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Bernoulli bond Percolation
Each edge 
— present with probability p 
and 

— absent with probability 1-p 
independently

pc := sup{p ∣ ℙp( cluster Co of o is infinite ) = 0}



Motivation
Introduced by physicists Broadbent & Hammersley ’57  
as a toy model of statistical mechanics 

Many deep rigorous results by mathematicians 

Varying the underlying graph unleashes an interesting 
interplay between geometry & probability 

Rich connections to other models (Ising, GFF, loop O(n))



The 3 regimes

subcritical: p<pc               critical: p=pc          supercritical: p>pc               

But is pc the only phase transition?



Exponential decay

Some complex analysis basics

Theorem (Weierstrass): Let f =
P

fn be a series of analytic

functions which converges uniformly on each compact subset

of a domain ⌦ ⇢ C. Then f is analytic on ⌦.

Weierstrass M-test: Let (fn) be a sequence of functions such

that there is a sequence of ‘upper bounds’ Mn satisfying

|fn(z)|  Mn,8x 2 ⌦ and

X
Mn < 1.

Then the series
P

fn(x) converges uniformly on ⌦.

Theorem (Aizenman & Barsky ’87/ Menshikov ’86)

For every p < pc there is cp > 1 such that

Pp(|Co | � n)  c�n
p .
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Analyticity of χ(p)Back to classics: analyticity below pc

�(p) := Ep(|C(o)|),
i.e. the expected size of the component of the origin o.

Theorem (Kesten ’82)

�(p) is an analytic function

of p for p 2 [0,pc) when G is a lattice in Rd .

‘Trying to think of negative probabilities gave me cultural shock

at first...’

—Richard Feynman,

from the paper Negative Probability (1987).

Let’s just extend p to the complex numbers...

—Harry Kesten ’81; blatantly paraphrased

Agelos Georgakopoulos Joint with J. Haslegrave, and with C. Panagiotis

χ(p) := 𝔼p( |Co | )
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Analyticity of θ(p)

Appearing in the textbooks  
Kesten ’82, Grimmett ’96, Grimmett ’99.  

— θ(p) is infinitely differentiable [Chayes, Chayes & Newman 
’87] 
— θ(p) is analytic near p=1 [Braga, Proccaci & Sanchis ’02]

✓(p) analytic?

✓(p) := Pp(|C | = 1),

Question (Kesten ’81): Is ✓(p) analytic for p > pc?

Appearing (for G = Zd ) in the textbooks

Kesten ’82, Grimmett ’96, Grimmett ’99.

‘...this in not just an academic matter. For instance, there are

examples of disordered systems in statistical mechanics that

develop a Griffiths singularity, i.e., systems that have a phase

transition point even though their free energy is a C1 function.’

–Braga, Proccaci & Sanchis ’02

Agelos Georgakopoulos Joint with J. Haslegrave, and with C. Panagiotis

θ(p) := ℙp( |Co | = ∞)



Analytic vs.  functionsC∞

Bob:  
  — What was the difference between  and analytic again? 
Analise:  
  — The latter has a convergent Taylor series. 
Bob:  
  — Isn’t almost every  function analytic? 
Analise:  
  — Quite the contrary: the nowhere analytic functions  
are a dense  subset of the  functions! [Cater ’84]

C∞

C∞

Gδ C∞



Griffiths singularities

[Griffiths ’69] introduced models, constructed by applying the 
Ising model on 2-dimensional percolation clusters, in which the 
free energy is infinitely differentiable but not analytic.  

This phenomenon is now called a Griffiths singularity



Interlude: Peierls’s argument



Analyticity of θ(p)Analyticity for planar lattices

Theorem (G & Panagiotis ’18+)

✓(p) is analytic for p > pc on any planar lattice.

148 Geo�rey Grimmett

�(p)

1

pc 1 p

Fig. 1.1. It is generally believed that the percolation probability �(p) behaves
roughly as indicated here. It is known, for example, that � is infinitely di�eren-
tiable except at the critical point pc. The possibility of a jump discontinuity at pc

has not been ruled out when d � 3 but d is not too large.

1.2 Some Possible Questions

Here are some apparently reasonable questions, some of which turn out to be
feasible.

• What is the value of pc?
• What are the structures of the subcritical and supercritical phases?
• What happens when p is near to pc?
• Are there other points of phase transition?
• What are the properties of other ‘macroscopic’ quantities, such as the

mean size of the open cluster containing the origin?
• What is the relevance of the choice of dimension or lattice?
• In what ways are the large-scale properties di�erent if the states of

nearby edges are allowed to be dependent rather than independent?
There is a variety of reasons for the explosion of interest in the percolation

model, and we mention next a few of these.
• The problems are simple and elegant to state, and apparently hard to

solve.
• Their solutions require a mixture of new ideas, from analysis, geometry,

and discrete mathematics.
• Physical intuition has provided a bunch of beautiful conjectures.
• Techniques developed for percolation have applications to other more

complicated spatial random processes, such as epidemic models.
• Percolation gives insight and method for understanding other physical

models of spatial interaction, such as Ising and Potts models.
• Percolation provides a ‘simple’ model for porous bodies and other

‘transport’ problems.

Agelos Georgakopoulos Joint with J. Haslegrave, and with C. Panagiotis

Partitions of n

Theorem (Hardy & Ramanujan 1918)
The number of partitions of the
integer n is of order exp(

p
n).

Elementary proof: [P. Erdös, Annals of Mathematics ’42]

Agelos Georgakopoulos Joint with J. Haslegrave, and with C. Panagiotis
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Ingredients: 
— elementary complex analysis 
— better interfaces 
— Inclusion-Exclusion Principle 
— Weak Hardy-Ramanujan 
— BK inequality 
— Exponential decay (in dual) 
— More combinatorics



Further results
Our results

✓ analytic for p > pc for continuum percolation – asked by
[Last et al. ’17]
✓ analytic for p > pc on regular trees, and on almost every
Galton-Watson tree.
– asked by [Michelen, Pemantle & Rosenberg]

✓ analytic for p near 1 on all finitely presented Cayley
graphs.

✓ analytic for p near 1 on all non-amenable graphs.
–Extended to p 2 (pc ,1] by [Hermon & Hutchcroft ’19+]

For certain families of planar triangulations for which
[Benjamini et al. ’96, ’15, ’18] conjectured that psite

c  1/2,
we prove pbond

c  1/2 (and analyticity of ✓).

Agelos Georgakopoulos Joint with J. Haslegrave, and with C. Panagiotis



Chapter II: Polyominoes and 
growth rates of interfaces



Polyominoes
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Polyomino

A polyomino is a generalization of the domino to a collection of 
squares of equal size arranged with coincident sides. Polyominos were
originally called "super-dominoes" by Gardner (1957). A polyomino with
 squares is known as an -polyomino or " -omino."

Polyominoes may be conveniently represented and visualized in the
Wolfram Language using ArrayMesh.
Free polyominoes can be picked up and flipped, so mirror image pieces
are considered identical. One-sided polyominoes may not be flipped, but
may be rotated, so different rotational orientations are the same, but
pieces having different chiralities are considered distinct. Fixed
polyominoes (also called "lattice animals") are considered distinct if they
have different chirality or orientation.

When the type of polyomino being dealt with is not specified, it is usually
assumed that they are free. There is a single unique 2-omino (the
domino), and two distinct 3-ominoes (the straight- and -triominoes). The
4-ominoes (tetrominoes) are known as the straight, L, T, square, and
skew tetrominoes. The 5-ominoes (pentominoes) are called , , , , , 
, , , , , , and  (Golomb 1995). Another common naming scheme
replaces , , , and  with , , , and  so that all letters from O to Z are
used (Berlekamp et al. 1982).

The first few polyominoes with holes are illustrated above (Myers).
Redelmeier (1981) computed the number of free and fixed polyominoes
for , and Mertens (1990) gives a simple computer program. The
following table gives the number of free (Lunnon 1971, 1972; Read
1978; Redelmeier 1981; Ball and Coxeter 1987; Conway and Guttmann

Simple
2-Column
Polyominoes
on the
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Hole-Free
Magic 45-
Ominoes
Recursive
Exercises IV:
Rep-Tiles
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Polyominoes

Search MathWorld
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polyominoes

order 10
basic definition of

prime number

Polyomino -- from Wolfram MathWorld https://mathworld.wolfram.com/Polyomino.html
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 A polyomino, 
 aka. lattice animal, 
 is a connected, 
 induced, 
 subgraph of .ℤ2

Their exponential growth rate  
:=   

is not known. 
a(ℤ2) limn→∞(♯{ polyominoes of size n})1/n



Kesten’s argument

Can we do better?



The growth rates br



The growth rates br
… refining Kesten’s argument, we obtain: 

where  and   
are universal. 

Equality holds iff exponential decay fails! 

f(r) := (1 + r)1+r

rr r(p) := 1 − p
p

br(p)(G) ≤ f(r(p))

For lattice animals obtained by [Delyon ’80] and 
[Hammond ’05]



More on br

br

rr(pc)r(1� pc)

f(r)

Figure 1: An approximate visualisation of br(G) whenG is a lattice in R
d, d �

3. The graph of br(G) (depicted in black, if colour is shown) lies below the

graph of f(r) := (1+r)1+r

rr (depicted in blue, if colour is shown). The fact that
f(r) plots (in Mathematica, in this instance) almost like a straight line can be
seen by rewriting it as (1 + r)(1 + 1/r)r. The fact that br = f(r) for r in the
interval (r(1� pc), r(pc)], where r(p) := 1�p

p , follows by combining a theorem
of Kesten & Zhang [27], saying that exponential decay of Pp(|So| = n) fails
in that interval, with our Theorem 1.1. That br < f(r) for r > r(pc) follows
from the well-known exponential decay of Pp(|Co| = n) for p < pc [1].

We also know that br is continuous and log-concave. The continuity of br,
combined with Theorem 1.1 again, implies failure of the exponential decay at
p = 1� pc, which was not obtained in [27].

If the cycle space of G is generated by its triangles, then (4) determines the
subcritical branch r > r(pc) given the branch r < r(1 � pc) and vice-versa.
For the planar triangular lattice the picture degenerates as pc = 1 � pc, and
so br = f(r) for r = r(1/2) = 1 only.

Note that br(G) is an invariant of G defined without reference to any random
experiment. The connection to percolation is established by Theorem 1.1
via the above transformation r(p). Since r(p) is monotone decreasing in p,
the right hand side of Figure 1 corresponds, somewhat annoyingly, to the
subcritical percolation regime, and the left hand side to the supercritical.
Using the transformation r ! 1

r (from volume-to-surface into surface-to-
volume ratio) we could reverse the picture to have the ‘subcritical’ interval on
the left. For ‘triangulated’ lattices the picture would look exactly the same
due to (4), only the positions of r(pc) and r(1� pc) would be interchanged.

around the origin o—which we will call multi-interfaces— and c(M) is the num-
ber of interfaces in a multi-interface M . An example of a multi-interface is
depicted in Figure 2. This formula is proved using the inclusion-exclusion prin-
ciple, which explains the use of multi-interfaces and the signs (�1)c(M)+1; see
[16] for more. The functions Pp({M occurs}) are just polynomials of the form
p|M |(1� p)|@M |.

Equality (3) means that in principle we could answer any question about

4

a(G) ≥ b(G) ≥ f(r(pc(G)))

br(p)(G) ≤ f(r(p))

br = (b1/r)r



Further resultsOur results

pc(Z3) > 0.2522
–using bounds of [Barequet & Shalah ’19+]

a(Zd)  2de � 5e/2 + O(1/ log(d))
–improves on bounds of [Barequet & Shalah ’19+]

as a result, we obtain

pc(Zd) � 1
2d

+
2

(2d)2 �O(1/d2 log(d))

Using upper bounds on pc(Zd) from [Heydenreich &
Matzke ’19+], we obtain a(Zd) � 2de � 3e
–asked by [Barequet, Barequet & Rote ’10], nonrigorously
obtained by [Peard & Gaunt ’95]

pc < 1/2 for plane graphs of minimum degree � 7
[Haslegrave & Panagiotis ’19+]
–answers a question of [Benjamini & Schramm ’96]

Agelos Georgakopoulos Joint with J. Haslegrave, and with C. Panagiotis



Analyticity of θ(p)
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Further reading:

Further reading: [H. Duminil-Copin, Sixty years of percolation]
[G. & Panagiotis, Analyticity results in Bernoulli Percolation]
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Thanks to: Γεωργία

and:

Analyticity in Zd

Theorem (G & Panagiotis ’18+)
✓(p) is analytic for p > 1 � pc for site percolation
on any ‘triangulated’ lattice in Zd ,d � 2.

Theorem (Panagiotis & G ’20+)
Yes.

Is ✓(p) analytic at 1 � pc?
Continuous at pc?

Agelos Georgakopoulos Joint with J. Haslegrave, and with C. Panagiotis
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