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1. THE MODEL



UNIFORM SPANNING FOREST ON Z
d

Let Λn := [−n, n]d ∩ Z
d.

A subgraph of the lattice is a spanning
tree of Λn if it connects all vertices and

has no cycles.

Let U(n) be a spanning tree of Λn se-

lected uniformly at random from all pos-

sibilities.

The USF on Z
d, U , is then the local limit of U(n).

NB. Wired/free boundary conditions unimportant.

For d = 2,3,4, U is a spanning tree of Zd, a.s. (Forest for d > 4.)

[Aldous, Benjamini, Broder, Häggström, Hutchcroft, Kirchoff,

Lyons, Nachmias, Pemantle, Peres, Schramm, Wilson,. . . ]



GENEALOGICAL STRUCTURE

2d animation: Bostock, adapted to 3d by C.



2. SCALING LIMITS



PATHS IN THE 2d-UST



PATHS IN THE 2d-UST



PATHS IN THE 2d-UST

The distances in the tree to the path between opposite corners

in a uniform spanning tree in a 200× 200 grid.

Picture: Lyons/Peres: Probability on trees and networks



WILSON’S ALGORITHM ON Z
2

Let x0 = 0, x1, x2, . . . be an enumeration of Z
2.

Let U(0) be the graph tree consisting of the single vertex x0.

Given U(k − 1) for some k ≥ 1, define U(k) to be the union of

U(k − 1) and the loop-erased random walk (LERW) path run

from xk to U(k − 1).

The UST U is then the local limit of U(k).

x0 x0 x0 x0

x1 x1 x1
x2



LERW SCALING IN Z
d

Consider LERW as a process (Ln)n≥0 (assume original random

walk is transient).

In Z
d, d ≥ 5, L rescales diffusively to Brownian motion [Lawler].

In Z
4, with logarithmic corrections rescales to Brownian motion

[Lawler].

Picture: Ariel Yadin

In Z
3, {Ln : n ∈ [0, τ ]} has a scaling limit

[Kozma, Li/Shiraishi]. Growth exponent

β ≈ 1.62.

In Z
2, {Ln : n ∈ [0, τ ]} has SLE(2) scaling

limit [Lawler/Schramm/Werner]. Growth

exponent is 5/4 [Kenyon, Masson, Lawler,

Lawler/Viklund].



UST SCALING [SCHRAMM]

Consider U as an ensemble of paths:

U =
{

(a, b, πab) : a, b ∈ Z
2
}

,

where πab is the unique arc connecting a and b in U , as an ele-
ment of the compact space H(Ṙ2 × Ṙ

2 ×H(Ṙ2)),
cf. [Aizenman/Burchard/Newman/Wilson]. Also SLE(8) scal-
ing limit of [Lawler/Schramm/Werner].

Picture: Oded Schramm

Scaling limit T almost-surely satisfies:
• each pair a, b ∈ Ṙ

2 connected by a path;
• if a 6= b, then this path is simple;
• if a = b, then this path is a point or a

simple loop;
• the trunk, ∪Tπab\{a, b}, is a dense topo-

logical tree with degree at most 3.

ISSUE: This topology does not carry information about intrinsic
distance or volume.



VOLUME ESTIMATES [BARLOW/MASSON]

With high probability,

BE(x, λ
−1R) ⊆ BU(x,R

5/4) ⊆ BE(x, λR),

as R → ∞ then λ→ ∞. In particular,

P

(

R−8/5|BU(x,R)| 6∈ [λ−1, λ]
)

≤ c1e
−c2λ

1/9
.
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ABSTRACT FRAMEWORK FOR CONVERGENCE

Define T to be the collection of measured, rooted, spatial trees,

i.e.

(T , dT , µT , φT , ρT ),

where:

• (T , dT ) is a complete and locally compact real tree;

• µT is a locally finite Borel measure on (T , dT );

• φT is a continuous map from (T , dT ) into R
2;

• ρT is a distinguished vertex in T .

Equip this space with a generalised Gromov-Hausdorff topology.



BRIEF INTRODUCTION TO GH TOPOLOGY

The (pointed) Gromov-Hausdorff dis-

tance

dGH
(

(T , dT , ρT ), (T
′, dT ′, ρT ′)

)

is given by

inf
ψ,ψ′

dH
(

ψ(T ), ψ′(T ′)
)

.

This is equal to

1

2
inf
C

dis(C),

where the infimum is taken over correspondences C ⊆ T ×T ′ con-

taining (ρT , ρT ′), and the distortion dis(C) of a correspondence

is given by

sup
{
∣

∣

∣dT (x, y)− dT ′(x′, y′)
∣

∣

∣ : (x, x′), (y, y′) ∈ C
}

.



MEASURED, SPATIAL GH TOPOLOGY

We refine dGH to ∆((T , dT , µT , φT , ρT ), (T
′, dT ′, µT ′, φT ′, ρT ′)), via

the expression

infψ,ψ′,C

(

dH
(

ψ(T ), ψ′(T ′)
)

+ dP
(

µT ◦ ψ−1
T , µT ′ ◦ ψ−1

T ′

)

+ sup(x,x′)∈C
∣

∣φT (x)− φT ′(x′)
∣

∣

)

.



2d-UST SCALING LIMIT

Theorem [Barlow/C/Kumagai, Holden/Sun]. If Pδ is the

law of the measured, rooted spatial tree
(

U , δ5/4dU , δ
2µU (·) , δφU ,0

)

under P, then Pδ converges in M1(T) as δ → 0.

Proof involves:

• establishing tightness/convergence of trees spanning a finite

number of points, cf. [Lawler/Viklund] for a single LERW path;

• strengthening estimates of [Barlow/Masson] to show every-

thing else is close.
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2d-UST LIMIT PROPERTIES

[BARLOW/C/KUMAGAI, cf. SCHRAMM]

If P̃ := limδ→0Pδ, then for P̃-a.e. (T , dT , µT , φT , ρT ) it holds that:

(a) the Hausdorff dimension of (T , dT ) is given by df := 8
5;

(b) µT is non-atomic and supported on the leaves of T , and

satisfies

µT (BT (x, r)) ≈ r8/5

(loglog errors pointwise, log errors uniform on compacts);

(c) the restriction of the continuous map φT : T → R
2 to T o is

a homeomorphism between this set and its image φT (T o),

which is dense in R
2;

(d) (T , dT ) has precisely one end at infinity;

(e) maxx∈T degT (x) = 3 = maxx∈R2 |φ
−1
T (x)|.



SCALING LIMIT OF 3d UST

[ANGEL/C/HERNANDEZ-TORRES/SHIRAISHI]

As measured, rooted spatial trees
(

U , δβdU , δ
3µU , δφU ,0

)

,

where β ≈ 1.62 . . . , converge in distribution along the subse-

quence δn = 2−n.

Key issues (as compared to 2d approach):

• scaling limit of LERW in irregular domains not understood;

• SRW does not hit arbitrary paths quickly!
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• showing SRW hits LERW quickly, cf.

[Sapozhnikov/Shiraishi].
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3d-UST LIMIT PROPERTIES

If P̃ := limδ→0Pδ, where P is law of rescaled UST, then for

P̃-a.e. (T , dT , µT , φT , ρT ) it holds that:

(a) the Hausdorff dimension of (T , dT ) is given by df := 3
β;

(b) µT is non-atomic and supported on the leaves of T , and

satisfies

µT (BT (x, r)) ≈ rdf

(loglog errors pointwise, log errors uniform on compacts);

(c) (T , dT ) has precisely one end at infinity;

(d) maxx∈R3 |φ
−1
T (x)| ≤ M .

Conjecture maximum degree is 3, and trunk is not a tree.



3. SIMPLE RANDOM WALK



SIMPLE RANDOM WALK ON 2d-UST

Let XU = (XU
n )n≥0 be simple random walk on U . After 5,000

and 50,000 steps (picture: Sunil Chhita):

We will write (pUn(x, y))x,y∈U , n≥0 for the (smoothed) quenched

heat kernel on U , as defined by

pUn(x, y) =
PU
x

(

XU
n = y

)

+ PU
x

(

XU
n+1 = y

)

2degU(y)
.

The annealed/averaged heat kernel is EpUn(x, y).



(SUB-)GAUSSIAN HEAT KERNELS ON TREES

Suppose T is a graph tree with fractal dimension df , i.e. such

that

|BT (x, r)| ≍ rdf ,

then (cf. [Barlow, Bass, Coulhon, Grigor’yan, Jones, Kumagai,

Perkins, Telcs])

pTn(x, y) ≍ c1n
−ds/2 exp











−c2

(

dT (x, y)
dw

n

)

1
dw−1











,

where:

walk dimension dw = df +1, spectral dimension ds =
2df
dw

.

This talk, if time permits, will address:

- exponents for U (2d/3d);

- scaling limit for XU (2d/3d);

- fluctuations around polynomial terms (2d);

- quenched vs. averaged heat kernel (2d).



EXPONENTS

General form d = 2 d = 3

LERW growth exponent α 5/4 = 1.25 1.62
Hausdorff dimension of U df = d/α 8/5 = 1.60 1.85

Intrinsic walk dimension dw = 1+ df 13/5 = 2.60 2.85

Extrinsic walk dimension αdw 13/4 = 3.25 4.62
Spectral dimension of U 2df/dw 16/13 = 1.23 1.30

Exponents for 2d case established in [Barlow/Masson].

Exponents for 3d case based on results of [A/C/H-T/S] and

numerical simulation for β of Wilson.

Both depend on general estimates of [Kumagai/Misumi].



RANDOM WALKS ON GRAPHS

Let G = (V,E) be a finite, connected graph, equipped with

(strictly positive, symmetric) edge conductances (c(x, y)){x,y}∈E.

Let µ be a finite measure on V (of full-support).

Let X be the continuous time Markov chain with generator ∆,

as defined by:

(∆f)(x) :=
1

µ({x})

∑

y: y∼x
c(x, y)(f(y)− f(x)).

NB. Common choices for µ are:

- µ({x}) :=
∑

y: y∼x c(x, y), the constant speed random walk

(CSRW);

- µ({x}) := 1, the variable speed random walk (VSRW).



DIRICHLET FORM AND RESISTANCE METRIC

Define a quadratic form on G by setting

E(f, g) =
1

2

∑

x,y:x∼y
c(x, y) (f(x)− f(y)) (g(x)− g(y)) .

Note that (regardless of the particular choice of µ,) E is a Dirich-

let form on L2(µ), and

E(f, g) = −
∑

x∈V

(∆f)(x)g(x)µ({x}).

Suppose we view G as an electrical network with edges assigned

conductances according to (c(x, y)){x,y}∈E. Then the effective

resistance between x and y is given by

R(x, y)−1 = inf {E(f, f) : f(x) = 1, f(y) = 0} .

R is a metric on V , e.g. [Tetali 1991], and characterises the

weights (and therefore the Dirichlet form) uniquely [Kigami 1995].



SUMMARY

RANDOM WALK X WITH GENERATOR ∆

l

DIRICHLET FORM E on L2(µ)

l

RESISTANCE METRIC R AND MEASURE µ



RESISTANCE METRIC, e.g. [KIGAMI 2001]

Let F be a set. A function R : F ×F → R is a resistance metric

if, for every finite V ⊆ F , one can find a weighted (i.e. equipped

with conductances) graph with vertex set V for which R|V×V is

the associated effective resistance.



EXAMPLES

- Effective resistance metric on a graph;

- One-dimensional Euclidean (not true for higher dimensions);

- Any shortest path metric on a tree;

- Resistance metric on a Sierpinski gasket, where for ‘vertices’

of limiting fractal, we set

R(x, y) = (3/5)nRn(x, y),

then use continuity to extend to whole space.



RESISTANCE AND DIRICHLET FORMS

Theorem (e.g. [Kigami 2001]) There is a one-to-one corre-

spondence between resistance metrics and a class of quadratic

forms called resistance forms.

The relationship between a resistance metric R and resistance

form (E,F) is characterised by

R(x, y)−1 = inf {E(f, f) : f ∈ F , f(x) = 1, f(y) = 0} .

Moreover, if (F,R) is compact, then (E,F) is a regular Dirichlet

form on L2(µ) for any finite Borel measure µ of full support.

(Version of the statement also hold for locally compact spaces.)



A FIRST EXAMPLE

Let F = [0,1], R = Euclidean, and µ be a finite Borel measure

of full support on [0,1].

Associated resistance form:

E(f, g) =
∫ 1

0
f ′(x)g′(x)dx, ∀f, g ∈ F ,

where F = {f ∈ C([0,1]) : f is abs. cont. and f ′ ∈ L2(dx)}.

Moreover, integration by parts gives:

E(f, g) = −
∫ 1

0
(∆f)(x)g(x)µ(dx).

where ∆f = d
dµ

df
dx.

If µ(dx) = dx, then the Markov process naturally associated with

∆ is reflected Brownian motion on [0,1].



SUMMARY

RESISTANCE METRIC R AND MEASURE µ

l

RESISTANCE FORM (E,F), DIRICHLET FORM on L2(µ)

l

STRONG MARKOV PROCESS X WITH GENERATOR ∆,

where

E(f, g) = −
∫

F
(∆f)gdµ.



GENERAL SCALING RESULT [C. 2016]
See also [ATHREYA/LOHR/WINTER] for trees

Write Fc for the space of marked compact resistance metric

spaces, equipped with finite Borel measures of full support. Sup-

pose that the sequence (Fn, Rn, µn, ρn)n≥1 in Fc satisfies

(Fn, Rn, µn, ρn) → (F,R, µ, ρ)

in the (marked) Gromov-Hausdorff-Prohorov topology for some

(F,R, µ, ρ) ∈ Fc.

It is then possible to isometrically embed (Fn, Rn)n≥1 and (F,R)

into a common metric space (M,dM) in such a way that

Pnρn

(

(Xn
t )t≥0 ∈ ·

)

→ Pρ
(

(Xt)t≥0 ∈ ·
)

weakly as probability measures on D(R+,M).

Holds for locally compact spaces if lim infn→∞Rn(ρn, BRn(ρn, r)
c)

diverges as r → ∞. (Can also include ‘spatial embeddings’.)



COROLLARY: SRW SCALING LIMIT

Fix d = 2 or d = 3, let Pδ be the annealed law of
(

δXU
δ−αdwt

)

t≥0
.

NB. αdw = 3.25,4.62 is the extrinsic walk dimension in the rel-

evant dimension.

It then holds that Pδ → P̃ (subsequentially in 3d), where P̃ is the

annealed law of
(

φT (XT
t )
)

t≥0
,

as probability measures on C(R+,R
d).

Proof. Apply general results concerning convergence of random

walks on trees [Barlow/C/Kumagai, Athreya/Lohr/Winter], or

resistance spaces [C].



OTHER MOTIVATING EXAMPLES

Sources: Ben Avraham/Havlin, Kortchemski, Chhita, Broutin.



PROOF IDEA 1: RESOLVENTS

For (F,R, µ, ρ) ∈ Fc, let

Gxf(y) = Ey

∫ σx

0
f(Xs)ds

be the resolvent of X killed on hitting x. NB. Processes associ-

ated with resistance forms hit points.

We have [Kigami 2012] that

Gxf(y) =

∫

F
gx(y, z)f(z)µ(dz),

where

gx(y, z) =
R(x, y) +R(x, z)−R(y, z)

2
.

Metric measure convergence ⇒ resolvent convergence ⇒ semi-

group convergence ⇒ finite dimensional distribution convergence.



PROOF IDEA 2: TIGHTNESS

Using that X has local times (Lt(x))x∈F,t≥0, and

EyLσA(z) = gA(y, z) =
R(y,A) +R(z,A)−RA(y, z)

2
,

can establish via Markov’s inequality a general estimate of the

form:

sup
x∈F

Px

(

sup
s≤t

R(x,Xs) ≥ ε

)

≤
32N(F, ε/4)

ε

(

δ+
t

infx∈F µ(BR(x, δ))

)

,

where N(F, ε) is the minimal size of an ε cover of F .

Metric measure convergence ⇒ estimate holds uniformly in n ⇒

tightness (application of Aldous’ tightness criterion).

Similar estimate also gives non-explosion in locally compact case.


