i-1}x_i \) if needed, we may assume that these are \(x_{i-1} \) and \(x_i \). But then we can also rotate \(x_ix_{i+1}x_{i+2} \) so that \(x_{i+2} \) comes right after \(x_{i-1} \) in a median ordering. This contradicts (a).

Let us now say that \(i \) is a bad index in a median ordering \(x_1, \ldots, x_n \) if \(x_ix_{i-2} \) is an edge, and at least one of \(x_{i+2}x_i \) and \(x_{i+1}x_{i+2} \) is also an edge.

Lemma 7. Every tournament has a median ordering without any bad indices.

Proof. Suppose this fails to hold for some tournament, and take a median ordering \(x_1, \ldots, x_n \) that minimizes the largest bad index \(i \). As \(i \) is a bad index, \(x_ix_{i-2} \) is an edge, and \(x_i \) or \(x_{i-1} \) is an outneighbour of \(x_{i+2} \). By (b), \(x_{i-2}x_{i-1}x_i \) can be rotated so that \(x_{i+2}x_i' \) is an edge in the new median ordering \(x_1, \ldots, x_{i-3}, x_i', x_{i-2}, x_i', x_{i+1}, \ldots, x_n \). Then neither \(x_{i+2}x_i' \) nor \(x_{i+2}x_i' \) is an edge, since by (b), only one of \(x_{i-2}, x_{i-1}, x_i' \) is an outneighbour of \(x_{i+2} \). Also by (b), \(x_i'-x_{i+1} \) and \(x_i'-x_{i+2} \) are edges, so both of \(x_{i+1} \) and \(x_{i+2} \) are outneighbours of \(x_i' \) and \(x_i' \). This means that none of \(i, i+1, i+2 \) is a bad index in this new ordering, and hence the largest bad index is smaller than \(i \). This is a contradiction.

Now we are ready to prove \(\ell_2(n) \geq \lceil 2n/3 \rceil \). Take an \(n \)-vertex tournament with median ordering \(x_1, \ldots, x_n \) as in Lemma 7 and let \(I = \{i_1 < i_2 < \cdots < i_k\} \) be the set of indices \(i \) such that \(x_ix_{i-2} \) is not an edge (in particular, \(i_1 = 1 \) and \(i_2 = 2 \)). We claim that \(x_{i_1} \ldots x_{i_k} \) is a directed path on \(k \geq \lceil 2n/3 \rceil \) vertices whose square is contained in the tournament.

To see this, first observe that if the index \(i + 2 \) is not in \(I \), then both \(i \) and \(i + 1 \) are in \(I \). Indeed, if \(x_{i+2}x_i \) is an edge, then \(x_{i+1}x_{i-1} \) cannot be one because of (b), and \(x_ix_{i-2} \) cannot be one because \(i \) is not a bad index. This immediately implies \(k \geq \lceil 2n/3 \rceil \).

It remains to check that \(x_{i_j-2}x_{i_j} \) and \(x_{i_j-1}x_{i_j} \) are all edges in the tournament. By the above observation, we know that \(i_j - 3 \leq i_j - 2 < i_j - 1 < i_j \). Here \(x_{i_j-1}x_{i_j} \) is an edge by (b), and \(x_{i_j-2}x_{i_j} \) is an edge by the definition of \(I \). So the only case left is to show that \(x_{i_j-2}x_{i_j} \) is an edge when \(i_j - 2 = i_j - 3 \).

In this case there is an index \(i_j - 3 < i < i_j \) that is not in \(I \), i.e., \(x_ix_{i-2} \) is an edge in the tournament. But then if \(i = i_j - 1 \), then \(x_{i_j-2}x_{i_j} \) is an edge because of (b), while otherwise \(i = i_j - 2 \), and \(x_{i_j-2}x_{i_j} \) is an edge because \(i \) is not a bad index. This concludes our proof.
References

