

Oxford May 2020

Maximum height of 3D Ising interfaces

Eyal Lubetzky

Courant Institute (NYU)

based on joint works with Reza Gheissari (UC Berkeley)

3D Ising interfaces

- > 3D cylinder $\Lambda = [-n, n]^2 \times (\mathbb{Z} + \frac{1}{2})$
- $\triangleright \sigma$ is a 2-coloring of the vertices:
 - boundary vertices:
 upper half-space
 lower half-space

- internal vertices: arbitrarily (for now).
- \triangleright Draw a **dual-face** $(u, v)^*$ if $\sigma_u \neq \sigma_v$.
- Interface: (max) connected component \mathcal{I} of dual-faces separating the boundary.

3D Ising interfaces (ctd.)

Goal: understand random interfaces sampled via the distribution:

$$\mu(\mathcal{I}) \propto \exp\left(-\beta|\mathcal{I}| + \sum_{f \in \mathcal{I}} \mathbf{g}(f,\mathcal{I})\right)$$

- $> \beta > 0$: inverse temperature (large, fixed).
- $ightharpoonup \mathbf{g}(\cdot,\cdot)$: some complicated function, yet satisfying
 - 1) $\mathbf{g} \leq K_0$
 - 2) $|\mathbf{g}(f,\mathcal{I}) \mathbf{g}(f',\mathcal{I}')| \le e^{-c_0 \mathbf{r}} \text{ if } B_{\mathbf{r}}(f,\mathcal{I}) \cong B_{\mathbf{r}}(f',\mathcal{I}')$

for **absolute** constants c_0 , K_0 .

Definition: the classical Ising model

- ▶ Underlying geometry: finite $\Lambda \subset \mathbb{Z}^d$.
- ▶ Set of possible configurations: $\Omega = \{\pm 1\}^{\Lambda}$
- Probability of a configuration $\sigma \in \Omega$ given by the *Gibbs distribution*:

$$\mu_{\Lambda}(\sigma) \propto \exp\left(-\beta \sum_{x \sim y} \mathbf{1}_{\{\sigma_x \neq \sigma_y\}}\right)$$

$$\beta = 0.75$$

$$\beta = 0.88$$

2D Ising interfaces

- μ_{Λ}^{\mp} : Ising model on 2D cylinder $\Lambda = [-n, n] \times (\mathbb{Z} + \frac{1}{2})$
 - > Boundary conditions: | upper half-plane | lower half-plane |

- ▶ Draw a dual-edge $(u, v)^*$ if $\sigma_u \neq \sigma_v$.
- Interface: connected component \mathcal{I} of dual-edges that separates the boundary components.
- Nown [Higuchi '79], [Dobrushin, Hryniv '97], [Hryniv '98], [Dobrushin, Kotecký, Shlosman '92]:
 - ► Interface has a scaling limit: $\frac{J(x/n)}{\sqrt{c_B n}}$ → Brownian bridge
 - \triangleright Maximum M_n is $O_P(\sqrt{n})$, and $M_n \mathbb{E}[M_n]$ is also $O_P(\sqrt{n})$.

3D Ising interfaces

- μ_{Λ}^{\mp} : Ising model on 3D cylinder $\Lambda = [-n, n]^2 \times (\mathbb{Z} + \frac{1}{2})$
 - Boundary conditions:
 Upper half-plane
 lower half-plane

- \triangleright Draw a dual-face $(u, v)^*$ if $\sigma_u \neq \sigma_v$.
- ▶ **Interface**: maximal connected component *J* of dual-faces that separates the boundary components.
- ▶ [Minlos, Sinai '67], [Dobrushin '72]: $\mu_{\Lambda}^{\mp}(\mathcal{I}) \propto e^{-\beta|\mathcal{I}| + \sum_{f \in \mathcal{I}} \mathbf{g}(f,\mathcal{I})}$ (cluster expansion; valid for large β)
- ► THEOREM: [Dobrushin '72] (rigidity of the interface)

There exists $\beta_0 > 0$ such that $\forall \beta > \beta_0$ and $\forall x_1, x_2, h$, $\mu_{\Lambda}^{\mp}(\mathcal{I}\ni(x_1,x_2,h))\leq \exp(-\frac{1}{3}\beta h)$

Plus/minus interface in 3D Ising

- ▶ M_n = maximum height of the interface J in 3D Ising with Dobrushin's boundary conditions.
 - ightharpoonup [Dobrushin '72]: $\exists C_{\beta} \text{ s.t. } \mu_{\Lambda}^{\mp} (M_n \leq C_{\beta} \log n) \to 1.$
 - \Rightarrow (via straightforward matching order lower bound) the maximum of the interface has **order** log n.
- ▶ Asymptotics of the maximum (LLN)? Tightness?
- Structure of interface conditional on the rare event of reaching height $h \gg 1$ above some fixed point?

Related work on 3D Ising interfaces

- ▶ Alternative simpler argument by [van Beijeren '75] for [Dobrushin '72]'s result on the rigidity of the 3D Ising interface.
- Rigidity argument extended to
 - Widom-Rowlinson model [Bricmont, Lebowitz, Pfister, Olivieri '79a],
 [Bricmont, Lebowitz, Pfister '79b, '79c]
 - Super-critical percolation / random cluster model conditioned to have interfaces [Gielis, Grimmett '02]
- ▶ Tilted interfaces: [Cerf, Kenyon '01] (zero temperature, 111 interface), [Miracle Sole '95] (1-step interface), [Sheffield '03] ($|\nabla \phi|^p$ models), many works on the conjectured behavior, related to the (non-)existence of non-translational invariant Gibbs measures
- Wulff shape, large deviations for the magnetization, surface tension [Pisztora '96], [Bodineau '96], [Cerf, Pisztora '00], [Bodineau '05], [Cerf '06]
- Plus/minus phases away from the interface [Zhou '19]

LLN for the maximum

- Recall: M_n = maximum of the interface \mathcal{I} in 3D Ising; [Dobrushin '72]: $M_n = O_P(\log n)$.
- THEOREM: ([Gheissari, L. '19a])

There exists β_0 such that for all $\beta > \beta_0$,

$$\lim_{n\to\infty}\frac{M_n}{\log n}=\frac{2}{\alpha}\,,\qquad in \,probability,$$

where

$$\alpha(\beta) = \lim_{h \to \infty} -\frac{1}{h} \log \mu_{\mathbb{Z}^3}^{\mp} \left((0,0,0) \stackrel{+}{\longleftrightarrow} (\mathbb{R}^2 \times \{h\}) \right)$$
and satisfies $\alpha(\beta)/\beta \to 4$ as $\beta \to \infty$.

and satisfies $\alpha(\beta)/\beta \to 4$ as $\beta \to \infty$.

 \triangleright existence of the limit α nontrivial: sub-multiplicativity argument relying on new results on the interface shape.

Tightness and tails for the maximum

- THEOREM: ([Gheissari, L. '19b])
 - 1. There exists β_0 such that for all $\beta > \beta_0$, $M_n \mathbb{E}M_n = O_P(1)$.
 - 2. There exist $C, \overline{\alpha}, \underline{\alpha}$ such that $\forall r \geq 1$, $(a^{-(\overline{\alpha}r+C)} < u^{\pm}(M) > \mathbb{E}[M, 1+\alpha) < a^{-(\alpha r-C)}$

$$\begin{cases} e^{-(\overline{\alpha}r+C)} \leq \mu_n^{\overline{+}}(M_n \geq \mathbb{E}[M_n] + r) \leq e^{-(\underline{\alpha}r-C)} \\ e^{-e^{\overline{\alpha}r+C}} \leq \mu_n^{\overline{+}}(M_n \leq \mathbb{E}[M_n] - r) \leq e^{-e^{\underline{\alpha}r-C}} \end{cases}$$
where $\overline{\alpha}/\alpha \to 1$ as $\beta \to \infty$.

PROPOSITION: ([Gheissari, L. '19b])

There *does not* exist a deterministic sequence (m_n) s.t. $(M_n - m_n)$ converges weakly to a nondegenerate law.

- Notation: $\mathcal{L}_0 = \mathbb{R}^2 \times \{0\}$; $\pi = \text{projection onto } \mathcal{L}_0$
- DEFINITION: [ceiling and walls]

Ceiling C: connected component of ceiling faces.

2. Wall face: all other faces.

Wall W: connected component of wall faces.

DEFINITION: [ceiling and walls]

1. Ceiling face: a horizontal face $f \in \mathcal{I}$ with $\pi(f') \neq \pi(f) \ \forall f' \neq f$.

Ceiling C: connected component of ceiling faces.

2. *Wall face* : all other faces.

 $Wall \mathcal{W}$: connected component of wall faces.

FACTS:

- 1. \forall ceiling \mathcal{C} has a single height.
- 2. \forall wall \mathcal{W} : $\pi(\mathcal{W})$ is connected.

3. \forall walls $\mathcal{W} \neq \mathcal{W}'$: $\pi(\mathcal{W}) \cap \pi(\mathcal{W}') = \emptyset$.

▶ A wall \mathcal{W} is **standard** if $\exists \mathcal{I}$ whose only wall is \mathcal{W} .

▶ <u>FACT</u>: 1: 1 correspondence between interfaces and *admissible** collections of standard walls.

* admissible: walls are disjoint components and so are their projections

- ▶ A wall \mathcal{W} is **standard** if $\exists \mathcal{I}$ whose only wall is \mathcal{W} .
- ▶ <u>FACT</u>: 1: 1 correspondence between interfaces and *admissible* collections of standard walls.
- ▶ Basic idea: given $x ∈ \mathcal{L}_0$, construct a map Φ:
 - \succ "standardize" every wall \mathcal{W} in \mathcal{I} ;
 - \triangleright delete the wall \mathcal{W}_x of x;
 - "reconstruct" J' from other standard walls.
- Goal: establish for this map Φ :
 - 1. (Energy bound) $\frac{\mu(\mathcal{I})}{\mu(\Phi(\mathcal{I}))} \le e^{-c\beta|\mathcal{W}_x|}$
 - 2. (Multiplicity bound) $\#\{\mathcal{I} \in \Phi^{-1}(\mathcal{I}') : |\mathcal{W}_{\chi}| = \ell\} \le e^{c\ell}$

recall $\mu_{\Lambda}^{\overline{+}}(\mathcal{I}) \propto e^{-\beta|\mathcal{I}| + \sum_{f \in \mathcal{I}} \mathbf{g}(f,\mathcal{I})}$

- ▶ Basic idea: delete the wall \mathcal{W}_x of x.
- ▶ Energy bound $\left(\frac{\mu(\mathcal{I})}{\mu(\Phi(\mathcal{I}))} \le e^{-c\beta|\mathcal{W}_x|}\right)$:
 - \triangleright Gain $\beta |\mathcal{W}_{\chi}|$ from $\beta (|\mathcal{I}| |\Phi(\mathcal{I})|)$
 - Problem: effect on non-deleted faces that moved due to g...
 - The effect of **g** is **local** (decays exp. in distance).
 - BUT: tall nearby walls can pick up a cost that cancels our $\beta |W_x|$ gain.

Solution: also delete **tall** walls that are **close** to \mathcal{W}_{x} .

recall
$$\mu_{\Lambda}^{\mp}(\mathcal{I}) \propto e^{-\beta|\mathcal{I}| + \sum_{f \in \mathcal{I}} \mathbf{g}(f,\mathcal{I})}$$

- Energy bound $\left(\frac{\mu(\mathcal{I})}{\mu(\Phi(\mathcal{I}))} \le e^{-c\beta|\mathcal{W}_x|}\right)$:
 - ightharpoonup Gain $\beta |\mathcal{W}_x|$ from $\beta (|\mathcal{I}| |\Phi(\mathcal{I})|)$, but must handle \mathbf{g} ...
 - > ... must also **delete tall** walls that are **close**.
- ▶ Multiplicity bound ($\#\{\mathcal{I} \in \Phi^{-1}(\mathcal{I}') : |\mathcal{W}_x| = \ell\} \le e^{c\ell}$):
 - > Problem: accounting for the extra walls we deleted...
- Dobrushin's criterion: **groups of walls**: for $x, y \in \mathcal{L}_0$, $\mathcal{W}_x \sim \mathcal{W}_y \iff d(x, y)^2 \leq \max\{|\pi^{-1}(x)|, |\pi^{-1}(y)|\}$. (a "tall" \mathcal{W}_x (many faces above x) is easier to group with)
- The map Φ deletes the entire **group of walls** of \mathcal{W}_x : analysis becomes 2D (but too crude for detailed questions).

New approach: pillars in the interface

DEFINITION: $[\mathcal{P}_x$, the **pillar** at $x \in \mathbb{R}^2 \times \{0\}$]

- 1. Take the interface \mathcal{I} (filling in \forall bubble)
- 2. Discard $\mathbb{R}^2 \times (-\infty, 0)$ from the sites below \mathcal{I}

3. The pillar \mathcal{P}_x is the remaining \oplus *-connected component of x

Goal: second moment argument for $M_n = \max_{x} \operatorname{ht}(\mathcal{P}_x)$

Pillars vs. connected + components

DEFINITION: $[\mathcal{P}_x$, the **pillar** at $x \in \mathbb{R}^2 \times \{0\}$]

- 1. Take the interface \mathcal{I} (filling in \forall bubble)
- 2. Discard $\mathbb{R}^2 \times (-\infty, 0)$ from the sites below \mathcal{I}

3. The pillar \mathcal{P}_x is the remaining \oplus *-connected component of x

<u>REMARK</u>: No monotonicity the height of the pillar \mathcal{P}_x and the height of the \bigoplus component of x (in either direction)

Goal: second moment argument for $M_n = \max_{x} \operatorname{ht} (\mathcal{P}_x)$

Decomposition of pillars

DEFINITION: [cutpoint of the pillar] a cell v_i which is the only intersection of the pillar \mathcal{P}_x with a horizontal slab.

- DEFINITION: [pillar increment] $X_i = \text{segment of } \mathcal{P}_x \text{ bounded between the cutpoints } v_i, v_{i+1} \text{ (inclusively).}$
- ▶ Decompose \mathcal{P}_{χ} into:
 - 1. increments $(X_1, X_2, ..., X_T)$
 - 2. $base \mathfrak{B}_{\chi} = \mathcal{P}_{\chi} \cap (\mathbb{R}^2 \times [0, ht(v_1)])$

Decomposition of pillars

 Typical increments are perturbations (with exponential tails) of the trivial increment

But: (rarely) they can be quite complex...

The interface map $\Psi_{x,t}$

 $\Psi_{x,t}: \{\mathcal{I}: \operatorname{ht}(\mathcal{P}_x) \geq h, |\mathfrak{B}_x| \vee |\mathcal{X}_t| \geq r\} \rightarrow \{\mathcal{I}: \operatorname{ht}(\mathcal{P}_x) \geq h\} \text{ s.t.}$

1. (Energy bound)

- $\frac{\mu(\mathcal{I})}{\mu(\Psi_{x,t}(\mathcal{I}))} \le e^{-c\beta(|\mathcal{I}| |\Psi_{x,t}(\mathcal{I})|)}$
- 2. (Multiplicity bound) $\#\{\mathcal{I} \in \Psi_{x,t}^{-1}(\mathcal{I}') : |\mathcal{I}| |\mathcal{I}'| = \ell\} \le e^{c\ell}$

Challenges due to interacting pillars

- The map $\Psi_{x,t}$ induces
 - 1. horizontal shifts
 - 2. vertical shifts (down & up)
- The pillar \mathcal{P}_x to hit a nearby \mathcal{P}_y (possibly making the map not well-defined)
- The pillar may get very close to a nearby \mathcal{P}_y and heavily interact with it (destroying the energy control).

Basic map $\Psi_{x,t}$ to control increments

- ▶ Target the structure of the increment X_t by:
 - > straightening X_t if its size is too large.
 - > straightening any other increment X_s for $s \ge t$ whose size is at least $e^{c|s-t|}$ (too large w.r.t. X_t).

A basic $\Psi_{x,t}$ for controlling increments

- ▶ Base is delicate: incorporates interaction with other nearby pillars in the interface...
- Trying to relax the definition of the base to rule out such interactions gives an $O(\log h)$ error on its size: sufficient for LLN but *not for tightness*.

Algorithm for the refined map $\Psi_{x,t}$

- Defining $\Psi_{x,t}$:
 - \forall *j* ≥ 1, determine whether to straighten \mathcal{P}_{x} at the increment \mathcal{X}_{i} . If so:
 - $\forall y \neq x$, determine whether this action may cause \mathcal{P}_x to draw to closely to \mathcal{P}_y . If so, delete \mathcal{P}_y as well.
- Delicate balance between deleting too little (energy control) and deleting too much (multiplicity control).

```
Algorithm 1: The map \Psi_{x,t}
1 Let \{\bar{W}_y: y \in \mathcal{L}_{0,n}\} be the standard wall representation of the interface \mathcal{I} \setminus \mathcal{S}_x. Also let \mathcal{O}_{v_1} be the
     nested sequence of walls of v_1, so that \theta_{ST}O_{v_1} = \widetilde{\mathfrak{W}}_{v_1}.
    // Base modification
2 Mark [x] = \{x\} \cup \partial_0 x and \rho(v_1) for deletion (where \partial_0 x denotes the four faces in \mathcal{L}_0 adjacent to x).
3 if the interface with standard wall representation \tilde{\mathfrak{W}}_v, has a cut-height then
         Let h^{\dagger} be the height of the highest such cut-height.
         Let y^{\dagger} be the index of a wall that intersects (\mathcal{P}_x \setminus \mathcal{O}_{v_1}) \cap \mathcal{L}_{h^{\dagger}} and mark y^{\dagger} for deletion.
    // Spine modification (A): the 1st increment
4 Set s<sub>1</sub> ← 0 and y<sub>A</sub><sup>*</sup> ← ∅.
   for j = 1 to \mathcal{T} + 1 do
          Let s \leftarrow s_j and s_{j+1} \leftarrow s_j.
          if \mathfrak{m}(\mathscr{X}_i) \geq j-1 then
                                                                                                                                                            // (A1)
          Let \mathfrak{s}_{j+1} \leftarrow j.
         \text{if} \qquad \mathfrak{D}_x(\tilde{W}_y,j,-v_{s+1},0) \leq \mathfrak{m}(\tilde{W}_y) \quad \textit{for some $y$} \quad \text{then}
                                                                                                                                                            // (A2)
              Let \mathfrak{s}_{i+1} \leftarrow j and mark for deletion every y for which (A2) holds.
                                                                                                                                                            // (A3)
         if \mathfrak{D}_x(W_y, j, -v_{s+1}, 0) \le (j-1)/2
                                                                              for some y then
              Let \mathfrak{s}_{i+1} \leftarrow j and let y_A^* be the minimal index y for which (A3) holds.
    Let j^* \leftarrow \mathfrak{s}_{\mathcal{T}+2} and mark y_A^* for deletion
    // Spine modification (B): the t-th increment
5 if t > j^* then
          Set s_t \leftarrow t - 1 and y_B^* \leftarrow \emptyset.
          for k = t to \mathcal{T} + 1 do
              Let s \leftarrow \mathfrak{s}_k and \mathfrak{s}_{k+1} \leftarrow \mathfrak{s}_k.
               if \mathfrak{m}(\mathscr{X}_k) \geq k - t then
                                                                                                                                                            // (B1)
              if \mathfrak{D}_x(\bar{W}_y, j, -v_{s+1}, v_t - v_{j^*+1}) \leq \mathfrak{m}(\bar{W}_y) for some y then 
 \sqsubseteq \text{Let } \mathfrak{s}_{k+1} \leftarrow k and mark for deletion every y for which (B2) holds.
                                                                                                                                                            // (B2)
              \begin{array}{l} \textbf{if} \ \ \mathfrak{D}_x(\bar{W}_y,j,-v_{s+1},v_t-v_{j^*+1}) \leq (k-t)/2 \quad \  \, \textit{for some $y$ then} \\ \ \  \  \, \bigsqcup \ \  \, \text{Let} \ \mathfrak{s}_{k+1} \leftarrow k \ \text{and let} \ y_B^* \ \text{be the minimal index $y$ for which (B3) holds}. \end{array}
                                                                                                                                                            // (B3)
        Let k^* \leftarrow \mathfrak{s}_{\mathscr{T}+2} and mark y_B^* for deletion.
     Let k* ← j*.
6 foreach index y \in \mathcal{L}_{0,n} marked for deletion do delete \tilde{\mathfrak{F}}_y from the standard wall representation (\tilde{W}_y).
7 Add a standard wall W_x^{\mathcal{J}} consisting of ht(v_1) - \frac{1}{2} trivial increments above x.
8 Let K be the (unique) interface with the resulting standard wall representation.
9 Denoting by (\mathcal{X}_i)_{i\geq 1} the increment sequence of \mathcal{S}_x, set
                                                                                                                                                if t \leq i^*.
```

10 Obtain $\Psi_{x,t}(\mathcal{I})$ by appending the spine with increment sequence \mathcal{S} to \mathcal{K} at $x + (0,0,\operatorname{ht}(v_1))$.

CLT for location of tip, volume, surface area

Via additional maps (2 → 2): tall pillars are
 ≈ stationary sequences of increments.

► THEOREM: ([Gheissari, L. '19a])

Let $(Y_1, Y_2, ht(\mathcal{P}_x))$ be the location of the tip of the pillar \mathcal{P}_x . Conditional on \mathcal{P}_x having at least $1 \ll T_n \ll n$ increments,

$$\frac{\left(Y_1, Y_2, \operatorname{ht}(\mathcal{P}_{x})\right) - \left(x_1, x_2, \lambda T_n\right)}{\sqrt{T_n}} \xrightarrow{d} \mathcal{N}\left(0, \begin{pmatrix} \frac{\sigma^2}{0} & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & (\sigma')^2 \end{pmatrix}\right)$$

for some σ , $\sigma' > 0$.

CLT also holds, e.g., for the surface area and volume of \mathcal{P}_{x} .

Open: tilted interfaces

- Major open problem: roughness of **tilted** interfaces of the 3D Ising model at low temperature (β fixed, large).
 - \triangleright Conjecture: Var(ht_x(\mathcal{I})) \approx log n.
 - ▶ Verified only for $\beta = \infty$ ([Cerf, Kenyon '01]).
 - ▶ For finite large β , unknown that Var(ht_x(\mathcal{I})) → ∞...

Thank you!