Scaling limits of the two- and three-dimensional uniform spanning trees

Oxford Discrete Mathematics and Probability Seminar University of Oxford 20 October 2020

David Croydon (Kyoto University)

joint with

2d: Martin Barlow (UBC) and Takashi Kumagai (Kyoto) 3d: Omer Angel (UBC), Sarai Hernandez-Torres (UBC) and Daisuke Shiraishi (Kyoto)

1. THE MODEL

UNIFORM SPANNING FOREST ON \mathbb{Z}^d

Let $\Lambda_n := [-n, n]^d \cap \mathbb{Z}^d$.

A subgraph of the lattice is a **spanning tree** of Λ_n if it connects all vertices and has no cycles.

Let $\mathcal{U}^{(n)}$ be a spanning tree of Λ_n selected uniformly at random from all possibilities.

The USF on \mathbb{Z}^d , \mathcal{U} , is then the local limit of $\mathcal{U}^{(n)}$. NB. Wired/free boundary conditions unimportant.

For $d = 2, 3, 4, \mathcal{U}$ is a spanning tree of \mathbb{Z}^d , a.s. (Forest for d > 4.)

[Aldous, Benjamini, Broder, Häggström, Hutchcroft, Kirchoff, Lyons, Nachmias, Pemantle, Peres, Schramm, Wilson, ...]

GENEALOGICAL STRUCTURE

2d animation: Bostock, adapted to 3d by C.

2. SCALING LIMITS

PATHS IN THE 2d-UST

PATHS IN THE 2d-UST

PATHS IN THE 2d-UST

The distances in the tree to the path between opposite corners in a uniform spanning tree in a 200×200 grid. *Picture: Lyons/Peres: Probability on trees and networks*

WILSON'S ALGORITHM ON \mathbb{Z}^2

Let $x_0 = 0, x_1, x_2, \ldots$ be an enumeration of \mathbb{Z}^2 .

Let $\mathcal{U}(0)$ be the graph tree consisting of the single vertex x_0 .

Given $\mathcal{U}(k-1)$ for some $k \ge 1$, define $\mathcal{U}(k)$ to be the union of $\mathcal{U}(k-1)$ and the loop-erased random walk (LERW) path run from x_k to $\mathcal{U}(k-1)$.

The UST \mathcal{U} is then the local limit of $\mathcal{U}(k)$.

LERW SCALING IN \mathbb{Z}^d

Consider LERW as a process $(L_n)_{n\geq 0}$ (assume original random walk is transient).

In \mathbb{Z}^d , $d \ge 5$, L rescales diffusively to Brownian motion [Lawler].

In \mathbb{Z}^4 , with logarithmic corrections rescales to Brownian motion [Lawler].

In \mathbb{Z}^3 , $\{L_n : n \in [0, \tau]\}$ has a scaling limit [Kozma, Li/Shiraishi]. Growth exponent $\beta \approx 1.62$.

In \mathbb{Z}^2 , $\{L_n : n \in [0, \tau]\}$ has SLE(2) scaling limit [Lawler/Schramm/Werner]. Growth exponent is 5/4 [Kenyon, Masson, Lawler, Lawler/Viklund].

UST SCALING [SCHRAMM]

Consider \mathcal{U} as an ensemble of paths:

$$\mathfrak{U} = \left\{ (a, b, \pi_{ab}) : a, b \in \mathbb{Z}^2 \right\},\$$

where π_{ab} is the unique arc connecting a and b in \mathcal{U} , as an element of the compact space $\mathcal{H}(\dot{\mathbb{R}}^2 \times \dot{\mathbb{R}}^2 \times \mathcal{H}(\dot{\mathbb{R}}^2))$, cf. [Aizenman/Burchard/Newman/Wilson]. Also SLE(8) scaling limit of [Lawler/Schramm/Werner].

- Scaling limit \mathfrak{T} almost-surely satisfies: each pair $a, b \in \mathbb{R}^2$ connected by a path;
 - if $a \neq b$, then this path is simple;
 - if a = b, then this path is a point or a simple loop;
 - the trunk, $\bigcup_{\mathfrak{T}} \pi_{ab} \setminus \{a, b\}$, is a dense topological tree with degree at most 3.

ISSUE: This topology does not carry information about intrinsic distance or volume.

VOLUME ESTIMATES [BARLOW/MASSON]

With high probability,

$$B_E(x,\lambda^{-1}R) \subseteq B_U(x,R^{5/4}) \subseteq B_E(x,\lambda R),$$

as $R \to \infty$ then $\lambda \to \infty$. In particular,

$$\mathbf{P}\left(R^{-8/5}|B_{\mathcal{U}}(x,R)| \notin [\lambda^{-1},\lambda]\right) \le c_1 e^{-c_2 \lambda^{1/9}}$$

VOLUME ESTIMATES [BARLOW/MASSON]

With high probability,

$$B_E(x,\lambda^{-1}R) \subseteq B_U(x,R^{5/4}) \subseteq B_E(x,\lambda R),$$

as $R \to \infty$ then $\lambda \to \infty$. In particular,

$$\mathbf{P}\left(R^{-8/5}|B_{\mathcal{U}}(x,R)| \notin [\lambda^{-1},\lambda]\right) \le c_1 e^{-c_2 \lambda^{1/9}}$$

ABSTRACT FRAMEWORK FOR CONVERGENCE

Define $\mathbb T$ to be the collection of measured, rooted, spatial trees, i.e.

 $(\mathcal{T}, d_{\mathcal{T}}, \mu_{\mathcal{T}}, \phi_{\mathcal{T}}, \rho_{\mathcal{T}}),$

where:

- $(\mathcal{T}, d_{\mathcal{T}})$ is a complete and locally compact real tree;
- $\mu_{\mathcal{T}}$ is a locally finite Borel measure on $(\mathcal{T}, d_{\mathcal{T}})$;
- $\phi_{\mathcal{T}}$ is a continuous map from $(\mathcal{T}, d_{\mathcal{T}})$ into \mathbb{R}^2 ;
- $\rho_{\mathcal{T}}$ is a distinguished vertex in \mathcal{T} .

Equip this space with a generalised Gromov-Hausdorff topology.

BRIEF INTRODUCTION TO GH TOPOLOGY

The (pointed) Gromov-Hausdorff distance

$$d_{GH}\left((\mathcal{T}, d_{\mathcal{T}}, \rho_{\mathcal{T}}), (\mathcal{T}', d_{\mathcal{T}'}, \rho_{\mathcal{T}'})\right)$$

is given by

$$\inf_{\psi,\psi'} d_H\left(\psi(\mathcal{T}),\psi'(\mathcal{T}')
ight).$$

This is equal to

 $\frac{1}{2}\inf_{\mathcal{C}} \operatorname{dis}(\mathcal{C}),$

where the infimum is taken over correspondences $C \subseteq \mathcal{T} \times \mathcal{T}'$ containing $(\rho_{\mathcal{T}}, \rho_{\mathcal{T}'})$, and the distortion dis(C) of a correspondence is given by

$$\sup\left\{\left|d_{\mathcal{T}}(x,y)-d_{\mathcal{T}'}(x',y')\right|:\ (x,x'),(y,y')\in\mathcal{C}\right\}.$$

MEASURED, SPATIAL GH TOPOLOGY

We refine d_{GH} to $\Delta((\mathcal{T}, d_{\mathcal{T}}, \mu_{\mathcal{T}}, \phi_{\mathcal{T}}, \rho_{\mathcal{T}}), (\mathcal{T}', d_{\mathcal{T}'}, \mu_{\mathcal{T}'}, \phi_{\mathcal{T}'}, \rho_{\mathcal{T}'}))$, via the expression

 $\inf_{\psi,\psi',\mathcal{C}} \left(d_H\left(\psi(\mathcal{T}),\psi'(\mathcal{T}')\right) + d_P\left(\mu_{\mathcal{T}}\circ\psi_{\mathcal{T}'}^{-1},\mu_{\mathcal{T}'}\circ\psi_{\mathcal{T}'}^{-1}\right) + \sup_{(x,x')\in\mathcal{C}} \left|\phi_{\mathcal{T}}(x) - \phi_{\mathcal{T}'}(x')\right| \right).$

Theorem [Barlow/C/Kumagai, Holden/Sun]. If P_{δ} is the law of the measured, rooted spatial tree

 $\left(\mathcal{U},\delta^{5/4}d_{\mathcal{U}},\delta^{2}\mu_{\mathcal{U}}\left(\cdot\right),\delta\phi_{\mathcal{U}},0\right)$

under P, then P_{δ} converges in $\mathcal{M}_1(\mathbb{T})$ as $\delta \to 0$.

Proof involves:

establishing tightness/convergence of trees spanning a finite number of points, cf. [Lawler/Viklund] for a single LERW path;
strengthening estimates of [Barlow/Masson] to show every-thing else is close.

Theorem [Barlow/C/Kumagai, Holden/Sun]. If P_{δ} is the law of the measured, rooted spatial tree

 $\left(\mathcal{U},\delta^{5/4}d_{\mathcal{U}},\delta^{2}\mu_{\mathcal{U}}\left(\cdot\right),\delta\phi_{\mathcal{U}},0\right)$

under P, then P_{δ} converges in $\mathcal{M}_1(\mathbb{T})$ as $\delta \to 0$.

Proof involves:

• establishing tightness/convergence of trees spanning a finite number of points, cf. [Lawler/Viklund] for a single LERW path;

• strengthening estimates of [Barlow/Masson] to show everything else is close.

Theorem [Barlow/C/Kumagai, Holden/Sun]. If P_{δ} is the law of the measured, rooted spatial tree

 $\left(\mathcal{U},\delta^{5/4}d_{\mathcal{U}},\delta^{2}\mu_{\mathcal{U}}\left(\cdot\right),\delta\phi_{\mathcal{U}},0\right)$

under P, then P_{δ} converges in $\mathcal{M}_1(\mathbb{T})$ as $\delta \to 0$.

Proof involves:

• establishing tightness/convergence of trees spanning a finite number of points, cf. [Lawler/Viklund] for a single LERW path;

• strengthening estimates of [Barlow/Masson] to show everything else is close.

Theorem [Barlow/C/Kumagai, Holden/Sun]. If P_{δ} is the law of the measured, rooted spatial tree

 $\left(\mathcal{U},\delta^{5/4}d_{\mathcal{U}},\delta^{2}\mu_{\mathcal{U}}\left(\cdot\right),\delta\phi_{\mathcal{U}},0\right)$

under P, then P_{δ} converges in $\mathcal{M}_1(\mathbb{T})$ as $\delta \to 0$.

Proof involves:

• establishing tightness/convergence of trees spanning a finite number of points, cf. [Lawler/Viklund] for a single LERW path;

• strengthening estimates of [Barlow/Masson] to show everything else is close.

2d-UST LIMIT PROPERTIES [BARLOW/C/KUMAGAI, cf. SCHRAMM]

If $\tilde{\mathbf{P}} := \lim_{\delta \to 0} \mathbf{P}_{\delta}$, then for $\tilde{\mathbf{P}}$ -a.e. $(\mathcal{T}, d_{\mathcal{T}}, \mu_{\mathcal{T}}, \phi_{\mathcal{T}}, \rho_{\mathcal{T}})$ it holds that:

- (a) the Hausdorff dimension of $(\mathcal{T}, d_{\mathcal{T}})$ is given by $d_f := \frac{8}{5}$;
- (b) $\mu_{\mathcal{T}}$ is non-atomic and supported on the leaves of $\mathcal{T},$ and satisfies

$$\mu_{\mathcal{T}}(B_{\mathcal{T}}(x,r)) \approx r^{8/5}$$

(loglog errors pointwise, log errors uniform on compacts);

- (c) the restriction of the continuous map $\phi_{\mathcal{T}} : \mathcal{T} \to \mathbb{R}^2$ to \mathcal{T}^o is a homeomorphism between this set and its image $\phi_{\mathcal{T}}(\mathcal{T}^o)$, which is dense in \mathbb{R}^2 ;
- (d) $(\mathcal{T}, d_{\mathcal{T}})$ has precisely one end at infinity;
- (e) $\max_{x \in \mathcal{T}} \deg_{\mathcal{T}}(x) = 3 = \max_{x \in \mathbb{R}^2} |\phi_{\mathcal{T}}^{-1}(x)|.$

As measured, rooted spatial trees

$$\left(\mathcal{U},\delta^{\beta}d_{\mathcal{U}},\delta^{3}\mu_{\mathcal{U}},\delta\phi_{\mathcal{U}},0\right),$$

where $\beta \approx 1.62...$, converge in distribution along the subsequence $\delta_n = 2^{-n}$.

Key issues (as compared to 2d approach):

- scaling limit of LERW in irregular domains not understood;
- SRW does not hit arbitrary paths quickly!

As measured, rooted spatial trees

$$\left(\mathcal{U},\delta^{\beta}d_{\mathcal{U}},\delta^{3}\mu_{\mathcal{U}},\delta\phi_{\mathcal{U}},0\right),$$

where $\beta \approx 1.62...$, converge in distribution along the subsequence $\delta_n = 2^{-n}$.

- extending LERW convergence of [Li/Shiraishi],
- showing SRW hits LERW quickly, cf.
 [Sapozhnikov/Shiraishi].

As measured, rooted spatial trees

$$\left(\mathcal{U},\delta^{\beta}d_{\mathcal{U}},\delta^{3}\mu_{\mathcal{U}},\delta\phi_{\mathcal{U}},0\right),$$

where $\beta \approx 1.62...$, converge in distribution along the subsequence $\delta_n = 2^{-n}$.

- extending LERW convergence of [Li/Shiraishi],
- showing SRW hits LERW quickly, cf.
 [Sapozhnikov/Shiraishi].

As measured, rooted spatial trees

$$\left(\mathcal{U},\delta^{\beta}d_{\mathcal{U}},\delta^{3}\mu_{\mathcal{U}},\delta\phi_{\mathcal{U}},0\right),$$

where $\beta \approx 1.62...$, converge in distribution along the subsequence $\delta_n = 2^{-n}$.

- extending LERW convergence of [Li/Shiraishi],
- showing SRW hits LERW quickly, cf.
 [Sapozhnikov/Shiraishi].

As measured, rooted spatial trees

$$\left(\mathcal{U},\delta^{\beta}d_{\mathcal{U}},\delta^{3}\mu_{\mathcal{U}},\delta\phi_{\mathcal{U}},0\right),$$

where $\beta \approx 1.62...$, converge in distribution along the subsequence $\delta_n = 2^{-n}$.

- extending LERW convergence of [Li/Shiraishi],
- showing SRW hits LERW quickly, cf.
 [Sapozhnikov/Shiraishi].

3d-UST LIMIT PROPERTIES

If $\tilde{\mathbf{P}} := \lim_{\delta \to 0} \mathbf{P}_{\delta}$, where \mathbf{P} is law of rescaled UST, then for $\tilde{\mathbf{P}}$ -a.e. $(\mathcal{T}, d_{\mathcal{T}}, \mu_{\mathcal{T}}, \phi_{\mathcal{T}}, \rho_{\mathcal{T}})$ it holds that:

(a) the Hausdorff dimension of $(\mathcal{T}, d_{\mathcal{T}})$ is given by $d_f := \frac{3}{\beta}$;

(b) $\mu_{\mathcal{T}}$ is non-atomic and supported on the leaves of $\mathcal{T},$ and satisfies

$$\mu_{\mathcal{T}}\left(B_{\mathcal{T}}(x,r)\right) \approx r^{d_f}$$

(loglog errors pointwise, log errors uniform on compacts); (c) $(\mathcal{T}, d_{\mathcal{T}})$ has precisely one end at infinity; (d) $\max_{x \in \mathbb{R}^3} |\phi_{\mathcal{T}}^{-1}(x)| \leq M$.

Conjecture maximum degree is 3, and trunk is not a tree.

3. SIMPLE RANDOM WALK

SIMPLE RANDOM WALK ON 2d-UST

Let $X^{\mathcal{U}} = (X_n^{\mathcal{U}})_{n \ge 0}$ be simple random walk on \mathcal{U} . After 5,000 and 50,000 steps (picture: Sunil Chhita):

We will write $(p_n^{\mathcal{U}}(x, y))_{x,y \in \mathcal{U}, n \ge 0}$ for the (smoothed) **quenched** heat kernel on \mathcal{U} , as defined by

$$p_n^{\mathcal{U}}(x,y) = \frac{P_x^{\mathcal{U}}\left(X_n^{\mathcal{U}} = y\right) + P_x^{\mathcal{U}}\left(X_{n+1}^{\mathcal{U}} = y\right)}{2\text{deg}_{\mathcal{U}}(y)}.$$

The **annealed/averaged** heat kernel is $Ep_n^{\mathcal{U}}(x, y)$.

(SUB-)GAUSSIAN HEAT KERNELS ON TREES

Suppose T is a graph tree with fractal dimension $d_f,$ i.e. such that

 $|B_T(x,r)| \asymp r^{d_f},$

then (cf. [Barlow, Bass, Coulhon, Grigor'yan, Jones, Kumagai, Perkins, Telcs])

$$p_n^T(x,y) \asymp c_1 n^{-d_s/2} \exp\left\{-c_2 \left(\frac{d_T(x,y)^{d_w}}{n}\right)^{\frac{1}{d_w-1}}\right\},\,$$

where:

walk dimension $d_w = d_f + 1$, spectral dimension $d_s = \frac{2d_f}{d_w}$.

This talk, if time permits, will address:

- **exponents** for \mathcal{U} (2d/3d);
- scaling limit for $X^{\mathcal{U}}$ (2d/3d);
- fluctuations around polynomial terms (2d);
- quenched vs. averaged heat kernel (2d).

EXPONENTS

	General form	d = 2	d = 3
LERW growth exponent	lpha	5/4 = 1.25	1.62
Hausdorff dimension of ${\cal U}$	$d_f = d/lpha$	8/5 = 1.60	1.85
Intrinsic walk dimension	$d_w = 1 + d_f$	13/5 = 2.60	2.85
Extrinsic walk dimension	$lpha d_w$.	13/4 = 3.25	4.62
Spectral dimension of ${\cal U}$	$2d_f/d_w$	16/13 = 1.23	1.30

Exponents for 2d case established in [Barlow/Masson].

Exponents for 3d case based on results of [A/C/H-T/S] and numerical simulation for β of Wilson.

Both depend on general estimates of [Kumagai/Misumi].

RANDOM WALKS ON GRAPHS

Let G = (V, E) be a finite, connected graph, equipped with (strictly positive, symmetric) edge conductances $(c(x, y))_{\{x,y\}\in E}$. Let μ be a finite measure on V (of full-support).

Let X be the continuous time Markov chain with generator Δ , as defined by:

$$(\Delta f)(x) := \frac{1}{\mu(\{x\})} \sum_{y: y \sim x} c(x, y) (f(y) - f(x)).$$

NB. Common choices for μ are:

- $\mu(\{x\}) := \sum_{y: y \sim x} c(x, y)$, the constant speed random walk (CSRW);

- $\mu(\{x\}) := 1$, the variable speed random walk (VSRW).

DIRICHLET FORM AND RESISTANCE METRIC

Define a quadratic form on G by setting

$$\mathcal{E}(f,g) = \frac{1}{2} \sum_{x,y:x \sim y} c(x,y) \left(f(x) - f(y) \right) \left(g(x) - g(y) \right).$$

Note that (regardless of the particular choice of μ ,) \mathcal{E} is a **Dirich**let form on $L^2(\mu)$, and

$$\mathcal{E}(f,g) = -\sum_{x \in V} (\Delta f)(x)g(x)\mu(\{x\}).$$

Suppose we view G as an electrical network with edges assigned conductances according to $(c(x, y))_{\{x, y\} \in E}$. Then the **effective** resistance between x and y is given by

$$R(x,y)^{-1} = \inf \{ \mathcal{E}(f,f) : f(x) = 1, f(y) = 0 \}$$

R is a metric on V, e.g. [Tetali 1991], and characterises the weights (and therefore the Dirichlet form) uniquely [Kigami 1995].

SUMMARY

RANDOM WALK X WITH GENERATOR Δ

 \uparrow

DIRICHLET FORM \mathcal{E} on $L^2(\mu)$

 \uparrow

RESISTANCE METRIC R AND MEASURE μ

RESISTANCE METRIC, e.g. [KIGAMI 2001]

Let F be a set. A function $R : F \times F \to \mathbb{R}$ is a **resistance metric** if, for every finite $V \subseteq F$, one can find a weighted (i.e. equipped with conductances) graph with vertex set V for which $R|_{V \times V}$ is the associated effective resistance.

EXAMPLES

- Effective resistance metric on a graph;
- One-dimensional Euclidean (not true for higher dimensions);
- Any shortest path metric on a tree;
- Resistance metric on a Sierpinski gasket, where for 'vertices' of limiting fractal, we set

$$R(x,y) = (3/5)^n R_n(x,y),$$

then use continuity to extend to whole space.

RESISTANCE AND DIRICHLET FORMS

Theorem (e.g. [Kigami 2001]) There is a one-to-one correspondence between resistance metrics and a class of quadratic forms called **resistance forms**.

The relationship between a resistance metric R and resistance form $(\mathcal{E}, \mathcal{F})$ is characterised by

$$R(x,y)^{-1} = \inf \{ \mathcal{E}(f,f) : f \in \mathcal{F}, f(x) = 1, f(y) = 0 \}.$$

Moreover, if (F, R) is compact, then $(\mathcal{E}, \mathcal{F})$ is a regular Dirichlet form on $L^2(\mu)$ for any finite Borel measure μ of full support. (Version of the statement also hold for locally compact spaces.)

A FIRST EXAMPLE

Let F = [0, 1], R = Euclidean, and μ be a finite Borel measure of full support on [0, 1].

Associated resistance form:

$$\mathcal{E}(f,g) = \int_0^1 f'(x)g'(x)dx, \qquad \forall f,g \in \mathcal{F},$$

where $\mathcal{F} = \{f \in C([0,1]) : f \text{ is abs. cont. and } f' \in L^2(dx)\}.$

Moreover, integration by parts gives:

$$\mathcal{E}(f,g) = -\int_0^1 (\Delta f)(x)g(x)\mu(dx).$$

where $\Delta f = \frac{d}{d\mu} \frac{df}{dx}$.

If $\mu(dx) = dx$, then the Markov process naturally associated with Δ is reflected Brownian motion on [0, 1].

SUMMARY

RESISTANCE METRIC R AND MEASURE μ

 \uparrow

RESISTANCE FORM $(\mathcal{E}, \mathcal{F})$, DIRICHLET FORM on $L^2(\mu)$

 \uparrow

STRONG MARKOV PROCESS X WITH GENERATOR Δ , where

$$\mathcal{E}(f,g) = -\int_F (\Delta f)gd\mu.$$

GENERAL SCALING RESULT [C. 2016] See also [ATHREYA/LOHR/WINTER] for trees

Write \mathbb{F}_c for the space of marked compact resistance metric spaces, equipped with finite Borel measures of full support. Suppose that the sequence $(F_n, R_n, \mu_n, \rho_n)_{n>1}$ in \mathbb{F}_c satisfies

 $(F_n, R_n, \mu_n, \rho_n) \rightarrow (F, R, \mu, \rho)$

in the (marked) Gromov-Hausdorff-Prohorov topology for some $(F, R, \mu, \rho) \in \mathbb{F}_c$.

It is then possible to isometrically embed $(F_n, R_n)_{n \ge 1}$ and (F, R) into a common metric space (M, d_M) in such a way that

$$P_{\rho_n}^n\left((X_t^n)_{t\geq 0}\in\cdot\right)\to P_{\rho}\left((X_t)_{t\geq 0}\in\cdot\right)$$

weakly as probability measures on $D(\mathbb{R}_+, M)$.

Holds for locally compact spaces if $\liminf_{n\to\infty} R_n(\rho_n, B_{R_n}(\rho_n, r)^c)$ diverges as $r \to \infty$. (Can also include 'spatial embeddings'.)

COROLLARY: SRW SCALING LIMIT

Fix d = 2 or d = 3, let \mathbb{P}_{δ} be the annealed law of

 $\left(\delta X^{\mathcal{U}}_{\delta^{-\alpha dw}t}\right)_{t\geq 0}.$

NB. $\alpha d_w = 3.25, 4.62$ is the extrinsic walk dimension in the relevant dimension.

It then holds that $\mathbb{P}_{\delta} \to \tilde{\mathbb{P}}$ (subsequentially in 3d), where $\tilde{\mathbb{P}}$ is the annealed law of

 $\left(\phi_{\mathcal{T}}(X_t^{\mathcal{T}})\right)_{t\geq 0},$

as probability measures on $C(\mathbb{R}_+, \mathbb{R}^d)$.

Proof. Apply general results concerning convergence of random walks on trees [Barlow/C/Kumagai, Athreya/Lohr/Winter], or resistance spaces [C].

OTHER MOTIVATING EXAMPLES

Sources: Ben Avraham/Havlin, Kortchemski, Chhita, Broutin.

PROOF IDEA 1: RESOLVENTS

For $(F, R, \mu, \rho) \in \mathbb{F}_c$, let

$$G_x f(y) = E_y \int_0^{\sigma_x} f(X_s) ds$$

be the resolvent of X killed on hitting x. NB. Processes associated with resistance forms hit points.

We have [Kigami 2012] that

$$G_x f(y) = \int_F g_x(y,z) f(z) \mu(dz),$$

where

$$g_x(y,z) = \frac{R(x,y) + R(x,z) - R(y,z)}{2}$$

Metric measure convergence \Rightarrow resolvent convergence \Rightarrow semigroup convergence \Rightarrow finite dimensional distribution convergence.

PROOF IDEA 2: TIGHTNESS

Using that X has local times $(L_t(x))_{x \in F, t \ge 0}$, and

$$E_y L_{\sigma_A}(z) = g_A(y, z) = \frac{R(y, A) + R(z, A) - R_A(y, z)}{2},$$

can establish via Markov's inequality a general estimate of the form:

$$\sup_{x \in F} P_x \left(\sup_{s \le t} R(x, X_s) \ge \varepsilon \right) \le \frac{32N(F, \varepsilon/4)}{\varepsilon} \left(\delta + \frac{t}{\inf_{x \in F} \mu(B_R(x, \delta))} \right),$$

where $N(F, \varepsilon)$ is the minimal size of an ε cover of F .

Metric measure convergence \Rightarrow estimate holds uniformly in $n \Rightarrow$ tightness (application of Aldous' tightness criterion).

Similar estimate also gives non-explosion in locally compact case.