Maximum height of
3D Ising interfaces

- = S te NP
oy RN £ SO
..o.... < t j R .

. . . = N . .
ot . ® : - e e
O ety
. . 0... ..... ¥
~ o Lt - &
® e , STe- % S .
. . e g
° - SRS : .
. .°.. ~ 02 ) R & X
® LI ¢ . S AT e ST AT NS
N N R N
. . 5 i

Eyal Lubetzky

Courant Institute (NYU)

based on joint works with
Reza Gheissari (UC Berkeley)




3D Ising interfaces

» Consider surfaces generated as follows:
- _ 2
> 3D cylinder A = [-n,n]* X (Z +2)
> 0 is a 2-coloring of the vertices:
@ upper half-space

= boundary vertices: {

@ lower half-space

= internal vertices:  arbitrarily (for now).

P | » Draw a dual-face (u,v)* if o, # o,.

» Interface: (max) connected component J of J.ﬂ,f(”f:;
dual-faces separating the boundary. &
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3D Ising interfaces (ctd.)

sampled via the distribution:

"?*r Ay R S|
) 2 I* TG P b

u(9) o exp (—ﬁm X R A
fed
’l > B > 0: inverse temperature (large, fixed). :

> 8(+,-): some complicated function, yet satisfying

(1) g = Ko 1 B
2) 18(f,9) —8(f", 3D < e @it Bi(f,7) = B (f', ')

for absolute constants ¢y, K.




Definition: the classical Ising model

» Underlying geometry: finite A c Z%.

» Set of possible configurations: Q = {+1}*

» Probability of a configuration o € Q)
given by the Gibbs distribution: I

( .UA(O-) oK exp( b 2 1{0'x-‘#0'y} W

x~y

B <Bc

B =0.75 B =0.88




2D Ising interfaces

» uf : Ising model on 2D cylinder A = [-n,n] X (Z + %)

- half—pl cecccscscccesecs

> Boundary conditions: © upper half~plane ssesseeseesancs
lOwerhalf_plane eejeje[ecccccocjec e

Bt HE R

> Draw a dual-edge (u,v)* if g, # 0,. coeseses

» Interface: connected component 7 of dual-edges that
separates the the boundary components. '

» Known [Higuchi ‘79], [Dobrushin, Hryniv ‘97], w
[Hryniv ‘98], [Dobrushin, Kotecky, Shlosman ‘92] :  : :

J(x/n)

> Interface has a scaling limit: — Brownian bridge

CBTL

» Maximum M,, is Op(y/n), and M,, — E[M,,] is also Op(1/n).




3D Ising interfaces

» uf : Ising model on 3D cylinder A = [-n,n]? x (Z + >

@ upper half-plane

> Boundary conditions:
© lower half-plane

» Draw a dual-face (u,v)* if o, # o,,.

» Interface: maximal connected component 7 of
l dual-faces that separates the boundary components.

e » [Minlos, Sinai ‘67],[Dobrushin “72]: { HOK: e PlIl+2res 8(f9)

(cluster expansion; valid for large [)

» THEOREM: [Dobrushin 72| (rigidity of the interface) |

There exists By > 0 such that VS > B, and Vx4, x5, h,
up (3 3 (x1,x2,h)) < exp(—3 Bh)




Plus/minus interface in 3D Ising

» M, = maximum height of the interface 7 in 3D Ising
with Dobrushin’s boundary conditions.

» [Dobrushin ’72]:‘36'3 s.t. ,uf\(Mn < (Cp logn) - 1. ‘

> = (via straightforward matching order lower bound)
the maximum of the interface has order logn.

77
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» Asymptotics of the maximum (LLN)? Tightness?

» Structure of interface conditional on the rare event of
reaching height h > 1 above some fixed point?




Related work on 3D Ising interfaces

» Alternative simpler argument by [van Beijeren "75] for [Dobrushin 72]’s
result on the rigidity of the 3D Ising interface.

» Rigidity argument extended to

> Widom-Rowlinson model [Bricmont, Lebowitz, Pfister, Olivieri "79a],
[Bricmont, Lebowitz, Pfister “79b, “79c]

> Super-critical percolation / random cluster model conditioned to
have interfaces [Gielis, Grimmett “02]

/

» Tilted interfaces: [Cerf, Kenyon ‘01] (zero temperature, 111 interface),
[Miracle Sole “95] (1-step interface), [Sheffield “03] (|V¢|? models),
many works on the conjectured behavior, related to the (non-)existence
of non-translational invariant Gibbs measures

» Wultf shape, large deviations for the magnetization,
surface tension [Pisztora ‘96], [Bodineau "96],
[Cerf, Pisztora ‘00], [Bodineau "05], [Cerf ‘06]

» Plus/minus phases away from the interface [Zhou "19]




LLN for the maximum

» Recall: M,, = maximum of the interface 7 in 3D Ising;
[Dobrushin “72]: M,, = Op(logn).

» THEOREM: (|Gheissari, L. “19a)
There exists [y such that for all § > [,

M 2
lim —— =—, in probability; %

n-o logn «

where

_ 1 i +
«(B) = Jim —~logus: (<o,o,o>H <R2x{h}>>
_and satisfies a(B)/B — 4as ff — oo

> existence of the limit @ nontrivial: sub-multiplicativity 7
.. argument relying on new results on the interface shape.




i

Tightness and tails for the maximum

» THEOREM: (|Gheissari, L. "19b])

1. There exists [y such that for all 5 > [,
M, —EM,, = Op(1).
2. There exist C, @, a suchthatVr > 1,
e~ (@+0) < .UE(M > IE[M 1+ 7r) < e —(ar—C)
e ¢ <yt (M, <E[M,]—71) <e ¢
where a/a - 1 as f — oo.

» PROPOSITION: (|Gheissari, L. "19b])

There does not exist a deterministic sequence (m,,) s.t.
(M,, — m,,) converges weakly to a nondegenerate law.
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Steppingstone: Dobrushin’s argument

» DEFINITION: [ceiling and walls] .
(1. Ceiling face : a horizontal face f € 7 such that

n(f) # () V' # f.

Ceiling C : connected component of ceiling faces.

(2 Wall face : all other faces. \

Wall W : connected component of wall faces.

» Notation: LO — Rz X {O} ;I = pI'OjeCti()n onto LO o

\




Steppingstone: Dobrushin’s argument

» DEFINITION: [ceiling and walls]

(1 Ceiling face : a horizontal face f € J with n(f') # n(f) Vf' # f. ’
Ceiling C : connected component of ceiling faces.

2. Wall face : all other faces.
Wall W : connected component of wall faces.

» FACTS:

1. V ceiling C has a single height.

2. Vwall W: m(W) is connected.

3. Vwallsw = W' (W) na(W') = @.

\’

‘(,




Steppingstone: Dobrushin’s argument

» A wall W is standard if 3 7 whose only wall is W.

Ve
A,l’%u: - -,;,;._‘T

» FACT: 1: 1 correspondence between interfaces
and admissible* collections of standard walls. _ /*/ N

* admissible: walls are disjoint components and so are their projections




Steppingstone: Dobrushin’s argument

» A wall W is standard if 3 7 whose only wall is W.

» FACT: 1: 1 correspondence between interfaces ¢ i

and admissible collections of standard walls. < § @

> “standardize” every wall W in J;

> delete the wall W, of x;

> “reconstruct” 7' from other standard walls.
» Goal: establish for this map ®:

H(j) —C,B| W, |
<e X
ﬂ(q)(j))

2. (Multiplicity bound) #{J € ®71(3") : |[W,| = £} < et

1. (Energy bound)




Steppingstone: Dobrushin’s argument

| recall uk(9) o e P+ Zrer 847 |

» Basic idea: delete the wall W, of x. s

» Energy bound (% < e FWxl)
> Gain B|Wy| from B(|7| — [P (I)])
> Problem: effect on non-deleted

faces that moved due to g...

= The effect of g is local
(decays exp. in distance).

= BUT: tall nearby walls
can pick up a cost that
cancels our B|W,| gain.




Steppingstone: Dobrushin’s argument

u(J) —C ¢ .

» Energy bound (m < e FWxl)
» Gain S| W, | from B(|7| — |®(T)|), but must handle g.. Z.
> ... must also delete tall walls that are close.

» Multiplicity bound (#{7 € ®71(7") : |[Wy| = £} < )
> Problem: accounting for the extra walls we deleted. ..

» Dobrushin’s criterion: groups of walls: for x,y € L,
Wy ~W, < dlxy)* <max{lr™ ()] 77 ()1}

a “tall” W, (many faces above x) is easier to group with
y group

» The map P deletes the entire group of walls of W, :
analysis becomes 2D (but too crude for detailed questions).




New approach: pillars in the interface

J!

DEFINITION: [P,, the pillar at x € R%x{0}]

1. Take the interface 7 (filling in V bubble) &

2. Discard R?x (—o0, 0) from the sites below J .ﬁ _r/

3. The plllar P, is the remammg@*—connected Component of x

\.\.

A

Goal: second moment argument for M,, = max ht ()
X




Pillars vs. connected + components

DEFINITION: [P,, the pillar at x € R%x{0}]

1. Take the interface 7 (filling in V bubble)

2. Discard R*X (—o0, 0) from the sites below J ““&#g
3. The pillar P, is the remaining @ *-connected component of x

REMARK: No monotonicity the height of the pillar 7, and the
height of the @component of x (in either direction)

Goal: second moment argument for M,, = max ht ()
X

I 74




Decomposition of pillars

» DEFINITION: [cutpoint of the pillar]
a cell v; which is the only intersection
of the pillar P, with a horizontal slab.

» DEFINITION: [pillar increment]|
X; = segment of P, bounded between i !/
the cutpoints v;, v; ;1 (inclusively). i ¥

» Decompose P, into:
1. increments (X{, Xy, ..., Xr)
2. base B, = P, N (R*x][0, ht(vy)])




Decomposition of pillars

» Typical increments 3
are perturbations
(with exponential "";

tails) of the trivial of :
increment @ 4

'''''''

But: (rarely)
they can be quite .
complex... 1& | it




The interface map ¥y,

Wy i tI:ht(Py) = h, [By| V[ X = 7} > {T:ht(Py) = h} st

1. (Energy bound) i : (jt)(j)) < o~ BUIN=|Pxt(D])

2. (Multiplicity bound) #{J € LP;%(?’) DI = |97 = €} < et




Challenges due to interacting pillars

» The map ¥, ; induces
1. horizontal shifts |
2. vertical shifts (down & up) |

» The pillar P, to hit a nearby P, N 1'
(possibly making the map not well-defined)

» The pillar may get very close to a nearby Py
and heavily interact with it
(destroying the energy control).

[ T/




Basic map ¥, to control increments

» Target the structureof &1 _— /¥ @l
the increment X by: == e
. S N N
> straightening X, if | Lﬁ |
its size is too large. _'t E”__ :
> straightening any n lj} Xs i
other increment X ) A N
B for s > t whose size ' — (/j A s,
is at least S 7 a
ec|s—t| % f’“‘“ﬁw, | o
(too large w.r.t. Xy). ng -
i) 4




A basic ¥, for controlling increments

» Base is delicate: incorporates interaction with other
nearby pillars in the interface...

» Trying to relax the definition of the base to rule out

such interactions gives an O (log h) error on its size:
sufficient for LLN but not for tightness.

I 74




Algorithm for the refined map ¥,

» Defining W, ; :
> V j = 1, determine whether

to straighten P, at the
increment X;. If so:

= Vy # x, determine
whether this action may
cause P, to draw to

closely to Py, If so,

delete ny as well.

» Delicate balance between
deleting too little (energy
control) and deleting too
much (multiplicity control).

Algorithm 1: The map ¥, ,

1 Let (Wv 1y € Lo} be the standard wall representation of the interface Z\ S;. Also let O,, be the
nested sequence of walls of v1, 50 that OOy, = Wy, .
// Base modification
2 Mark [z] = {z} U &z and p(v;) for del (where &z d the four faces in Lo adjacent to z).
3 if the interface with standard wall rep tati ﬁ]v' has a cut-height then
Let h' be the height of the highest such cut-height.
L Let y' be the index of a wall that intersects (P \ Oy, ) N Ly and mark y' for deletion.

// Spine modification (A): the 1st increment
4 Set 5, 0 and yj « 0.

for j=1to .7 +1do
Let s - s; and s;4) « 8.

if m(2;)>j-1 then /7 (A1)
| Lets;.; « j.
if D,(li’v,j, —Vy41,0) € m(Wy) for somey then // (A2) ‘

| Let s;;) « j and mark for deletion every y for which (A2) holds.

if D.(Wy,j,—vss1,0) < (5 —1)/2 for some y  then /1 (A3)
| Let s;4) < j and let y} be the minimal index y for which (A3) holds.

Let j* + 5.2 and mark y} for deletion.

// Spine modification (B): the {-th increment
5 if ¢ > j* then
Set s, — t — 1 and yj « 0.
fork=tto 7 +1do
Let s ¢ si and sg4 ¢ Sk,
if m(Zy)>k—-t then // (B1)
| Let sg41 « k.
if D,(Wy,d, —ves1, v — vjep1) < m(W,) for some y then // (B2)
| Let sg4y < k and mark for deletion every y for which (B2) holds.
if Do(Wy,d, =ves1, v = vjosr) < (k=1)/2  for some y then // (B3)
| Let sg4y < k and let yj be the minimal index y for which (B3) holds.

Let k* - 5742 and mark yj, for deletion.
else
| Let k* « j*.

6 foreach index y € Lo, marked for deletion do delete §, from the standard wall representation (W,).
7 Add a standard wall W7 consisting of ht(v;) — 1 trivial increments above z.
8 Let K be the (unique) interface with the resulting standard wall representation.
9 Denoting by (2i)i>1 the increment sequence of S, set
(Xo, Xa,.- o, Xay Zesrs- ooy Ziers Xo, Xy oo Xy Ziegry o) i 2> 57,
N—p— —
bt(v;e 41)—ht(v)) bt(vhe 4)—ht(ve)
(Xo, Xy, Xo, Zjesn,...) ife<je.
———
ht(vye 41)~ht(vs)

10 Obtain ¥, ((Z) by appending the spine with increment sequence S to K at z + (0,0, ht(v,)).




N

CLT for location of tip, volume, surface area

» Via additional maps (2 — 2): tall pillars are ’/{ St I
~ stationary sequences of increments. |

» THEOREM: (|Gheissari, L. "19a])

Let (Y3, Y,, ht(P,)) be the location of the tip of the pillar 7.

Conditional on P, having at least 1 << T}, << n increments,
(Y]J YZ) ht(PX)) o (xll X2, ATTL) d

g

for some o,0’ > 0.

> NV (0, (‘g % 32))

(0"

» CLT also holds, e.g., for the
surface area and volume of 2,.

e,
.
-’
7




Open: tilted interfaces

» Major open problem: roughness of tilted interfaces of
the 3D Ising model at low temperature (S fixed, large).

> Conjecture: Var(ht, (7)) = logn.
> Verified only for = oo (|Cerf, Kenyon “01]).
> For finite large 8, unknown that Var(ht, (7)) — oo...

u Thank ¥ou! ”




