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} Consider surfaces generated as follows:
Ø 3D cylinder Λ = −𝑛, 𝑛 ! × (ℤ + !

")
Ø 𝜎 is a 2-coloring of the vertices:

§ boundary vertices: !
− upper half−space
+ lower half−space

§ internal vertices:      arbitrarily (for now).
Ø Draw a dual-face 𝑢, 𝑣 ∗ if 𝜎# ≠ 𝜎$.

} Interface: (max) connected component ℐ of
dual-faces separating the boundary.

+
-
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} Goal: understand random interfaces
sampled via the distribution:

Ø 𝛽 > 0: inverse temperature (large, fixed).
Ø 𝐠 ⋅,⋅ : some complicated function, yet satisfying

1) 𝐠 ≤ 𝐾𝟎
2) 𝐠 𝑓, ℐ − 𝐠 𝑓&, ℐ& ≤ 𝑒'(# 𝐫 if 𝐵𝐫 𝑓, ℐ ≅ 𝐵𝐫 𝑓&, ℐ&

for absolute constants 𝑐!, 𝐾!.

𝜇 ℐ ∝ exp −𝛽 ℐ +@
*∈ℐ

𝐠 𝑓, ℐ
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𝜇- 𝜎 ∝ exp −𝛽@
.∼0

𝟏 1$21%

} Underlying geometry: finite Λ ⊂ ℤ3.
} Set of possible configurations: Ω = ±1 -

} Probability of a configuration 𝜎 ∈ Ω
given by the Gibbs distribution: -

+

+

+

+

+

+

+

+

-

-

+

-

+

-

+

𝛽 = 0. 75 𝛽 = 0.88 𝛽 = 1
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} 𝜇"∓ : Ising model on 2D cylinder Λ = −𝑛, 𝑛 × (ℤ + !
")

Ø Boundary conditions: !− upper half−plane
+ lower half−plane

Ø Draw a dual-edge 𝑢, 𝑣 ∗ if 𝜎% ≠ 𝜎&.
} Interface: connected component ℐ of dual-edges that 

separates the the boundary components.
} Known [Higuchi ‘79], [Dobrushin, Hryniv ‘97],

[Hryniv ‘98], [Dobrushin, Kotecký, Shlosman ‘92] :

Ø Interface has a scaling limit: ℐ (/*
+#*

→ Brownian bridge

Ø Maximum 𝑀* is O, 𝑛 , and 𝑀* − 𝔼[𝑀*] is also O, 𝑛 .

+
-
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} 𝜇-∓ : Ising model on 3D cylinder Λ = −𝑛, 𝑛 ! × (ℤ + !
")

Ø Boundary conditions: $− upper half−plane
+ lower half−plane

Ø Draw a dual-face 𝑢, 𝑣 ∗ if 𝜎# ≠ 𝜎$.
} Interface: maximal connected component ℐ of 

dual-faces that separates the boundary components.
} [Minlos, Sinai ‘67],[Dobrushin ‘72]:

(cluster expansion; valid for large 𝛽)
} THEOREM: [Dobrushin ‘72] (rigidity of the interface)

𝜇"∓ ℐ ∝ 𝑒-. ℐ /∑$∈ℐ 𝐠 2,ℐ

There exists 𝛽= > 0 such that ∀𝛽 > 𝛽= and ∀𝑥>, 𝑥!, ℎ,
𝜇-∓ ℐ ∋ 𝑥>, 𝑥!, ℎ ≤ exp −>? 𝛽ℎ

+
-
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} 𝑀@ = maximum height of the interface ℐ in 3D Ising
with Dobrushin’s boundary conditions.
Ø [Dobrushin ‘72]: ∃𝐶A s.t. 𝜇-∓ 𝑀@ ≤ 𝐶A log 𝑛 → 1.
Ø ⇒ (via straightforward matching order lower bound) 

the maximum of the interface has order log 𝑛.
} Asymptotics of the maximum (LLN)? Tightness?
} Structure of interface conditional on the rare event of 

reaching height ℎ ≫ 1 above some fixed point?
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} Alternative simpler argument by [van Beijeren ‘75] for [Dobrushin ‘72]’s 
result on the rigidity of the 3D Ising interface.

} Rigidity argument extended to
Ø Widom–Rowlinson model [Bricmont, Lebowitz, Pfister, Olivieri ’79a], 

[Bricmont, Lebowitz, Pfister ‘79b, ‘79c]
Ø Super-critical percolation / random cluster model conditioned to 

have interfaces [Gielis, Grimmett ‘02]
} Tilted interfaces: [Cerf, Kenyon ‘01] (zero temperature, 111 interface), 

[Miracle Sole ‘95] (1-step interface), [Sheffield ‘03] ( ∇𝜙 ' models), 
many works on the conjectured behavior, related to the (non-)existence 
of non-translational invariant Gibbs measures

} Wulff shape, large deviations for the magnetization, 
surface tension [Pisztora ‘96], [Bodineau ‘96], 
[Cerf, Pisztora ‘00], [Bodineau ’05], [Cerf ‘06]

} Plus/minus phases away from the interface [Zhou ‘19]
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} Recall: 𝑀! = maximum of the interface ℐ in 3D Ising; 
[Dobrushin ‘72]: 𝑀! = 𝑂" log 𝑛 .

} THEOREM: ([Gheissari, L. ‘19a])

Ø existence of the limit 𝛼 nontrivial: sub-multiplicativity 
argument relying on new results on the interface shape.

There exists 𝛽= such that for all 𝛽 > 𝛽=,

lim
@→E

𝑀@
log 𝑛

=
2
𝛼
, in probability,

where

𝛼 𝛽 = lim
F→E

−
1
ℎ log 𝜇ℤ&

∓ 0,0,0
H

ℝ!× ℎ

and satisfies 𝛼 𝛽 /𝛽 → 4 as 𝛽 → ∞.
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} THEOREM: ([Gheissari, L. ’19b])

} PROPOSITION: ([Gheissari, L. ’19b])

1. There exists 𝛽= such that for all 𝛽 > 𝛽=,
𝑀@−𝔼𝑀@ = 𝑂I 1 .

2. There exist 𝐶, e𝛼, f𝛼 such that ∀ 𝑟 ≥ 1,

i
𝑒'(KLMHN) ≤ 𝜇@∓ 𝑀@ ≥ 𝔼 𝑀@ + 𝑟 ≤ 𝑒' PLM'N

𝑒'Q'()*+ ≤ 𝜇@∓ 𝑀@ ≤ 𝔼 𝑀@ − 𝑟 ≤ 𝑒'Q,()-+

where e𝛼/f𝛼 → 1 as 𝛽 → ∞.

There does not exist a deterministic sequence 𝑚@ s.t.
𝑀@ −𝑚@ converges weakly to a nondegenerate law.  
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} Notation: ℒ= = ℝ! × 0 ; 𝜋 = projection onto ℒ=
} DEFINITION: [ceiling and walls] 

1. Ceiling face : a horizontal face 𝑓 ∈ ℐ such that 
𝜋 𝑓! ≠ 𝜋 𝑓 ∀𝑓! ≠ 𝑓. 

Ceiling 𝐶 : connected component of ceiling faces.
2. Wall face  : all other faces.

Wall 𝑊 : connected component of wall faces.
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} DEFINITION: [ceiling and walls] 
1. Ceiling face : a horizontal face 𝑓 ∈ ℐ with 𝜋 𝑓# ≠ 𝜋 𝑓 ∀𝑓# ≠ 𝑓. 

Ceiling 𝒞 : connected component of ceiling faces.
2. Wall face : all other faces.

Wall 𝒲 : connected component of wall faces.

} FACTS:
1. ∀ ceiling 𝒞 has a single height.
2. ∀ wall 𝒲:  𝜋 𝒲 is connected.
3. ∀ walls 𝒲 ≠𝒲&:  𝜋 𝒲 ∩ 𝜋 𝒲′ = ∅.
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} A wall 𝒲 is standard if ∃ ℐ whose only wall is 𝒲.
} FACT: 1: 1 correspondence between interfaces 

and admissible* collections of standard walls.

* admissible: walls are disjoint components and so are their projections
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} A wall 𝒲 is standard if ∃ ℐ whose only wall is 𝒲.
} FACT: 1: 1 correspondence between interfaces 

and admissible collections of standard walls.
} Basic idea: given 𝑥 ∈ ℒ= , construct a map Φ:

Ø “standardize” every wall 𝒲 in ℐ; 
Ø delete the wall 𝒲. of 𝑥; 
Ø “reconstruct” ℐ′ from other standard walls.

} Goal: establish for this map Φ:

1. (Energy bound) R ℐ
R S ℐ ≤ 𝑒'(A 𝒲$

2. (Multiplicity bound) # ℐ ∈ Φ'> ℐ& ∶ 𝒲. = ℓ ≤ 𝑒(ℓ
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} Basic idea: delete the wall 𝒲. of 𝑥.
} Energy bound ( $ ℐ

$ & ℐ
≤ 𝑒'() 𝒲! ) :

Ø Gain 𝛽 𝒲( from 𝛽( ℐ − Φ(ℐ) )
Ø Problem: effect on non-deleted

faces that moved due to 𝐠…
§ The effect of 𝐠 is local

(decays exp. in distance).
§ BUT: tall nearby walls

can pick up a cost that 
cancels our 𝛽 𝒲+ gain. 

} Solution: also delete tall walls that are close to 𝒲..

recall 𝜇,∓ ℐ ∝ 𝑒') ℐ .∑"∈ℐ 𝐠 1,ℐ
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} Energy bound ( $ ℐ
$ & ℐ

≤ 𝑒'() 𝒲! ) :
Ø Gain 𝛽 𝒲( from 𝛽( ℐ − Φ(ℐ) ), but must handle 𝐠… 
Ø … must also delete tall walls that are close.

} Multiplicity bound ( #{ℐ ∈ Φ'3 ℐ# ∶ 𝒲+ = ℓ} ≤ 𝑒(ℓ ) :
Ø Problem: accounting for the extra walls we deleted…

} Dobrushin’s criterion: groups of walls: for 𝑥, 𝑦 ∈ ℒ=,
𝒲. ∼ 𝒲0 ⟺ 𝑑 𝑥, 𝑦 ! ≤ max 𝜋'> 𝑥 , 𝜋'> 𝑦 .
(a “tall” 𝒲( (many faces above 𝑥) is easier to group with)

} The map Φ deletes the entire group of walls of 𝒲(: 
analysis becomes 2D (but too crude for detailed questions).

recall 𝜇,∓ ℐ ∝ 𝑒') ℐ .∑"∈ℐ 𝐠 1,ℐ
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DEFINITION: [𝒫(, the pillar at 𝑥 ∈ ℝ4× 0 ]
1. Take the interface ℐ (filling in ∀ bubble)
2. Discard ℝ4× (−∞, 0) from the sites below ℐ
3. The pillar 𝒫( is the remaining + *-connected component of 𝑥

Goal: second moment argument for 𝑀* = max
(
ht (𝒫()

𝒫(

𝒫)

+



E. Lubetzky 18

𝒫(DEFINITION: [𝒫(, the pillar at 𝑥 ∈ ℝ4× 0 ]
1. Take the interface ℐ (filling in ∀ bubble)
2. Discard ℝ4× (−∞, 0) from the sites below ℐ
3. The pillar 𝒫( is the remaining + *-connected component of 𝑥

REMARK: No monotonicity the height of the pillar 𝒫( and the 
height of the + component of 𝑥 (in either direction) 

Goal: second moment argument for 𝑀* = max
(
ht (𝒫()

+

+
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} DEFINITION: [cutpoint of the pillar]
a cell 𝑣W which is the only intersection 
of the pillar 𝒫. with a horizontal slab.

} DEFINITION: [pillar increment]
𝒳W = segment of 𝒫. bounded between 
the cutpoints 𝑣W, 𝑣WH> (inclusively).

} Decompose 𝒫. into:
1. increments 𝒳>, 𝒳!, … ,𝒳X
2. base 𝔅. = 𝒫. ∩ ℝ!× 0, ht v>
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𝒳*+

} Typical increments 
are perturbations 
(with exponential 
tails) of the trivial 
increment

} But: (rarely) 
they can be quite 
complex…

𝔅(
𝒳*

𝒳,

𝒳-
𝒳.

𝒳/
𝒳0
𝒳1

𝒳2

𝒳3
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Ψ.,\: ℐ: ht 𝒫. ≥ ℎ, 𝔅. ∨ 𝒳\ ≥ 𝑟 → ℐ: ht 𝒫. ≥ ℎ s.t.

1. (Energy bound)  R ℐ
R ]$,/ ℐ

≤ 𝑒'(A ℐ ' ]$,/ ℐ

2. (Multiplicity bound) #{ℐ ∈ Ψ.,\'> ℐ& ∶ ℐ − ℐ& = ℓ} ≤ 𝑒(ℓ

Ψ(,5
𝒳5

𝑥
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} The map Ψ.,\ induces
1. horizontal shifts
2. vertical shifts (down & up)

} The pillar 𝒫. to hit a nearby 𝒫0
(possibly making the map not well-defined)

} The pillar may get very close to a nearby 𝒫0
and heavily interact with it
(destroying the energy control).
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} Target the structure of 
the increment 𝒳\ by: 
Ø straightening 𝒳\ if 

its size is too large.
Ø straightening any 

other increment 𝒳_
for 𝑠 ≥ 𝑡 whose size 
is at least
𝑒(|_'\|

(too large w.r.t. 𝒳\).
𝒳5

𝒳6
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} Base is delicate: incorporates interaction with other 
nearby pillars in the interface…

} Trying to relax the definition of the base to rule out 
such interactions gives an 𝑂(log ℎ) error on its size: 
sufficient for LLN but not for tightness.
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} Defining Ψ.,\ : 
Ø ∀ 𝑗 ≥ 1, determine whether 

to straighten 𝒫( at the 
increment 𝒳6. If so:
§ ∀𝑦 ≠ 𝑥, determine 

whether this action may 
cause 𝒫( to draw to 
closely to 𝒫0. If so, 
delete 𝒫0 as well.

} Delicate balance between 
deleting too little (energy 
control) and deleting too 
much (multiplicity control).
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} Via additional maps (2 → 2): tall pillars are
≈ stationary sequences of increments.

} THEOREM: ([Gheissari, L. ’19a])

} CLT also holds, e.g., for the 
surface area and volume of 𝒫..

Let 𝑌>, 𝑌!, ht 𝒫. be the location of the tip of the pillar 𝒫.. 
Conditional on 𝒫. having at least 1 ≪ 𝑇@ ≪ 𝑛 increments,

𝑌>, 𝑌!, ht 𝒫. − 𝑥>, 𝑥!, 𝜆𝑇@
𝑇@

a
𝒩 0,

for some 𝜎, 𝜎& > 0.

𝝈𝟐 𝟎 𝟎
𝟎 𝝈𝟐 𝟎
𝟎 𝟎 𝝈" 𝟐
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} Major open problem: roughness of tilted interfaces of 
the 3D Ising model at low temperature (𝛽 fixed, large). 
Ø Conjecture: Var(ht. ℐ ) ≍ log 𝑛.
Ø Verified only for 𝛽 = ∞ ([Cerf, Kenyon ‘01]).
Ø For finite large 𝛽, unknown that Var(ht. ℐ ) → ∞…


