Critical Core Percolation on Random Graphs

Alice Contat

Université Sorbonne Paris-Nord

Oxford Discrete Maths and Probability Seminar $17^{\text {th }}$ October 2023
joint with Thomas Budzinski and Nicolas Curien

k-core

Definition

The k-core of a graph G is the (unique) maximal subgraph of G in which all vertices have induced degree at least k.

k-core

Definition

The k-core of a graph G is the (unique) maximal subgraph of G in which all vertices have induced degree at least k.

k-core

Definition

The k-core of a graph G is the (unique) maximal subgraph of G in which all vertices have induced degree at least k.

k-core

Lemma

We can obtain the k-core of G by recursively removing the vertices of degree less than k.

Phase transition

Let $G(n, p)$ be an Erdős-Rényi random graph.

Theorem (Pittel, 90; Chvátal, 91)

Let $p=\frac{c}{n}$. There exists $\alpha_{k}>0$ such that

- (subcritical case) If $c<\alpha_{k}$, then there is no k-core with positive probability (and with high probability for $k \geq 3$).
- (supercritical case) If $c>\alpha_{k}$, then the k-core has asymptotic size $\beta(c) \cdot n$.

Critical 2-core

Theorem (Janson, Knuth, Luczak \& Pittel, 93)

Let $p=\frac{1}{n}$. Then the 2 -core of $G(n, p)$ has size of order $n^{1 / 3}$ as n goes to infinity.

Discontinuity for the 3-core

For the 3 -core, the phase transition is discontinuous.

Discontinuity for the 3-core

For the 3-core, the phase transition is discontinuous.

Karp-Sipser Core

Definition

The Karp-Sipser Core of a graph G is the subgraph of G obtained by recursively removing the leaves of G and their neighbors.

Karp-Sipser Core

Definition

The Karp-Sipser Core of a graph G is the subgraph of G obtained by recursively removing the leaves of G and their neighbors.

Phase transition

Theorem (Karp \& Sipser, 81)

- (subcritical case) If $c<\mathrm{e}$, then as $n \rightarrow \infty$ we have

$$
\left|\operatorname{KSCore}\left(G\left(n, \frac{c}{n}\right)\right)\right|=O_{\mathbb{P}}(1) .
$$

- (supercritical case) If $c>e$, then

$$
n^{-1} \cdot\left|\operatorname{KSCore}\left(G\left(n, \frac{c}{n}\right)\right)\right| \xrightarrow[n \rightarrow \infty]{(\mathbb{P})} \beta(c)>0 .
$$

Critical KS

Conjecture (Bauer \& Golinelli, 2001, Table 1 line c)

In the critical case, we have

$$
\left|\operatorname{KSCore}\left(G\left(n, \frac{\mathrm{e}}{n}\right)\right)\right| \approx n^{3 / 5}
$$

Our model

Fix $\mathbf{d}^{n}=\left(d_{1}^{n}, d_{2}^{n}, d_{3}^{n}\right)_{n \geq 1}$ (number of vertices) such that

$$
n=d_{1}^{n}+2 d_{2}^{n}+3 d_{3}^{n} \text { is even. }
$$

Consider a random multi-graph $\operatorname{CM}\left(\mathbf{d}^{n}\right)$ sampled by pairing the edges emanating for the $d_{1}^{n}+d_{2}^{n}+d_{3}^{n}$ vertices uniformly at random.

Our model

Fix $\mathbf{d}^{n}=\left(d_{1}^{n}, d_{2}^{n}, d_{3}^{n}\right)_{n \geq 1}$ (number of vertices) such that

$$
n=d_{1}^{n}+2 d_{2}^{n}+3 d_{3}^{n} \text { is even. }
$$

Consider a random multi-graph $\operatorname{CM}\left(\mathbf{d}^{n}\right)$ sampled by pairing the edges emanating for the $d_{1}^{n}+d_{2}^{n}+d_{3}^{n}$ vertices uniformly at random.

Assume that

$$
\frac{d_{1}^{n}}{n} \underset{n \rightarrow \infty}{ } p_{1}, \quad \frac{2 d_{2}^{n}}{n} \underset{n \rightarrow \infty}{ } p_{2}, \quad \text { and } \quad \frac{3 d_{3}^{n}}{n} \underset{n \rightarrow \infty}{ } p_{3}
$$

Phase transition revisited

Theorem (Budzinski, C. \& Curien, 2022)
Let

$$
\Theta=\left(p_{3}-p_{1}\right)^{2}-4 p_{1} .
$$

Phase transition revisited

Theorem (Budzinski, C. \& Curien, 2022)

Let

$$
\Theta=\left(p_{3}-p_{1}\right)^{2}-4 p_{1}
$$

- (subcritical case) If $\Theta<0$, then as $n \rightarrow \infty$ we have

$$
\left|\operatorname{KSCore}\left(\mathrm{CM}\left(\mathbf{d}^{n}\right)\right)\right|=O_{\mathbb{P}}\left(\log (n)^{2}\right)
$$

- (supercritical case) If $\Theta>0$, then

$$
n^{-1} \cdot\left|\operatorname{KSCore}\left(\operatorname{CM}\left(\mathbf{d}^{n}\right)\right)\right| \underset{n \rightarrow \infty}{(\mathbb{P})} \frac{4 \Theta}{3+\Theta}>0
$$

Critical KS

Theorem

Assume $\Theta=\left(p_{3}-p_{1}\right)^{2}-4 p_{1}=0$ (strictly critical case),

Critical KS

Theorem

Assume $\Theta=\left(p_{3}-p_{1}\right)^{2}-4 p_{1}=0$ (strictly critical case), and let $D_{2}(n)$ (resp. $D_{3}(n)$) be the total number of half-edges attached to a vertex of degree 2 (resp. 3) in the KS-core. Then we have

$$
\binom{n^{-3 / 5} \cdot D_{2}(n)}{n^{-2 / 5} \cdot D_{3}(n)} \xrightarrow[n \rightarrow \infty]{(d)} \cdot\binom{C_{2} \cdot \vartheta^{-2}}{C_{3} \cdot \vartheta^{-3}}
$$

where $\vartheta=\inf \left\{t \geq 0: B_{t}=t^{-2}\right\}$, for a standard linear Brownian motion $\left(B_{t}: t \geq 0\right)$ issued from 0 .

Markovian Exploration

Main idea: Construct the core and attach the half-edges simultaneously.

Markovian Exploration

Main idea: Construct the core and attach the half-edges simultaneously.

Markovian Exploration

Main idea: Construct the core and attach the half-edges simultaneously.

Markovian Exploration

Main idea: Construct the core and attach the half-edges simultaneously.

Markovian Exploration

Main idea: Construct the core and attach the half-edges simultaneously.

Markovian Exploration

Main idea: Construct the core and attach the half-edges simultaneously.

Markovian Exploration

Main idea: Construct the core and attach the half-edges simultaneously.

We denote by

$$
\left(X_{k}^{n}, Y_{k}^{n}, Z_{k}^{n}: k \geq 0\right)
$$

the number of unmatched half-edges linked to vertices of unmatched degree $1,2,3$ at step k.

Proposition

$\left(X_{k}^{n}, Y_{k}^{n}, Z_{k}^{n}: k \geq 0\right)$ is a Markov chain.

Example: Transitions for the 2-core

Fluid limit approximation

Proposition

$$
\left(\frac{X_{\lfloor\text {tn〕 }}^{n}}{n}, \frac{Y_{\lfloor\text {tn }\rfloor}^{n}}{n}, \frac{Z_{\lfloor\text {tn }\rfloor}^{n}}{n}\right)_{0 \leq t \leq \theta^{n} / n} \xrightarrow[n \rightarrow \infty]{(\mathbb{P})}(\mathscr{X}, \mathscr{Y}, \mathscr{Z})_{0 \leq t \leq t_{\text {ext }}} .
$$

Example: Fluid limit for the 2-core

$$
\begin{aligned}
& x^{\prime}=\frac{-2 x-z}{x+y+z} \\
& y^{\prime}=\frac{-2 y+2 z}{x+y+z} \\
& z^{\prime}=\frac{-3 z}{x+y+z}
\end{aligned}
$$

Example: Fluid limit for the 2-core

$$
x^{\prime}=\frac{-2 x-z}{x+y+z}, \quad y^{\prime}=\frac{-2 y+2 z}{x+y+z}, \quad z^{\prime}=\frac{-3 z}{x+y+z} .
$$

- We have $(x+y+z)^{\prime}=-2$.
- We assume $y(0)=0$ and obtain

$$
\left\{\begin{array}{l}
x(t)=\left(1-2 z_{0}\right)(1-2 t)+z_{0}(1-2 t)^{3 / 2} \\
y(t)=2 z_{0}\left((1-2 t)-(1-2 t)^{3 / 2}\right) \\
z(t)=z_{0}(1-2 t)^{3 / 2}
\end{array}\right.
$$

Fluid limit approximation of the 2-core

KS-core : transitions

The 13 possible transitions of this Markov chain...

KS-core : transitions

The 13 possible transitions of this Markov chain...

...and its fluid limit approximation:

$$
\left(\frac{X_{\lfloor t n\rfloor}^{n}}{n}, \frac{Y_{\lfloor t n\rfloor}^{n}}{n}, \frac{Z_{\lfloor t n\rfloor}^{n}}{n}\right)_{0 \leq t \leq \theta^{n} / n} \xrightarrow[n \rightarrow \infty]{(\mathbb{P})}(\mathscr{X}, \mathscr{Y}, \mathscr{Z})_{0 \leq t \leq t_{\mathrm{ext}}}
$$

...and its fluid limit approximation:

$$
\left(\frac{X_{\lfloor\text {tn〕 }}^{n}}{n}, \frac{Y_{\lfloor t n\rfloor}^{n}}{n}, \frac{Z_{\lfloor t n\rfloor}^{n}}{n}\right)_{0 \leq t \leq \theta^{n} / n} \xrightarrow[n \rightarrow \infty]{(\mathbb{P})}(\mathscr{X}, \mathscr{Y}, \mathscr{Z})_{0 \leq t \leq t_{\mathrm{ext}}},
$$

where $(\mathscr{X}, \mathscr{Y}, \mathscr{Z})$ is the unique solution to the differential equation

$$
\left(\begin{array}{c}
\mathscr{X}^{\prime} \\
\mathscr{Y}^{\prime} \\
\mathscr{Z}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
-2 \mathbf{x}-\mathbf{y z}-3 \mathbf{x}^{2} \mathbf{z}-2 \mathbf{y x}+\mathbf{z y ^ { 2 }}-2 \mathbf{z x y}-z^{3}-4 z^{2} \mathbf{x} \\
4 z^{3}-2 \mathbf{x y}-4 z y^{2}-4 x y z-4 y^{2}+4 z^{2} \mathbf{x} \\
-3 \mathbf{y z}-3 z y^{2}-12 z^{2} \mathbf{y}-3 z x^{2}-6 x y z-12 z^{2} \mathbf{x}-9 z^{3}
\end{array}\right),
$$

$$
\text { where }(\mathbf{x}, \mathbf{y}, \mathbf{z})=\frac{1}{\mathscr{X}+\mathscr{Y}+\mathscr{Z}}(\mathscr{X}, \mathscr{Y}, \mathscr{Z}) \text { is the proportion vector, }
$$

with initial conditions (p_{1}, p_{2}, p_{3}) and where $t_{\text {ext }}$ is the first hitting time of 0 by the continuous process \mathscr{X}.

The fluid limit is not sufficient: Three examples

Two tribes, initially n individuals in each tribe

At each step :

Pick an individual uniformly at random and it dies
$\Delta\left(X_{k}, Y_{k}\right)\left(X_{k}, Y_{k}\right)=$
$\int(-1,0)$ with proba $\frac{X_{k}}{X_{k}+Y_{k}}$
(0,-1) with proba $\frac{Y_{k}}{X_{k}+Y_{k}}$

Pick a tribe uniformly at random and an individual of this tribe dies

Pick an individual uniformly at random and it kills someone in the other tribe
$\left(\left(X_{k}, Y_{k}\right): k \geq 0\right)$ number of individuals in the tribes at step k

Two tribes, initially n individuals in each tribe

At each step :
$\left\{\begin{aligned} x^{\prime} & =\frac{x}{x+y} \\ y^{\prime} & =\frac{y}{x+y}\end{aligned}\right.$
$\Delta\left(X_{k}, Y_{k}\right)\left(X_{k}, Y_{k}\right)=$
$\int(-1,0)$ with proba $\frac{X_{k}}{X_{k}+Y_{k}}$
(0,-1) with proba $\frac{Y_{k}}{X_{k}+Y_{k}}$
$\left(\left(X_{k}, Y_{k}\right): k \geq 0\right)$ number of individuals in the tribes at step k

Pick a tribe uniformly at random and an individual of this tribe dies

Pick an individual uniformly at random and it kill someone in the other tribe
$\left\{\begin{array}{l}(-1,0) \text { with proba } \frac{1}{2} \\ (0,-1) \text { with proba } \frac{1}{2}\end{array} \left\lvert\,\left\{\begin{array}{l}(-1,0) \text { with proba } \frac{Y_{k}}{X_{k}+Y_{k}} \\ (0,-1) \text { with proba } \frac{X_{k}}{X_{k}+Y_{k}}\end{array}\right.\right.\right.$

Two tribes, initially n individuals in each tribe

At each step :
$\left\{\begin{aligned} x^{\prime} & =\frac{x}{x+y} \\ y^{\prime} & =\frac{y}{x+y}\end{aligned}\right.$
$\Delta\left(X_{k}, Y_{k}\right)\left(X_{k}, Y_{k}\right)=$
$\int(-1,0)$ with proba $\frac{X_{k}}{X_{k}+Y_{k}}$
$(0,-1)$ with proba $\frac{Y_{k}}{X_{k}+Y_{k}}$
$\left(\left(X_{k}, Y_{k}\right): k \geq 0\right)$ number of individuals in the tribes at step k

$$
\left\{\begin{array}{l|l}
x^{\prime}=\frac{1}{2} & \begin{array}{l}
\text { Pick an individual } \\
\text { uniformly at } \\
y^{\prime}=\frac{1}{2}
\end{array} \\
\begin{array}{l}
\text { random and it kill } \\
\text { someone in the } \\
\text { other tribe }
\end{array}
\end{array}\right.
$$

$\left\{\begin{array}{l}(-1,0) \text { with proba } \frac{1}{2} \\ (0,-1) \text { with proba } \frac{1}{2}\end{array} \left\lvert\,\left\{\begin{array}{l}(-1,0) \text { with proba } \frac{Y_{k}}{X_{k}+Y_{k}} \\ (0,-1) \text { with proba } \frac{X_{k}}{X_{k}+Y_{k}}\end{array}\right.\right.\right.$

Two tribes, initially n individuals in each tribe

At each step :
$\left\{\begin{array}{l}x^{\prime}=\frac{x}{x+y} \\ y^{\prime}=\frac{y}{x+y}\end{array}\right.$
$\Delta\left(X_{k}, Y_{k}\right)\left(X_{k}, Y_{k}\right)=$
$\int(-1,0)$ with proba $\frac{X_{k}}{X_{k}+Y_{k}}$
(0,-1) with proba $\frac{Y_{k}}{X_{k}+Y_{k}}$
$\left(\left(X_{k}, Y_{k}\right): k \geq 0\right)$ number of individuals in the tribes at step k

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = \frac { 1 } { 2 } } \\
{ y ^ { \prime } = \frac { 1 } { 2 } }
\end{array} \quad \left\{\begin{array}{l}
x^{\prime}=\frac{y}{x+y} \\
y^{\prime}=\frac{x}{x+y}
\end{array}\right.\right.
$$

$\left\{\begin{array}{l}(-1,0) \text { with proba } \frac{1}{2} \\ (0,-1) \text { with proba } \frac{1}{2}\end{array} \left\lvert\,\left\{\begin{array}{l}(-1,0) \text { with proba } \frac{Y_{k}}{X_{k}+Y_{k}} \\ (0,-1) \text { with proba } \frac{X_{k}}{X_{k}+Y_{k}}\end{array}\right.\right.\right.$

Two tribes, initially n individuals in each tribe
At each step :
$\left(\left(X_{k}, Y_{k}\right): k \geq 0\right)$ number of individuals in the tribes at step k

$$
\left\{\begin{array}{l}
x^{\prime}=\frac{x}{x+y} \\
y^{\prime}=\frac{y}{x+y}
\end{array} \left\lvert\,\left\{\begin{array} { l }
{ x ^ { \prime } = \frac { 1 } { 2 } } \\
{ y ^ { \prime } = \frac { 1 } { 2 } }
\end{array} \quad \left\{\begin{array}{l}
x^{\prime}=\frac{y}{x+y} \\
y^{\prime}=\frac{x}{x+y}
\end{array}\right.\right.\right.\right.
$$

Two tribes, initially n individuals in each tribe

At each step :

$$
\left\{\begin{array}{l}
x^{\prime}=\frac{x}{x+y} \\
y^{\prime}=\frac{y}{x+y}
\end{array}\right.
$$

Number of individuals remaining when one tribe dies out
$\left(\left(X_{k}, Y_{k}\right): k \geq 0\right)$ number of individuals in the tribes at step k

$$
\left\{\begin{array} { l }
{ x ^ { \prime } = \frac { 1 } { 2 } } \\
{ y ^ { \prime } = \frac { 1 } { 2 } }
\end{array} \left\{\begin{array}{l}
x^{\prime}=\frac{y}{x+y} \\
y^{\prime}=\frac{x}{x+y} \\
O_{\mathbb{P}}(\sqrt{n})
\end{array} \quad \begin{array}{l}
O_{\mathbb{P}}\left(n^{3 / 4}\right)
\end{array}\right.\right.
$$

Back to Karp-Sipser

Back to Karp-Sipser

Let

$$
A_{k}^{n}=X_{k}^{n}-n \mathscr{X}\left(\frac{k}{n}\right), \quad B_{k}^{n}=Y_{k}^{n}-n \mathscr{Y}\left(\frac{k}{n}\right), \quad C_{k}^{n}=Z_{k}^{n}-n \mathscr{X}\left(\frac{k}{n}\right),
$$

thive guess : $A_{k} \approx \sqrt{n}$, so vertices of degree 1 extinct wher

At that time, there are

Control of the fluctuations : the drift

- The fluctuations are smaller!
- The drift brings the X "closer" to its fluid limit \mathscr{X}. More precisely:

$$
\mathbb{E}\left[A_{k+1}-A_{k} A_{k}, B_{k}, C_{k}\right] \approx-\frac{1}{n t_{\mathrm{ext}}-k} A_{k}
$$

- Between $\frac{t_{\mathrm{ext}} n}{2}$ and $k=\left(t_{\mathrm{ext}}-\varepsilon\right) n$, we have,

$$
\begin{aligned}
\mathbb{E}\left[\begin{array}{ll}
A_{k} & A_{t_{\mathrm{ext}} n / 2}
\end{array}\right] & \approx A_{t_{\mathrm{ext}} n / 2} \cdot \prod_{i=t_{\mathrm{ext}} n / 2}^{k}\left(1-\frac{1}{t_{\mathrm{ext}} n-i}\right) \\
& \approx \sqrt{n} \frac{t_{\mathrm{ext}} n-k}{t_{\mathrm{ext}} n} \approx \varepsilon \sqrt{n}
\end{aligned}
$$

Control of the fluctuations: the variance

- Dominant case:

- Next order (probability $\approx \varepsilon^{1 / 2}$):

Control of the fluctuations: the variance

- So X increases or decreases by 1 with probability $\approx \varepsilon^{1 / 2}$. Thus, for $k=\left(t_{\mathrm{ext}}-\varepsilon\right) n$,

$$
\operatorname{Var}\left[A_{k+1}-A_{k} A_{k}\right] \approx \varepsilon^{1 / 2}
$$

- Adding all steps from $k=\left(t_{\mathrm{ext}}-\varepsilon\right) n$ to $k^{\prime}=\left(t_{\mathrm{ext}}-\frac{\varepsilon}{2}\right) n$, we get,

$$
\operatorname{Var}\left[A_{k^{\prime}}-A_{k} A_{k}\right] \approx \varepsilon^{1 / 2} \cdot \varepsilon n \approx \varepsilon^{3 / 2} n
$$

so the fluctuations coming "from the end" are of order $\varepsilon^{3 / 4} \sqrt{n}$

- Extinction when $\varepsilon^{3 / 4} \sqrt{n} \approx \varepsilon^{2} n$ i.e. when $\varepsilon \approx n^{-2 / 5}$.
- There are $\varepsilon n \approx n^{3 / 5}$ vertices of degree 2 and $\varepsilon^{3 / 2} n \approx n^{2 / 5}$ vertices of degree 3 .
- (We also need to control the fluctuations of Y and Z to ensure that the fluid limit approximation is still good for vertices of degree 2 and 3 before extinction).

Bonus : final SDE

- Focus on the time scale $k=n t_{\mathrm{ext}}-t n^{3 / 5}$, and look at the rescaled fluctuations:

$$
\widetilde{A_{k}}=\frac{1}{n^{1 / 5}}\left(X_{k}-n \mathscr{X}\left(\frac{k}{n}\right)\right) .
$$

- Drift and variance estimates:

$$
\begin{gathered}
\mathbb{E}\left[\widetilde{A}_{k+1}-\widetilde{A}_{k} \widetilde{A}_{k}\right] \approx-\frac{1}{t n^{3 / 5}} \widetilde{A}_{k}, \\
\operatorname{Var}\left[\widetilde{A}_{k+1}-\widetilde{A_{k}} \widetilde{A}_{k}\right] \approx 2 \sqrt{3} \sqrt{t} n^{-3 / 5}
\end{gathered}
$$

. So, $\quad\left(\frac{1}{n^{1 / 5}} A_{n t_{\text {ext }}+t n^{3 / 5}}:-K \leq t \leq 0\right) \xrightarrow[n \rightarrow \infty]{(d)}\left(F_{t}:-K \leq t \leq 0\right)$,
where

$$
\mathrm{d} F_{t}=-\frac{1}{t} F_{t} \mathrm{~d} t+\sqrt{2 \sqrt{3}} t^{1 / 4} \mathrm{~d} B_{t}
$$

Thank you for your attention!

