Sparse universal graphs for planarity

Gwenaël Joret (Université libre de Bruxelles)

Joint work with Vida Dujmović, Louis Esperet, Cyril Gavoille, Piotr Micek, and Pat Morin

Graph G is universal for a set \mathcal{F} of graphs if G contains every member of \mathcal{F} as a subgraph

Fix some class \mathcal{C} of graphs, e.g.

- trees
- graphs of maximum degree Δ
- planar graphs

Want: universal graph $G(n)$ for n-vertex graphs in \mathcal{C} having as few edges as possible

What is the minimum number of edges in an universal graph for n-vertex planar graphs?

Tool: Separators

Separator of n-vertex graph G : vertex subset X s.t. components of $G-X$ can be grouped into 2 parts of size $\leq 2 n / 3$

Universal graphs for trees

T n-vertex tree
Fact: \exists vertex v which is a separator of T

Can group components of $T-v$ into 2 parts of size $\leq 2 n / 3$:

Why?

Universal graph $G(n)$

$|E(G(n))|=O\left(n^{1.3}\right)$

Better tool: Perfectly balanced separators

Perfectly balanced separator of graph G : vertex subset X s.t. components of $G-X$ can be grouped into 2 parts of equal size

Fact: Every n-vertex tree T has a perfectly balanced separator of size $O(\log n)$

$$
0_{0} 00
$$

Improved universal graph $G(n)$

$|E(G(n))|=O\left(n \log ^{2} n\right)$

Improved universal graph $G(n)$

$|E(G(n))|=O\left(n \log ^{2} n\right)$

Theorem (Chung and Graham 1983) Universal graphs for n-vertex trees with $O(n \log n)$ edges

Lower bound for trees

Degree sequence of universal graph, sorted in non-increasing order, must dominate $\left(n-1, \frac{n}{2}-1, \frac{n}{3}-1, \frac{n}{4}-1, \ldots\right)$
$\rightarrow \Omega(n \log n)$ edges

Class \mathcal{C} of graphs, closed under subgraphs
Say every n-vertex graph $G \in \mathcal{C}$ has a separator of size $\leq s(n)$
\Rightarrow perfectly balanced separator of size $O(s(n) \cdot \log n)$
Universal graph $G(n)$ for n-vertex graphs in \mathcal{C} :

$O\left(s(n) \cdot n \log ^{2} n\right)$ edges

Remark: If $s(n)=n^{\alpha}$ with $0<\alpha<1$ then:
Separator of size $s(n) \Rightarrow$ perfectly balanced separator of size $O(s(n))$

Universal graph $G(n)$ for n-vertex graphs in \mathcal{C} :

$O(s(n) \cdot n)$ edges

Planar graphs

Theorem (Lipton \& Tarjan 1979) Planar graphs have $O(\sqrt{n})$-size separators
$\Rightarrow O(\sqrt{n})$-size perfectly balanced separator

Theorem (Babai, Erdős, Chung, Graham, Spencer 1982) Universal graphs with $O\left(n^{3 / 2}\right)$ edges for n-vertex planar graphs

Generalizations of planar graphs: 1. Higher dimension

Koebe's representation of planar graphs:

Theorem (Miller, Teng, Thurston, Vavasis '97) Intersection graphs of touching balls in \mathbb{R}^{d} have $O\left(n^{1-1 / d}\right)$-size separators
\rightarrow universal graphs with $O\left(n^{2-1 / d}\right)$ edges

Generalizations of planar graphs: 2. Excluding a minor

Graphs embedded in a fixed surface:

Theorem (Gilbert, Hutchinson, Tarjan 1984) $O(\sqrt{g n})$-size separators for graphs embedded in a surface of Euler genus g
\rightarrow universal graphs with $O\left(\sqrt{g} \cdot n^{3 / 2}\right)$ edges

Theorem (Alon, Seymour, Thomas 1990) $O\left(h^{3 / 2} \sqrt{n}\right)$-size separators for graphs excluding a minor H on h vertices
\rightarrow universal graphs with $O\left(h^{3 / 2} \cdot n^{3 / 2}\right)$ edges

Generalizations of planar graphs: 3. Allowing crossings

k-planar graphs: at most k crossings per edge

Theorem (Dujmović, Eppstein, Wood 2016) $O(\sqrt{k n})$-size separators for k-planar graphs
\rightarrow universal graphs with $O\left(\sqrt{k} \cdot n^{3 / 2}\right)$ edges

Back to planar graphs

Our main result:
Theorem (Esperet, J., Morin 2020) Universal graphs with $O\left(n^{1+o(1)}\right)$ edges for n-vertex planar graphs

Remark: Proof builds on earlier work of Dujmović, Esperet, J., Gavoille, Micek, and Morin ('20) about induced-universal graphs for planar graphs

Treewidth

Measure of similarity with a tree (the lower the better)

Treewidth $k \Rightarrow \exists$ separator S of size $\leq k+1$

Theorem (Dvořák \& Norin '19) All subgraphs have separators of size $\leq k \Rightarrow$ treewidth $\leq 15 k$

small treewidth \Leftrightarrow small separators

Many graph-theoretic problems become easier if the graph has bounded treewidth

A new way of decomposing planar graphs

Theorem (Mi. Pilipczuk \& Siebertz '18) Every planar graph G has a vertex partition \mathcal{P} into geodesics such that G / \mathcal{P} has treewidth ≤ 8
geodesic $=$ shortest path
$G / \mathcal{P}=$ graph obtained by contracting each path in \mathcal{P} into a vertex

Product structure of planar graphs

Strong product

Product structure of planar graphs

Theorem (Dujmović, J., Micek, Morin, Ueckerdt, Wood '19) Every planar graph is a subgraph of $H \boxtimes P$ for some graph H with treewidth ≤ 8 and some path P

Product structure of planar graphs

Theorem (Dujmović, J., Micek, Morin, Ueckerdt, Wood '19) Every planar graph is a subgraph of $H \boxtimes P$ for some graph H with treewidth ≤ 8 and some path P

Main result

Theorem (Esperet, J., Morin '20) Universal graphs with $t^{2} \cdot n \cdot 2^{O(\sqrt{\log n \cdot \log \log n})}$ edges for n-vertex graphs that are subgraphs of $H \boxtimes P$ for some graph H with treewidth t and some path P

Cleaning up the problem

\boxtimes

We may assume:

- H has n vertices
- P has n vertices

Subtlety: H not fixed, can be any n-vertex graph with treewidth t Solution: Replace H with universal graph for n-vertex graphs with treewidth t

Recall: Treewidth t implies

- separator of size $\leq t+1$
- perfectly balanced separator of size $t \cdot c \log n$
- universal graph with $O\left(t \cdot n \log ^{2} n\right)$ edges

Compact description of a universal graph: $C_{\log n} \boxtimes K_{\omega}$

- $C_{d}:=$ complete binary tree of height $d+$ edges in transitive closure

- $\omega:=t \cdot c \log n$

Main technical result

Wanted: universal graph for n-vertex subgraphs of $C_{\log n} \boxtimes K_{\omega} \boxtimes P_{n}$

Theorem (Esperet, J., Morin '20) Universal graph $G(n)$ with $n \cdot 2^{O(\sqrt{\log n \cdot \log \log n})}$ edges for n-vertex subgraphs of $C_{\log n} \boxtimes P_{n}$

This is enough:

- $G(n) \boxtimes K_{\omega}$ is universal for n-vertex subgraphs of

$$
C_{\log _{n}} \boxtimes P_{n} \boxtimes K_{\omega}=C_{\log _{n}} \boxtimes K_{\omega} \boxtimes P_{n}
$$

- $G(n) \boxtimes K_{\omega}$ has

$$
\omega^{2} \cdot n \cdot 2^{O(\sqrt{\log n \cdot \log \log n})}=t^{2} \cdot n \cdot 2^{O(\sqrt{\log n \cdot \log \log n})}
$$

Goal: Universal graph $G(n)$ with $n \cdot 2^{O(\sqrt{\log n \cdot \log \log n})}$ edges for n-vertex subgraphs of $C_{\log n} \boxtimes P_{n}$

Vertices of $G(n)$: Triples

$$
(x, y, z)
$$

where

- x, y, z bitstrings
- $|x|+|y| \leq \log n+O(\sqrt{\log n \cdot \log \log n})$
- $|z|=\log \log n$
- x encodes position in horizontal binary search tree (one per row)
- y encodes position in vertical binary search tree (global)
- all binary search trees (almost) perfectly balanced

Binary search tree (BST)

Vertical BST: Stores rows $1,2, \ldots, n$

Vertical BST: Stores rows $1,2, \ldots, n$

Horizontal BST for row i : Stores vertices of $C_{\log n}$ that are used

Horizontal BST for row i

Horizontal BST for row i : Stores vertices of $C_{\log n}$ that are used
Row i

Horizontal BST for row i

Engine of the proof: Bulk tree sequences

Horizontal BSTs are built sequentially starting with row 1

- Insertions
- Deletions
- Rebalancing

Height of i-th horizontal BST almost optimal:

$$
\log r_{i}+O(\sqrt{\log n \cdot \log \log n})
$$

if r_{i} vertices in row i

When rebalancing, a vertex moves to a new position among $O(\sqrt{\log n \cdot \log \log n})$ potential positions

Some consequences beyond planar graphs

Theorem (Dujmović, J., Micek, Morin, Ueckerdt, Wood '19) Every graph embeddable in a surface of Euler genus g is a subgraph of $H \boxtimes P$ for some graph H with treewidth $\leq 2 g+8$ and some path P
\rightarrow universal graphs with $g^{2} \cdot n \cdot 2^{O(\sqrt{\log n \cdot \log \log n})}$ edges

Theorem (Dujmović, Morin, Wood '19) Every k-planar graph is a subgraph of $H \boxtimes P$ for some graph H with treewidth $O\left(k^{5}\right)$ and some path P
\rightarrow universal graphs with $k^{10} \cdot n \cdot 2^{O(\sqrt{\log n \cdot \log \log n})}$ edges

Induced-universal graphs

G is induced-universal for \mathcal{F} if G contains every member of \mathcal{F} as an induced subgraph

What is the minimum number of vertices in an induced-universal graph for n-vertex planar graphs?
A.k.a. adjacency labeling schemes for planar graphs

- $O\left(n^{6}\right)$ using 5-degenerate (Muller 1988)
- $O\left(n^{4+o(1)}\right)$ using arboricity 3 (Kannan, Naor, Rudich 1988)
- $O\left(n^{2+o(1)}\right)$ using vertex partition into two graphs of bounded treewidth (Gavoille \& Labourel 2007)
- $O\left(n^{4 / 3+o(1)}\right)$ using product structure (Bonamy, Gavoille, Pilipczuk 2019)

Theorem (Dujmović, Esperet, J., Gavoille, Micek, Morin '20) Induced-universal graphs with $O\left(n^{1+o(1)}\right)$ vertices for n-vertex planar graphs

Theorem (Dujmović, Esperet, J., Gavoille, Micek, Morin '20) Induced-universal graphs with $n \cdot 2^{O(\sqrt{\log n \cdot \log \log n})}$ vertices for n-vertex graphs that are subgraphs of $H \boxtimes P$ for some graph H with treewidth $O(1)$ and some path P

Open problems

Universal graphs:

- Universal graphs for graphs excluding a fixed minor H ? Best known bound on number of edges is still $O_{H}\left(n^{3 / 2}\right)$
- Tight bound for planar graphs?
- Upper bound: $n \cdot 2^{O(\sqrt{\log n \cdot \log \log n})}$ edges
- Lower bound: $\Omega(n \log n)$ edges

Induced-universal graphs:

- Induced-universal graphs for graphs excluding a fixed minor H ? Best known bound on number of vertices is still $O_{H}\left(n^{2+o(1)}\right)$
- Tight bound for planar graphs?
- Upper bound: $n \cdot 2^{O(\sqrt{\log n \cdot \log \log n})}$ vertices
- Lower bound: $\Omega(n)$ vertices

THANK YOU!

