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k-core

Definition

The k-core of a graph G is the (unique) maximal subgraph of G in which

all vertices have induced degree at least k.
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k-core

Lemma
We can obtain the k-core of G by recursively removing the vertices of

degree less than k .



Phase transition

Let G (n, p) be an Erdős–Rényi random graph.

Theorem (Pittel, 90; Chvátal, 91)

Let p =
c
n . There exists ↵k > 0 such that

I (subcritical case) If c < ↵k , then there is no k-core with positive

probability (and with high probability for k � 3).

I (supercritical case) If c > ↵k , then the k-core has asymptotic size

�(c) · n.



Critical 2-core
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Theorem (Janson, Knuth, Luczak & Pittel, 93)

Let p =
1
n . Then the 2-core of G (n, p) has size of order n

1/3
as n goes to

infinity.



Discontinuity for the 3-core

For the 3-core, the phase transition is discontinuous.
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Karp–Sipser Core

Definition

The Karp–Sipser Core of a graph G is the subgraph of G obtained by

recursively removing the leaves of G and their neighbors.
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Phase transition

Theorem (Karp & Sipser, 81)

I (subcritical case) If c < e, then as n ! 1 we have

���KSCore
⇣
G

⇣
n,

c

n

⌘⌘��� = OP(1).

I (supercritical case) If c > e, then

n
�1 ·

���KSCore
⇣
G

⇣
n,

c

n

⌘⌘���
(P)���!

n!1
�(c) > 0.



Critical KS

Conjecture (Bauer & Golinelli, 2001, Table 1 line c)

In the critical case, we have

���KSCore
⇣
G

⇣
n,

e

n

⌘⌘��� ⇡ n
3/5



Our model

Fix dn = (d
n
1 , d

n
2 , d

n
3 )n�1 (number of vertices) such that

n = d
n
1 + 2d

n
2 + 3d

n
3 is even.

Consider a random multi-graph CM(dn) sampled by pairing the edges em-

anating for the d
n
1 + d

n
2 + d

n
3 vertices uniformly at random.
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anating for the d
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Phase transition revisited

Theorem (Budzinski, C. & Curien, 2022)

Let

⇥ = (p3 � p1)
2 � 4p1.

I (subcritical case) If ⇥ < 0, then as n ! 1 we have

|KSCore (CM(dn))| = OP(log(n)
2
).

I (supercritical case) If ⇥ > 0, then

n
�1 · |KSCore (CM(dn))| (P)���!

n!1

4⇥

3 +⇥
> 0.
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Critical KS

Theorem

Assume ⇥ = (p3 � p1)
2 � 4p1 = 0 (strictly critical case),

and let D2(n)

(resp. D3(n)) be the total number of half-edges attached to a vertex of

degree 2 (resp. 3) in the KS-core. Then we have

 
n
�3/5 · D2(n)

n
�2/5 · D3(n)

!
(d)���!

n!1
·
✓

C2 · #�2

C3 · #�3

◆
,

where # = inf{t � 0 : Bt = t
�2}, for a standard linear Brownian motion

(Bt : t � 0) issued from 0.
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Markovian Exploration

Main idea: Construct the core and attach the half-edges simultaneously.
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Markovian Exploration

Main idea: Construct the core and attach the half-edges simultaneously.

We denote by

(X
n
k ,Y

n
k ,Z

n
k : k � 0)

the number of unmatched half-edges linked to vertices of unmatched degree

1, 2, 3 at step k .

Proposition

(X
n
k ,Y

n
k ,Z

n
k : k � 0) is a Markov chain.



Example: Transitions for the 2-core
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Fluid limit approximation

Proposition

 
X

n
btnc
n

,
Y

n
btnc
n

,
Z

n
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n

!

0t✓n/n

(P)���!
n!1

(X ,Y ,Z )0ttext .
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Example: Fluid limit for the 2-core

x′ =
−2x − z
x + y + z

y′ =
−2y + 2z
x + y + z

z′ =
−3z

x + y + z



Example: Fluid limit for the 2-core

x′ =
−2x − z
x + y + z

, y′ =
−2y + 2z
x + y + z

, z′ =
−3z

x + y + z
.

• We have .(x + y + z)′ = − 2

{
• We assume  and obtain 

     

     

     

y(0) = 0

x(t) = (1 − 2z0)(1 − 2t) + z0(1 − 2t)3/2,

y(t) = 2z0((1 − 2t) − (1 − 2t)3/2),

z(t) = z0(1 − 2t)3/2,



Fluid limit approximation of the 2-core
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KS-core : transitions

The 13 possible transitions of this Markov chain...
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...and its fluid limit approximation:
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where (X ,Y ,Z ) is the unique solution to the di↵erential equation
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with initial conditions (p1, p2, p3) and where text is the first hitting time of

0 by the continuous process X .
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The fluid limit is not su�cient : Three examples
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Two tribes, initially  individuals in each tribe
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n
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Back to Karp—Sipser
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1 ·
p
n
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Let 

An

k = Xn
k − n𝒳 ( k

n ), Bn
k = Yn

k − n𝒴 ( k
n ), Cn

k = Zn
k − n𝒵 ( k

n ),

Naive guess :  , so vertices of degree  extinct when


 

Ak ≈ n 1

Ak ≈ n𝒳 ( k
n ) ⇔ n ≈ ε2n ⇔ ε ≈ n−1/4

At that time, there are 
 vertices of degree 

 and  vertices 
of degree .


εn ≈ n3/4

2 ε3/2n ≈ n5/8

3

text · n

n

(text � ") · n

4" · n

3"2 · n

4
p
3"3/2 · n

⇡ n3/5

X

Y

Z



Control of the fluctuations : the drift

• The fluctuations are smaller ! 


• The drift brings the  "closer" to its fluid limit . More precisely:





• Between  and , we have, 





X 𝒳

𝔼[Ak+1 − Ak |Ak, Bk, Ck] ≈ −
1

ntext − k
Ak

textn
2

k = (text − ε)n

𝔼[Ak |Atextn/2] ≈ Atextn/2 ⋅
k

∏
i=textn/2 (1 −

1
textn − i )

≈ n
textn − k

textn
≈ ε n



Control of the fluctuations : the variance

• Dominant case:

text · n

n

(text � ") · n

4" · n

3"2 · n

4
p
3"3/2 · n

⇡ n3/5

X

Y

Z

• Next order (probability ):≈ ε1/2



Control of the fluctuations : the variance
• So X increases or decreases by  with probability . Thus, 

for , 


.


• Adding all steps from  to , we get,  


,

so the fluctuations coming "from the end" are of order 


• Extinction when  i.e. when .


• There are  vertices of degree  and  vertices 
of degree .


• (We also need to control the fluctuations of  and  to ensure that the fluid limit 
approximation is still good for vertices of degree 2 and 3 before extinction).

1 ≈ ε1/2

k = (text − ε)n
Var[Ak+1 − Ak |Ak] ≈ ε1/2

k = (text − ε)n k′ = (text −
ε
2

)n

Var[Ak′ 
− Ak |Ak] ≈ ε1/2 ⋅ εn ≈ ε3/2n

ε3/4 n

ε3/4 n ≈ ε2n ε ≈ n−2/5

εn ≈ n3/5 2 ε3/2n ≈ n2/5

3

Y Z



Bonus : final SDE

• Focus on the time scale , and look at the rescaled fluctuations: 


.


• Drift and variance estimates:  


,


.


• So,            , 


where                             

k = ntext − tn3/5

Ãk =
1

n1/5 (Xk − n𝒳 ( k
n ))

𝔼[ Ã k+1 − Ã k | Ã k] ≈ −
1

tn3/5
Ã k,

Var[ Ã k+1 − Ã k | Ã k] ≈ 2 3 tn−3/5

( 1
n1/5

Antext+tn3/5 : − K ≤ t ≤ 0) (d)

n→∞
(Ft : − K ≤ t ≤ 0)

dFt = −
1

| t |
Ftdt + 2 3 | t |1/4 dBt .



Thank you for your attention !


