Tail asymptotics for extinction times of self-similar fragmentations

Bénédicte Haas, Université Sorbonne Paris Nord
Goal: obtain some information on the distribution of some positive random variables, which, depending on the point of view, can be seen as:

- the extinction times of some fragmentation processes
- the heights of continuous compact rooted random trees
- the scaling limits of the heights of sequences of discrete trees (e.g. the scaling limit of the height of a uniform rooted random tree with \(n \) nodes)
Three parts:

1. Self-similar fragmentations, extinction times and connections with random trees
2. Large time asymptotics of the distribution tails of the extinction times; examples
3. Two main steps of the proof
Fragmentation models:

Fragmentation models: describe the evolution of objects that **split repeatedly** as time goes on.

![Diagram of fragmentation models](image)

Extensive study in Mathematics since the mid-1900s (both from deterministic and random points of view) explained by:

- **many motivations** coming from biology and population genetics, computer science, polymerization, but also random trees and graphs

- the setting of **fairly general models** that are relatively easy to study
Self-similar fragmentations

We focus on random models where objects are only characterized by their mass and the dynamic is governed by:

- a branching property: different objects evolve independently
- a self-similarity property: an object splits at a rate proportional to a power of its mass

Starting at time 0 with a unique object of mass 1, we let $F(t)$ denote the sequence of masses present at time $t \geq 0$:

$F(t) \in S := \{(s_i)_{i \geq 1} : s_1 \geq s_2 \geq s_3 \ldots ; \infty \sum_{i=1} s_i \leq 1\}$

$F(0) = (1, 0, 0, \ldots)$

The splitting rule depends on two parameters: $\alpha \in \mathbb{R}$ (the index of self-similarity) and a measure ν on S such that a mass m splits in masses $(m s_1, m s_2, \ldots)$ at rate $m^\alpha d\nu(s_1, s_2, \ldots)$

First ref.: Kolmogorov 41, Filippov 61, Brennan and Durrett 86-87, Bertoin 01-02

Many studies on those models since 2000+.

Self-similar fragmentations

We focus on random models where objects are only characterized by their mass and the dynamic is governed by:

- a **branching property**: different objects evolve independently
- a **self-similarity property**: an object splits at a rate proportional to a power of its mass

Starting at time 0 with a unique object of mass 1, we let $F(t)$ denotes the sequence of masses present at time $t \geq 0$:

$$F(t) \in S := \left\{ (s_i)_{i \geq 1} : s_1 \geq s_2 \geq s_3 \ldots ; \sum_{i=1}^{\infty} s_i \leq 1 \right\}$$

$(F(0) = (1, 0, 0, \ldots))$
Self-similar fragmentations

We focus on random models where objects are only characterized by their mass and the dynamic is governed by:

- a **branching property**: different objects evolve independently

- a **self-similarity property**: an object splits at a rate proportional to a power of its mass

Starting at time 0 with a unique object of mass 1, we let $F(t)$ denotes the sequence of masses present at time $t \geq 0$:

$$F(t) \in S := \left\{ (s_i)_{i \geq 1} : s_1 \geq s_2 \geq s_3 \ldots ; \sum_{i=1}^{\infty} s_i \leq 1 \right\}$$

$(F(0) = (1, 0, 0, \ldots))$

The splitting rule depends on two parameters: $\alpha \in \mathbb{R}$ (the index of self-similarity) and a measure ν on S such that

a mass m splits in masses (ms_1, ms_2, \ldots) at rate $m^\alpha d\nu(s_1, s_2, \ldots)$

First ref.: Kolmogorov 41, Filippov 61, Brennan and Durrett 86-87, Bertoin 01-02

Many studies on those models since 2000+.
The \((\alpha, \nu)\)-model when \(\nu\) is finite:

- A mass \(m\):
 - splits after a time \(\sim \text{Exp}(m^\alpha \nu(S))\)
 - in masses \((mS_1, mS_2, \ldots)\) where \((S_1, S_2, \ldots) \sim \nu(\cdot)/\nu(S)\)

Remark. Mean time of splitting of a fragment with mass \(m\): \(m^{-\alpha}/\nu(S)\):

- when \(\alpha > 0\) small fragments splits slower than the large ones
- when \(\alpha < 0\), small fragments splits faster than the large ones.
Self-similar fragmentations

The \((\alpha, \nu)\)-model when \(\nu\) is finite:

- a mass \(m\):
 - splits after a time \(\sim \exp(m^{\alpha} \nu(S))\)
 - in masses \((mS_1, mS_2, \ldots)\) where \((S_1, S_2, \ldots) \sim \nu(\cdot)/\nu(S)\)

Remark. Mean time of splitting of a fragment with mass \(m\): \(m^{-\alpha}/\nu(S)\):

- when \(\alpha > 0\) small fragments splits slower than the large ones
- when \(\alpha < 0\), small fragments splits faster than the large ones.

When \(\nu\) is infinite: infinitely many fragmentations in any strictly positive interval of times.
Necessity that \(\int_{S} (1 - s_1) \nu(ds) < \infty\) to prevent the system to explode entirely at time 0+.
Hypotheses: $\alpha < 0$ and $\nu(S) > 0 \Rightarrow$ very small objects split very quickly!

Ex.: $\nu = \delta_{(1/2, 1/2, 0, \ldots)}$

for any $x \in (0, 1)$ non-dyadic, the fragment containing x reaches mass 2^{-n} at time
$\sum_{i=1}^{n} T_i$, with $T_i \sim \text{Exp}(2^{-\alpha(i-1)})$

hence reaches 0 at time $\sum_{i=1}^{\infty} T_i < \infty \text{ a.s.}$
Extinction time

Hypotheses: \(\alpha < 0 \) and \(\nu(S) > 0 \) \(\Rightarrow \) very small objects split very quickly!

Ex.: \(\nu = \delta_{(1/2, 1/2, 0, \ldots)} \)

for any \(x \in (0, 1) \) non-dyadic, the fragment containing \(x \) reaches mass \(2^{-n} \) at time \(\sum_{i=1}^{n} T_i \), with \(T_i \sim \text{Exp}(2^{-\alpha(i-1)}) \)

hence reaches 0 at time \(\sum_{i=1}^{\infty} T_i < \infty \) a.s.

In general: For any \((\alpha, \nu) \), \(\alpha < 0 \) and any \((\alpha, \nu) \) fragmentation \(F \):

\[
\zeta := \inf\{t \geq 0 : F(t) = (0, 0, \ldots)\},
\]

the first time at which the entire initial mass is reduced to dust.
For any \((\alpha, \nu)\), \(\alpha < 0\):

Proposition (Filippov 61, McGrady & Ziff 87, Bertoin 02)

The extinction time \(\zeta\) is finite almost surely.

Proposition (H. 03)

The tail of \(\zeta\) is exponential or even lighter:

\[
\exists \theta \geq 1 : \mathbb{P}(\zeta > t) \leq \exp(-\text{cst} \cdot t^\theta) \text{ for all } t \text{ large enough.}
\]
Connection with random trees

The r.v. \(\zeta \) may also be seen as the height of a random tree which is the scaling limit of models of discrete trees.

- **Ex.1**: \(H_n \): height of a Galton-Watson tree with offspring distribution with mean 1 and variance \(0 < \sigma^2 < \infty \) conditioned on having total progeny \(n \).

Aldous 93: This GW tree, appropriately normalized, converges to the *Brownian continuum tree*. In particular,\[
\frac{H_n}{\sqrt{n}} \xrightarrow{n \to \infty} \frac{2}{\sqrt{\sigma^2}} \cdot \zeta_{Br}
\]
where \(\zeta_{Br} \) is the height of the Brownian tree.
Connection with random trees

The r.v. ζ may also be seen as the height of a random tree which is the scaling limit of models of discrete trees.

- **Ex.1:** H_n: height of a Galton-Watson tree with offspring distribution with mean 1 and variance $0 < \sigma^2 < \infty$ conditioned on having total progeny n.

Aldous 93: This GW tree, appropriately normalized, converges to the *Brownian continuum tree*. In particular,

$$\frac{H_n}{\sqrt{n}} \xrightarrow{\text{law}} \frac{2}{\sqrt{\sigma^2}} \cdot \zeta_{\text{Br}}$$

where ζ_{Br} is the height of the Brownian tree.

Bertoin 02: Aldous’ Brownian tree is the genealogical tree of a self-similar fragmentation with parameters

$$\alpha = -1/2, \quad \nu(s_1 + s_2 < 1) = 0 \quad \text{and} \quad \nu(s_1 \in dx) = \frac{1_{\{x > 1/2\}}}{\sqrt{\pi} x(1-x)^{3/2}} \, dx$$

The r.v. ζ_{Br} is its extinction time.
Connection with random trees

- **Ex.2**: When the offspring distribution of the GW tree has a tail $\mathbb{P}(\text{offspring } \geq k) \sim ck^{-\beta}$ for some $\beta \in (1, 2)$, then (Duquesne 03)

\[
\frac{H_n}{n^{1-\frac{1}{\beta}}} \xrightarrow{\text{law}} C(c, \beta) \cdot \zeta_{\beta}
\]

where ζ_{β} is the height of the β-stable Lévy tree of Duquesne, Le Gall, Le Jan

Miermont 03: the β-stable Lévy tree is the genealogical tree of a self-similar fragmentation with parameters $\beta^{-1} - 1$.

- More generally: models of random discrete trees satisfying a *Markov-Branching property*, were proved to converge in the scaling limit to continuous trees describing the genealogy of (α, ν)-fragmentations

 (H.-Miermont-Pitman-Winkel 08, H.-Miermont 12)

\Rightarrow their rescaled heights converge to the r.v. ζ.

Kennedy 76 and Duquesne & Wang 17: asymptotic expansions at all orders of ζ_{Br} and ζ_{β}

Theorem (Kennedy 76, Duquesne & Wang 17)

\[
\mathbb{P}(\zeta_{Br} > t) \underset{t \to \infty}{\sim} 2t^2 \exp(-t^2) \quad \text{and} \quad \mathbb{P}(\zeta_{\beta} > t) \underset{t \to \infty}{\sim} C(\beta)t^{1+\frac{\beta}{2}} \exp(-(\beta - 1)^{\beta-1}t^{\beta})
\]

for some explicit $C(\beta)$

Goal: obtain similar results for general (α, ν) random variables ζ
Main result: Precise estimate for $\mathbb{P}(\zeta > t)$

The parameters $\alpha < 0$ and ν are fixed; ζ denotes the corresponding extinction time.

Two functions: we let for x large enough

$$\phi(x) = \int_S (1 - s_1^{x+1})\nu(ds) \quad \text{and} \quad \psi : \frac{\psi(x)}{\phi(\psi(x))} = x$$

Ex.: if $\nu(s_1 \leq u) \sim c(1 - u)^{-\gamma}, \gamma \in [0, 1)$ then:

$$\phi(x) \sim c\Gamma(1 - \gamma)x^\gamma \quad \text{and} \quad \psi(x) \sim (c\Gamma(1 - \gamma)x)^{\frac{1}{1-\gamma}}$$

Brownian frag.: $\phi(x) \sim 2\sqrt{x}, \quad \psi(x) \sim 4x^2$
Main result: Precise estimate for $\mathbb{P}(\zeta > t)$

The parameters $\alpha < 0$ and ν are fixed; ζ denotes the corresponding extinction time.

Two functions: we let for x large enough

$$\phi(x) = \int_S (1 - s_1^{x+1}) \nu(ds) \quad \text{and} \quad \psi : \frac{\psi(x)}{\phi(\psi(x))} = x$$

Notation: For positive functions f, g,

$$f(t) \asymp g(t)$$

means there exists $a, b > 0$ such that $a \cdot g(t) \leq f(t) \leq b \cdot g(t)$ for t large enough.

Proposition (H. 03)

If ϕ is regularly varying at ∞,

$$\ln(\mathbb{P}(\zeta > t)) \asymp -\psi(t).$$

We want to sharpen this estimate by removing the logarithm
Main result: Precise estimate for $\mathbb{P}(\zeta > t)$

Main hypothesis:

$$\limsup_{x \to \infty} \frac{\phi'(x)x}{\phi(x)} < 1$$ \hspace{1cm} (H)

Not restrictive at all!

Theorem (H. 21)

Assume (H). Then

$$\mathbb{P}(\zeta > t) \asymp \left(\frac{\psi(|\alpha|t)}{t} \right)^{\frac{1}{|\alpha|}} (\psi'(|\alpha|t))^{\frac{1}{2}} \exp \left(- \int_1^t \frac{\psi(|\alpha|r)}{|\alpha|r} dr \right)$$

Corollary

If ϕ is regularly varying at ∞,

$$\mathbb{P}(\zeta > t) \asymp \left(\frac{\psi(|\alpha|t)}{t} \right)^{\frac{1}{|\alpha|}} \exp \left(- \int_1^t \frac{\psi(|\alpha|r)}{|\alpha|r} dr \right).$$
Examples with finite splitting rate

Here \(\psi(x) \sim |\nu(S)| x \), hence \(\int_1^t \frac{\psi(|\alpha|r)}{|\alpha|r} \, dr = |\nu(S)| t + o(t) \).

Ex.1: Fragmentations into \(k \) identical pieces: a fragment of size \(m \) splits into \(k \) fragments of same sizes \(m/k \). For all indices of self-similarity \(\alpha < 0 \):

\[
P(\zeta > t) \sim c \exp(-t)
\]

for some \(c \in (0, \infty) \).

Ex.2: Uniform fragmentation: a fragment of size \(m \) splits into two fragments of sizes \(mU, m(1 - U) \), where \(U \) is uniform on \([0, 1]\). For all indices of self-similarity \(\alpha < 0 \):

\[
P(\zeta > t) \asymp t^{\frac{2}{|\alpha|}} \exp(-t).
\]
Examples with finite splitting rate

Ex.3: Beta fragmentations: a fragment of size m splits into two fragments of sizes $mB, m(1 - B)$, where $B \sim \text{Beta}(a, b)$, $b \geq a > 0$ (density on $(0, 1)$ proportional to $x^{a-1}(1 - x)^{b-1}$). For all indices of self-similarity $\alpha < 0$:

$$
\mathbb{P}(\zeta > t) \approx \begin{cases}
\exp(-t) & \text{if } b \geq a > 1 \\
t^{\frac{1}{\alpha}} \exp(-t) & \text{if } b > a = 1 \\
t^{\frac{2}{\alpha}} \exp(-t) & \text{if } b = a = 1 \\
\exp \left(-t + \frac{\Gamma(a)}{(1-a)\alpha^a} t^{1-a} \right) & \text{if } b > 1 > a > 1/2 \\
t^{\frac{1}{\alpha}} \exp \left(-t + \frac{\Gamma(a)}{(1-a)\alpha^a} t^{1-a} \right) & \text{if } 1 = b \geq a > 1/2 \\
\exp \left(-t + \frac{\Gamma(a)}{(1-a)\alpha^a} t^{1-a} + \frac{\Gamma(b)}{(1-b)\beta^b} t^{1-b} \right) & \text{if } 1 > b \geq a > 1/2.
\end{cases}
$$

If a (and possibly b) is smaller than $1/2$, there will be additional terms.
Examples with infinite splitting rates

Ex.4: **Aldous’ beta-splitting models**: scaling limits of discrete models introduced by Aldous to interpolate between some phylogenetic trees.

Parametrized by $\beta \in (-2, -1)$; binary splitting ($\nu(s_1 + s_2 < 1) = 0$) and

\[
\nu(s_1 \in du) = \frac{-\beta - 1}{\Gamma(2 + \beta)} (u(1 - u))^{\beta}, \quad u \in (1/2, 1) \quad \text{and} \quad \alpha = 1 + \beta.
\]

Then for $\beta \in (-2, -3/2]$:

\[
P(\zeta > t) \lessapprox t \frac{-2\beta - 1}{2(\beta + 2)} \exp \left(-a_{\beta} t^\frac{1}{\beta + 2} + b_{\beta} t\right)
\]

where $a_{\beta} = (\beta - 1) \frac{-\beta - 1}{\beta + 2} (\beta + 2)$ and $b_{\beta} = \frac{(2\beta + 3)\Gamma(\beta + 2)}{(\beta + 2)\Gamma(2\beta + 4)}$.

For $\beta \in (-3/2, 1)$: additional power terms in the exponential.
Ex.4: **Aldous’ beta-splitting models:** scaling limits of discrete models introduced by Aldous 96 to interpolate between some phylogenetic trees.

Parametrized by $\beta \in (-2, -1)$; binary splitting ($\nu(s_1 + s_2 < 1) = 0$) and

$$
\nu(s_1 \in du) = \frac{-\beta - 1}{\Gamma(2 + \beta)}(u(1 - u))^{\beta}, u \in (1/2, 1) \quad \text{and} \quad \alpha = 1 + \beta.
$$

Then for $\beta \in (-2, -3/2)$:

$$
P(\zeta > t) \asymp t^{-\frac{2\beta - 1}{2(\beta + 2)}} \exp \left(-a_{\beta} t^{\frac{1}{\beta + 2}} + b_{\beta} t\right)
$$

where $a_{\beta} = (-\beta - 1)\frac{-\beta - 1}{\beta + 2} (\beta + 2)$ and $b_{\beta} = \frac{(2\beta + 3)\Gamma(\beta + 2)}{(\beta + 2)\Gamma(2\beta + 4)}$.

For $\beta \in (-3/2, 1)$: additional power terms in the exponential.

Ex.5: **Height of stable Lévy trees.** Then $\phi(x) = \beta x^{1 - \frac{1}{\beta}} \left(1 - \frac{\beta - 1}{2\beta^2} x^{-1} + O(x^{-2})\right)$

So we retrieve, for all $\beta \in (1, 2)$:

$$
P(\zeta > t) \asymp t^{1 + \frac{\beta}{2}} \exp \left(-(\beta - 1)^{-1} t^{\beta}\right).
$$
Outline of the proof of the theorem

An intermediate tool: the extinction time of a typical point

\[U \sim \text{Unif}(0, 1) \]

\(I \): time at which \(U \) is reduced to dust

Proposition (Bertoin 02)

\[I = \int_0^\infty \exp(\alpha \xi_t) dt \]

where \(\xi \) is a subordinator (increasing Lévy process) with Laplace exponent \(\bar{\phi} \) (i.e. \(\mathbb{E}[\exp(-x\xi_t)] = \exp(-t\bar{\phi}(x)), \forall x, t \geq 0 \)) where \(\bar{\phi}(x) = \int_S (1 - \sum_i s_i^{x+1}) \nu(ds) \).

Rk. \(\bar{\phi}(x) = \phi(x) + O(2^{-x}) \) as \(x \to \infty \).
Two main steps

Step 1. Link between the tails of ζ and I

Proposition 1 (H. 21)
Assume (H). Then,

$$\mathbb{P}(\zeta > t) \asymp \left(\frac{\psi(|\alpha|t)}{t} \right)^{1/|\alpha|} \cdot \mathbb{P}(I > t)$$

Step 2. Asymptotics of the tail of I

Proposition 2 (H. 21)
Assume (H). Then there exists $c \in (0, \infty)$ such that

$$\mathbb{P}(I > t) \underset{t \to \infty}{\sim} c \cdot \frac{t(\psi'(|\alpha|t))^{1/2}}{\psi(|\alpha|t)} \cdot \exp \left(- \int_{1}^{t} \frac{\psi(|\alpha|r)}{|\alpha|r} \, dr \right).$$
Some hints for Step 1

Remark: $I < \zeta$ and it is a priori not obvious how to compare their tails

Step 1. a) Connections with moments of typical fragments.

U_1, U_2 uniformly distributed on $(0, 1)$, independent

$\Lambda(i)(t)$: mass of the fragment containing U_i at time t, $i = 1, 2$

Proposition (H. 21)

There exists $c \in (0, \infty)$ such that for all t large enough

$$\frac{\mathbb{E} [\Lambda(1)(t)^2]}{\mathbb{E} [\Lambda(1)(t)\Lambda(2)(t)]} \leq \mathbb{P}(\zeta > t) \leq c \left(\frac{\psi(|\alpha|t)}{t} \right)^{\frac{2}{|\alpha|}} \mathbb{E} [\Lambda(1)(t)]$$

Idea: Introduce $S(t) := \sum_{i \geq 1} (F_i(t))^2$ and use the first and second moments methods.
Step 1. b) Asymptotics of moments of 1 and 2 typical fragments

<table>
<thead>
<tr>
<th>Proposition (H.- Rivero 12)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assume (H). Then for all $a > 0$ there exists a constant $c \in (0, \infty)$ such that</td>
</tr>
<tr>
<td>$\mathbb{E} \left[\Lambda_{(1)}^a(t) \right] \underset{t \to \infty}{\sim} c \left(\frac{t}{\psi(</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proposition (H. 21)</th>
</tr>
</thead>
<tbody>
<tr>
<td>For all $a, b > 0$,</td>
</tr>
<tr>
<td>$\mathbb{E} \left[\Lambda_{(1)}^a(t) \Lambda_{(2)}^b(t) \right] \propto \left(\frac{t}{\psi(</td>
</tr>
</tbody>
</table>
Some references

- **On fragmentation models and the existence of shattering:**

- **On the tail of the random variables ζ:**
 - **T. Duquesne, M. Wang**, *Decomposition of Lévy trees along their diameter*, Ann. IHP 2017
 - **B. Haas**, *Tail asymptotics for extinction times of self-similar fragmentations*, In preparation.