

Fairness: how to share resources between individuals?
Uneven setting: individuals have different locations/desires/abilities.

Maximize "overall happiness"...?

Should we make Xhappier but Yless happy?

slightly
...even if X already happier than Y ?

Maximize $\sum_{\text {individuals }} f$ (happiness).

Given such a metric, what are the consequences?
Can individuals agree on a solution?

Simple but rich mathematical setting: Matching

$\left.\begin{array}{l}R=\{\text { red points }\} \\ B=\{\text { blue points }\}\end{array}\right\} \begin{aligned} & \text { Independent intensity- } 1 \\ & \text { Poisson point processes in } \mathbb{R}^{d}\end{aligned}$
$M=$ red-blue matching
\# of points in A ~ Poisson(vol(A)) Independent \#s of points in disjoint sets Countably infinite \# of points

Solution: minimize locally.

M is γ-minimal if \forall finite $\left\{\left(r_{1}, b_{1}\right), \ldots,\left(r_{m}, b_{m}\right)\right\} \subseteq M$,

$$
\sum_{i}\left|r_{i}-b_{i}\right|^{\gamma}=\min _{\sigma \in \mathrm{S}_{m}} \sum_{i}\left|r_{i}-b_{\sigma(i)}\right|^{\gamma}
$$

Also: $-\infty<\gamma<0$: replace $\left|\left.\right|^{\gamma}\right.$ with $-| |^{\gamma}$ $\gamma=0$:
$\gamma=-\infty$ (selfish): lexicographically minimize

$$
\uparrow \text { ordering of }\left|r_{1}-b_{1}\right|, \ldots,\left|r_{m}-b_{m}\right|
$$

$\gamma=+\infty$ (altruistic): lexicographically minimize \downarrow ordering of $\left|r_{1}-b_{1}\right|, \ldots,\left|r_{m}-b_{m}\right|$

Questions:

Does a γ-minimal matching exist?
Is it unique?
Is every point matched?

Allow unmatched points! Then $\boldsymbol{\gamma}$-minimal means:

$$
\forall\left(r_{1}, b_{1}\right), \ldots,\left(r_{m}, b_{m}\right) \in M
$$ and unmatched $x_{1}, \ldots, x_{k} \in R \cup B$,

$\left(\right.$ \#unmatched,$\left.\sum_{i}\left|r_{i}-b_{i}\right|^{\gamma}\right) \begin{aligned} & \text { is lexicographically } \\ & \text { minimized among } \\ & \text { matchings of }\left\{r_{i}, b_{i}, x_{i}\right\}\end{aligned}$
(in particular, cannot have both red and blue unmatched points)

Questions:

Does a γ-minimal matching exist?
Is it unique?
Is every point matched?
Can we decide on a matching by a local algorithm?
Edge lengths?

Also: 1-colour matching (all definitions analogous).

$\gamma=-\infty$: fairly complete picture (especially 1-colour)

$d=1: \quad$ fairly complete picture (especially 2-colour)

fairness makes things harder
$d \geq 2, \quad \gamma>-\infty: \quad$ existence in some cases

Open (e.g.): existence for 2 colours, $d=2, \quad \gamma=1, \infty$?

Case $\gamma=-\infty$: stable matching

(Holroyd, Pemantle, Peres, Schramm, 2008)
Theorem: For any $d \geq 1$, and for R (and B) independent intensity-1 Poisson processes on \mathbb{R}^{d}, a.s. there is a unique ($-\infty$)-minimal 1- (2-)colour matching, and it is perfect (i.e. no unmatched points).

In fact, it is the unique stable matching (marriage) in the sense of (Gale, Shapley, 1962):
each point prefers a partner as close as possible; matching is unstable if there exist a pair (of opposite colours) that both prefer each other over their current situation.

Original formulation (Gale, Shapley, 1962):
n girls, n boys have arbitrary preference orders over those of opposite sex.

Theorem: there exists a stable set of n heterosexual marriages (and an algorithm...)

Not necessarily unique; may not exist in 1-colour / same-sex marriage / "roommates" version.

2012 Nobel memorial prize in Economics:
Roth and Shapley.

Simple algorithm to construct the stable matching in our setting:

match all mutually closest pairs

Simple algorithm to construct the stable matching in our setting:

match all mutually closest pairs

remove them
repeat for countably many steps

Theorem: (HPPS 2008) For the stable matching, the matching distance X from a typical point to its partner satisfies $\mathbb{E} X^{\alpha-\epsilon}<\infty$ but $\mathbb{E} X^{\beta}=\infty$, where:

	α	β
1-colour	d	d
2 -colour, $d=1$	$1 / 2$	$1 / 2$
2 -colour, $d=2$	0.496	1
2 -colour, $d \geq 3$	$\Theta(1 / \log d)$	d

Theorem: (Eccles, Holroyd, Liggett, 2020+) For the 1-colour stable matching in $d=1$,

$$
\mathbb{P}(X>r) \sim c / X
$$

where $c=e^{2 \gamma}$

Thomas M. Liggett, 1944-2020

Many variants...

Case $\boldsymbol{d}=1$

Theorem (Janson, Holroyd, Wästlund, 2020+)

For $d=1$, any γ,
a.s. every γ-minimal 1- or 2-colour matching is perfect.

Similarly on the strip $\mathbb{R} \times[0,1]$.

Note: Much stronger conclusion than:

Theorem: for any d, any stationary γ-minimal matching is perfect.
Proof:
1-colour: ≤ 1 unmatched point.
2-colour: all unmatched points same colour + ergodic decomposition.

The picture for $d=1$

The picture for $d=1$: classification

Theorem (JHW 2020+) For d=1, a.s. the set of 2-colour γ-minimal matchings is:
$\gamma \geq 1^{+}$: countable family $\left(M^{k}\right)_{k \in \mathbb{Z}}$; no stationary matching locally finite
$\gamma=1$: uncountable; uncountably many stationary matchings locally finite and locally infinite
locally finite locally infinite
$\gamma=1^{-}:\left(M_{k}\right)_{k \in \mathbb{Z}}, M_{\infty}, M_{-\infty}$;
only stationary matchings are mixtures of $M_{\infty}, M_{-\infty}$
locally infinite
$\gamma<1^{-}$: unique M; \therefore stationary.

Theorem (JHW 2020+): d=1, 2-colour.
For all $\gamma \geq 1^{+}$, the matchings are the same.
For any $\gamma<1^{-}, \gamma^{\prime} \leq 1^{-}$,
M, M^{\prime} have finite differences.

Theorem (JHW 2020+):
$d=1$, 2 -colour, $\gamma<1^{-}$(or M_{∞} or $M_{-\infty}$)
Matching distance X satisfies $\mathbb{E} X^{\alpha}<\infty$ iff $\alpha<\frac{1}{2}$.
M is a finitary factor of (R, B) with coding radius L satisfying $\mathbb{E} L^{\beta}<\infty$

Can determine partner of a point by looking at points within (random) radius L

d=1, 1-color:

similar, but some proofs missing

- in particular, uniqueness for $\gamma<1$

Higher dimensions:

Theorem (JHW 2020+):

\exists a stationary (hence perfect) γ-minimal matching for:

$$
\begin{aligned}
& \text { 2-colour, } d \leq 2, \gamma<1 \text {; } \\
& \text { 2-colour, } d \geq 3, \gamma<\infty \text {; } \\
& \text { 1-colour, } d \geq 2, \gamma<\infty \text {. }
\end{aligned}
$$

Uniqueness open. Perfectness in general open.
Existence open for other cases (note $d \leq 2, \gamma \in\{1, \infty\}$!)

Is there a case with no existence?
Theorem (Holroyd 2010): ヨ no 1-minimal 2-colour matching on the strip.

Note: 1-minimal matchings in $d=2$ have no crossings

Open: is there a stationary perfect 2-colour matching of independent Poisson processes with no crossings?

Theorem (Holroyd 2010): Yes if we drop stationarity.

$d=1$ classification

$\gamma \geq 1^{+}$

ordering of red points = ordering of blue partners

must match on same level of walk

$$
\gamma=\mathbf{1}^{-}
$$

Perfectness: 2-colour, $d=1$ (or strip), any γ. potentially unmatched = unmatched in some γ-minimal M a.s. exist red and blue potentially unmatched points r, b

comp(b) infinite:

$$
\begin{array}{rlr}
c_{0} & \geq c_{1} \\
c_{1} & \geq c_{2} \\
c_{0}+c_{2} & \geq c_{1}+c_{3} \quad \\
c_{1}+c_{3} & \geq c_{2}+c_{4} \quad \not \quad c_{0} \geq c_{i} \forall i \\
& \ldots & \\
\text { (percolation) }
\end{array}
$$

Existence: $\gamma<1$, all d.
Quasi-stability:

$$
\exists c(\gamma) \geq 1:
$$

impossible
$>C r$

stationary
subsequential
limit

All unmatched points same colour...

Existence: provided $0<\gamma<\infty$ and there exists a stationary (not necessarily minimal) M with finite "average cost":

$$
\mathbb{E} X^{\gamma}<\infty
$$

subsequential limit of matchings M_{n} with

$$
\mathbb{E} X_{n}^{\gamma} \searrow \inf _{M} \mathbb{E} X^{\gamma}
$$

is γ-minimal.
E.g. true for 2 colours:

$$
\begin{array}{ll}
d \leq 2, & \gamma<\frac{d}{2} \\
d \geq 3, & \gamma<\infty
\end{array}
$$

Uniqueness, finite differences, finitariness:

$d=1, \gamma<1$.
Random walk / Brownian motion estimates \Rightarrow
$\exists L$ (random, with $\left.\mathbb{E} L^{\beta}<\infty\right)$

Quasi-stability + same-level matching \Rightarrow matching "trapped" in $[-L, L]$

Tail bound:

$d=1, \gamma<1$.
Bad point: distance to partner $>(2 c+1) L$

Bad points of ≤ 1 colour, say red.

equal \# good red \& blue

$\mathbb{E} \#$ bad red in $[0, L] \leq \mathbb{E}$ range of random walk in $[0, L]$

$$
L \mathbb{P}[X>(2 c+1) L] \leq C / \sqrt{L} \quad \mathbb{E} X^{\frac{1}{2}-\epsilon}<\infty
$$

Open Questions

Any setting (colours, d, γ) with non-existence ?
(e.g. 2 colours, $d=2, \gamma=1, \infty$)

Uniqueness for $d=1, \gamma<1,2$ colours ?

Perfectness for $d \geq 2$?

Better tail bounds for $d=1$?

Tail bounds, uniqueness, phase transitions ... for $d \geq 2$?

