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Overview of the talk

1. Sharpness in Percolation

2. Random walks and Random Interlacements

3. Main results

4. Interpolation technique
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Introduction to Percolation



Bernoulli percolation

� Introduced by Broadbent and Hammerley in 1957.

� Very simple model.

� Extensively studied.

� Physics: understood. Math: deep open questions.

� (d ≥ 2) Consider Zd with edges between nearest neighbors.

� Fix p ∈ [0, 1].

� Every edge is declared open with probability p and closed w.p. (1− p).

� This is done independently for every edge.
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Phase transition

Consider:

[0↔∞] := there exists an open path from 0 to infinity. (1)

Its probability θ(p) is weakly monotone in p:

θ(p) := P[0↔∞] (2)

A beautiful path-counting argument (Peierls) shows that:

� θ(p) = 0 for p small;

� θ(p) > 0 for p close to one.

Phase transition! 4



Open questions

Define

pc = sup{p ∈ [0, 1]; θ(p) = 0}.

There are still many question that remain open concerning this model:

� Is θ(p) continuous for dimensions 3, 4, ..., 10?

� How does θ(p) behave as p approaches pc?
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Sub-critical Sharpness



From definition

p < pc ⇒ P
[
0↔ ∂Bn

]
→ 0.

From path counting

p <
1

2d
⇒ P

[
0↔ ∂Bn

]
≤ Ce−cn.

Definition

p∗∗ := sup
{
p ∈ [0, 1];∃c ,C with P[0↔ ∂Bn] ≤ Ce−cn

}
.

Theorem (Hammersley)

One has p∗∗ = p∗∗∗, where

p∗∗∗ := sup
{
p ∈ [0, 1];E [C0] <∞

}
.

Theorem (Menshikov, Aizenman+Barski, Duminil-Copin+Tassion)

pc = p∗∗∗.
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Super-critical Sharpness



Super-critical Sharpness

� Ex(p):

Pp

[
∃C ∈ Bn; diam(C) ≥ n/10

]
≥ 1− Ce−cn.

� Uniq(p):

Pp

[
∀C1, C2 ∈ Bn; diam(Ci ) ≥ n/10, C1 ←→

B2n

C2

]
≥ 1− Ce−cn.

Not monotone!

Counting surfaces:

p ∼ 1 ⇒ Ex(p) and Uniq(p)

Define:

p̄ := inf
{
p ∈ [0, 1]; Ex(p) and Uniq(p)

}
0 p∗∗ pc p̄ 1
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Super-critical

Theorem (Chayes, Chayes, Newman)

pc = pslab

Theorem (Grimmett, Marstrand)

pslab = pc
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Random Interlacements



Random Interlacements

Introduced by Sznitman in 2007.

Iu ⊆ Zd (d ≥ 3), related to

� trace of SRW on torus

� large deviations for SRW

� . . .

� Example of strongly dependent percolation.
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Construction of RI

Fix u ≥ 0.

Construction of Iu ∩ R.

� For each x ∈ ∂R;

� Sample Nx
d∼ Poisson(eR(x));

� Run Nx independent SRW’s.
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Phase transition for RI

Cov(x ∈ Iu, y ∈ Iu) ∼ 1

|x − y |d−2

Iu is infinite and connected a.s. (∀u ≥ 0)!

Vu = Zd \ Iu.

u∗ := inf
{
u ≥ 0;P

[
0
Vu

←→∞
]

= 0
}

Theorem (Sznitman, Sidoravicius + Sznitman)

(d ≥ 3), 0 < u∗ <∞

see also Ráth.
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Quantitative thresholds

Sub-critical: u∗∗ := inf
{
u ≥ 0;∀n P

[
0
Vu

↔ ∂Bn

]
≤ Ce−cn

ε}
Theorem (Sidoravicius + Sznitman)

u∗∗ <∞
and

u∗∗ = u∗∗∗ := inf
{
u ≥ 0;P

[
Bn
Vu

↔ ∂B2n

]
→
n

0
}

Super-critical: ū := sup
{
u ≥ 0; Ex′(u),Uniq′(u)

}
Theorem (T. d ≥ 5, Drewitz+Rath+Sapozhnikov d ≥ 3)

ū > 0

What about uslab?
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Main Result



Main result

� Ex(u):

Pp

[
∃C ∈ Vu ∩ Bn; diam(C) ≥ n/10

]
≥ 1− Ce−cn

ε
.

� Uniq(u, v):

Pp

[
∀C1, C2 ∈ Vu ∩ Bn; diam(Ci ) ≥ n/10, C1

Vv∩B2n↔ C2

]
≥ 1− Ce−cn.

Note the sprinkling!

¯̄u := sup
{
u ≥ 0; Ex(u) and ∀v < u Uniq(u, v)

}
Theorem (Duminil-Copin+Goswami+Rodriguez+Severo+T.)

u∗∗ = u∗ = ¯̄u

Applications (conditional statements):

� RW on torus/cylinder

� Large deviations for SRW . . . 13



Ideas of proofs

� Reuse Bernoulli sharpness!!!

� Weaken ¯̄u

� General sharpness for finite range models

� Couple with finite range model

� Interpolate the coupling
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Weaken ¯̄u

Let

M(R) := exp
{

logγ(R)
}

, with γ large

then

ũ := sup
{
u ≥ 0;P

[
Br ↔ ∂BM(R)

](M(R)

R

)d
→ 0

}
Monotone! Similar to sub-critical!

Theorem (Duminil-Copin+Goswami+Rodriguez+Severo+T.)

ũ = ¯̄u

Inspired by Benjamini+Tassion
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Sharpness for finite range models

Theorem (Duminil-Copin+Goswami+Rodriguez+Severo)

u∗∗ = u∗ = ¯̄u for all models satisfying:

a) lattice symmetries

b) FKG

c) Finite energy

d) Finitary factor of i.i.d.

e) Sprinkling: ωu � ωu−ε ∪ Ber(δ)
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Finitary RI

Define Iu,L:

� PPP on Zd , intensity
(
u
L

)
� For each point, take a SWR with length L

Called finitary R.I. (Bowen, Cai, Zhang, Ráth+Rokob, . . . )

Iu,L → Iu

Also I u,L satisfies a), b), . . . , e), thus

uL∗∗ = ũL
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Interpolation



Coupling L and 2L

Theorem (Duminil-Copin+Goswami+Rodriguez+Severo+T.)

“ P

[
Iu−ε,L ⊆ Iu,2L ⊆ Iu+ε,L in BL+K

]
≥ 1− (L + K )de−cL

1/4 ”

18



Interpolation

1) From infinite to finite:

P
[
Br

Vu

←→ ∂BR

]
≥ P

[
Br
Vu+εL,L←→ ∂BR

]
− exp

{
− logγ

′
(R)
}

2) From L to 2L:

P
[
Br
Vu,2L

←→ ∂BR

]
≥ P

[
Br
Vu+εL,L←→ ∂BR

]
− exp

{
− logγ

′
(R)
}

1R<M(L)

3) Box by box

P
[
Br

Vk

←→ ∂BR

]
≥ P

[
Br
Vk+1

←→ ∂BR

]
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