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Introduction

I This is joint work with Gabriel Conant, and a preprint is
available on arXiv.

I We study the family of all pairs (G,A) where G is an arbitrary
group, and A a finite subset of G, such that

I (i) (small tripling) |A ·A ·A| ≤ k|A| (for some fixed k),

I (ii) for some fixed finite bipartite graph Γ, the bipartitite
graph (G,G,EA) where EA(x, y) if xy ∈ A, omits Γ.

I We prove, roughly speaking, that up to a small error, A is a
union of a bounded number of translates of a coset
nilprogression of bounded rank and step. (Where the terms
will be explained later and we will not giving explicit bounds.)

I The proof makes use of nonstandard methods, related to
those in Conant-Pillay-Terry II, as well as existing results on
approximate subgroups (Breuillard-Green-Tao). Hrushovski’s
work on approximate subgroups is also an inspiration.
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Background I

I As the audience may be mixed, I would like to start with some
background, motivating or explaining the problematic.

I Let’s start with what I will call the arithmetic regularity
problem, of trying to say something meaningful about all pairs
(G,A) where G is a finite group and A a subset of G (in
analogy with Szemeredi graph regularity).

I A better not be too small, otherwise there is nothing one can
say. But if for example the cardinality of A is ≥ δ|G| for fixed
δ then one may hope for some kind of structure (an extreme
situation being that A is close to a bounded index subgroup
of G).

I What about saying something meaningful about all pairs
(G,A) where G is a not necessarily finite group, and A an
arbitrary finite subset of G?

I In general, one is in the first case above, where A is too small,
so it is natural to put some additional hypotheses on A.
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Background II

I One such hypothesis is “small tripling”; that
|A ·A ·A| ≤ k|A| (for fixed k). And we will call this the
approximate subgroup problem.

I Freiman’s theorem that when A is a subset of Z with small
doubling, then A is contained in a “generalized arithmetic
progression” of size ≤ C|A|, is a solution to the specialization
of the approximate subgroup problem to G = Z.

I Going back to arithmetic regularity, Green has a certain
Fourier analytic statement when G is abelian, but the general
case of G nonabelian is open.

I However there have been a series of results when additional
conditions are placed on the (finite) graph (G,G,EA), where
(x, y) ∈ EA iff xy ∈ A, such as k-stability, or k-NIP.
(Terry-Wolf, Alon-Fox-Zhao, Sisak, Conant-Pillay-Terry I,II)
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Background III

I The k-NIP case is more or less the case of some fixed finite
graph Γ being omitted by the (G,G,EA). (See below.)

I Among the above references, only Conant-Pillay-Terry deal
with the case where G is not necessarily abelian (but without
explicit bounds), and the conclusion is roughly that:

I Up to a small error (in various senses) A is a bounded union
of translates of a set π−1(B) where π is a homomorphism
from a bounded index subgroup H of G to a torus T and B is
a nice open neighbourhood of the identity in T.

I Going back to approximate subgroups, we have the theorem
of Breuillard, Green, and Tao, building on Hrushovski, that A
is covered by a bounded number of translates of a “coset
nilprogession” P ⊆ (A ∪A−1)8 (where P has bounded rank,
step, and is of bounded normal form).
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Background IV

I Our aim was to combine the approximate subgroup problem
and k-NIP arithmetic regularity problem, by considering all
pairs (G,A), G an arbitrary group, and A a finite subset with
k-tripling, where in addition (G,G,EA) is d-NIP for some
fixed k, d.

I This extends and was motivated by recent work of
Martin-Pizarro, Palacin, and Wolf, who assume d-stability
instead of d-NIP. Also Sisask has a statement in the d-NIP
case when G = Fn

q .

I The title mentions approximate subgroups: A k-approximate
subgroup of a group G is a symmetric subset A such that
A ·A is covered by k translates of A.

I A finite k-approximate subgroup has k-tripling, and if A is
finite with k-tripling then (A∪A−1)2 is f(k)-approximate (for
an explicit f = cxd). (Tao).

I For G abelian small doubling suffices above.
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Coset progressions

I As promised we define some terms. For motivation we start
with coset progressions.

I A generalized arithmetic progression in a group G is the image
of a d-dimensional box B =

∏
i=1,..,d[−Li, Li] ⊂ Zd under a

homomorphism π : Zd → G.

I Here G is usually abelian, and a properness condition says
that π is 1− 1.

I For G abelian a generalized arithmetic progression of
dimension d is a 2d-approximate subgroup.

I Conversely, Green-Ruzsa prove, generalizing Freiman’s
theorem that if A is a finite subset of an abelian group G, and
A has k-doubling, then A is contained in e translates of a
coset progression P = P0 +H where P0 is a generalized
arithmetic progression of dimension d, H is a finite subgroup
of G, P ⊆ 2A− 2A (and e, d depend on k).



Coset nilprogressions

I This is a generalization:

I In place of the box B above, one considers instead a “box” in
the free nilpotent group of step r and rank k, consisting of
elements which can be written as a word in the generators
e1, .., ek where ei and its inverse appear at most Li times.

I And a nilprogression (rank k, step r) in a group G is an image
of such a box under a homomorphism.

I A coset nilprogression in G is a set P of the form P0H where
P0 is a nilprogression and H a finite subgroup of G
normalized by P0. P has rank r, step k, if P0 does.

I There is an analogue of the properness, or irredundancy
condition, which is called c-normal form, and which I will not
get into.
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NIP and VC-dimension

I Given pairs (G,A), G an arbitrary group, A an arbitrary
subset, we say that A is d-NIP, if the graph (G,G,EA)
(mentioned earlier) omits the graph ([d],P[d],∈).

I This condition is implied by (G,G,EA) omitting some
sufficiently large finite subgraph.

I Also A being d-NIP is equivalent to the family of left
translates of A in G having VC-dimension strictly less than d.

I Let us mention in passing that if A ⊂ G is (finite) and d-NIP
with k-tripling then already A ∪A−1 ∪ {1} is a
cdk

e-approximate subgroup.
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Statements

I Recall again the BGT theorem that if A is a finite subset of a
group G, which has k-tripling, then there is a coset
nilprogression P ⊆ (A ∪A−1)8 with rank and step Ok(1) and
such that Ok(1) translates of P cover A.

Our theorem is:

Theorem 0.1
Suppose A is a finite subset of a group G, and A has k-tripling
and d-NIP. Given ε > 0, there is a coset nilprogression P ⊆ G, and
a subset Z ⊆ AP with |Z| < ε|A| (the error set) such that
(i) P ⊆ AA−1 ∩A−1A and A ⊆ CP for some C ⊆ A,
(ii) For some D ⊆ C, |(A∆DP ) \ Z| < ε|P |.
(iii) For g ∈ G \ Z, |gP ∩A| < ε|P | or |gP ∩A| > (1− ε)|P |.
Moreover rank and step and normal form of P , and the cardinality
of C, are bounded by constants depending only on d, k, ε. And if
G is abelian we can take P to be a (proper) coset progression.



Statements

I Recall again the BGT theorem that if A is a finite subset of a
group G, which has k-tripling, then there is a coset
nilprogression P ⊆ (A ∪A−1)8 with rank and step Ok(1) and
such that Ok(1) translates of P cover A.

Our theorem is:

Theorem 0.1
Suppose A is a finite subset of a group G, and A has k-tripling
and d-NIP. Given ε > 0, there is a coset nilprogression P ⊆ G, and
a subset Z ⊆ AP with |Z| < ε|A| (the error set) such that
(i) P ⊆ AA−1 ∩A−1A and A ⊆ CP for some C ⊆ A,
(ii) For some D ⊆ C, |(A∆DP ) \ Z| < ε|P |.
(iii) For g ∈ G \ Z, |gP ∩A| < ε|P | or |gP ∩A| > (1− ε)|P |.
Moreover rank and step and normal form of P , and the cardinality
of C, are bounded by constants depending only on d, k, ε. And if
G is abelian we can take P to be a (proper) coset progression.



Comments

I Note first that there is no ε in BGT. The dependence on ε is a
typical feature of regularity statements.

I Item (i) includes (and improves) BGT (of course under the
additional NIP hypothesis).

I The rest says that up to the error set Z, A is a union of a
bounded number of translates of the coset nilprogresson P ,
which is a fairly tight structure theorem for A.

I Note that (iii) follows from (ii).

I When G (or even AA−1 ∩A−1A) has exponent at most r,
then the coset nilprogression can be replace by a finite
subgroup H, so that after throwing away the error set Z, A is
a bounded union of left cosets of H up to a set of size at
most ε|H|.

I In the rest of this talk, I will discuss aspects of the proof of
the Theorem (which is more than just superimposing CPTII
on BGT, although the srtategy is similar).
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Remarks on proofs I

I The proof is essentially a nonstandard proof. Namely prove a
single statement in a nonstandard environment; a group G
equipped with a pseudofinite subset A which has k-tripling
(with respect to the pseudofinite counting measure) and A is
d-NIP.

I (If one wants, consider G,A as living in a nonstandard model
of set theory which thinks A is finite.)

I The use of model theory or logic has two aspects: (a) proving
the relevant statement in the nonstandard (pseudofinite)
environment and (b) pulling it down suitably to obtain the
theorem.

I Part (b) is essentially routine. Part (a) is the main thing
although the current proof still involves going down here and
there and appealing to BGT. In any case, from here on it is
model theory.
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Remarks on proofs II

I So we have (G,A) as above which some might want to think
of as an ultraproduct of (Gi, Ai) with the Ai finite, with
k-tripling and d-NIP. No harm in assuming G saturated.

I Let H be the subgroup of G generated by A. H is what is
called ∨- or ind-definable, being a union of the definable sets
A±m = Am ∪A−m ∪ {1}, where for m ≥ 2, A±m is covered
by finitely many left (right) translates of A (using the
assumptions).

I Let µ be the pseudofinite counting measure, normalized such
that µ(A) = 1.

I Let R be the “ring” generated by the left-right translates of
A by elements of H.

I Then µ is <∞-valued on elements of R and is both left and
right H-invariant.
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Remarks on proofs III

I I will state the basic steps, with some simplifications, and
where A being NIP (and pseudofinite) is essential.

I Step I: The NIP stabilizer theorem:

I Γ = {g ∈ G : µ(gA∆A) = 0} = {g ∈ G : µ(Ag∆A) = 0} is a
countably R-type-definable normal subgroup of H contained
in AA−1 ∩A−1A and of “bounded index” in H. (In fact Γ is
H00
R .)

I The quotient H/Γ is a locally compact group (logic topology)
G say, let π : H → G be the canonical surjective
homomorphism.

I Step II: Uniqueness of measure:

I For any left-H-invariant nontrivial measure ν on R the 0-ideal
of ν corresponds to the 0-ideal of µ, which will be the
“non-generics”. (In fact ν will equal µ up to scaling.)
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Remarks on proofs IV

I Step III: Generic locally compact domination:

I Let λ be a Haar measure on G, let X be a set in R. Then
there is a closed set E ⊂ G of λ-measure 0 such that for all
c ∈ G \ Z, exactly one of π−1(c) ∩X, π−1(c) \X is “µ-wide”
(is not contained in a definable set of µ-measure 0).

I A compactness argument and trick from CPTII yields:

I Step IV: Let Γ = ∩Wn, where (Wn)n are decreasing sets in
R. Then for every ε > 0, there is Z ∈ R with µ(Z) < ε, and
n, such for all g ∈ G \ Z either µ(gWn ∩A) = 0 or
µ(gWn \A) = 0.

I We can write Wn as W 4 for some W ∈ R containing Γ which
is an approximate subgroup. Appealing to (ultra) BGT there
is an internal coset nilprogression P ⊆ G with P ⊆Wn and
finitely many translates of P covering Wn.
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Remarks on proofs V

I So with one replaces Wn in the conclusion of Step 4, by P , to
obtain the desired statement in the nonstandard environment:

I Step V: For any ε > 0 there is an internal coset nilprogression
P in normal form, and Z ⊆ AP with Z ∈ R and µ(Z) < ε,
such that P ⊆ AA−1 ∩A−1A, A is covered by finitely many
translates of P , for each g ∈ G \ Z, µ(gP ∩A) = 0 or
µ(gP \A) = 0. We conclude that A \ Z is a finite union of
translates gP of P , up to measure 0.
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Final comment

I A natural question, and one asked by possibly Pierre Simon in
an earlier talk by Conant on this topic, is whether there is a
pure measure-theoretic (model-theoretic) statement in the
background.

I The answer should be yes.

I There is an account of generically stable φ-measures for
φ(x, y) an NIP formula, and k-tripling generalizes to the
presence of an invariant measure.

I And one should make an assumption on the relevant locally
compact group H/Γ, namely that it is an inverse limit of Lie
groups, each of whose connected components is nilpotent
(which is something proved in BGT when A is a pseudofinite
approximate subgroup).
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