Graph discrepancy

István Tomon

Umeå University

joint work with Eero Räty and Benny Sudakov

What is discrepancy?

What is discrepancy?
The maximum deviation from the expected value.

What is discrepancy?
The maximum deviation from the expected value.

Example: discrepancy of n points $P \subset[0,1]^{2}$ is

$$
\operatorname{disc}(P)=\max _{\substack{R \subset[0,1] \\ R \text { rectangle }}}| | R \cap P|-n \cdot \operatorname{area}(R)| .
$$

What is discrepancy?
The maximum deviation from the expected value.

Example: discrepancy of n points $P \subset[0,1]^{2}$ is

$$
\operatorname{disc}(P)=\max _{\substack{R \subset[0,1] \\ R \text { rectangle }}}| | R \cap P|-n \cdot \operatorname{area}(R)| .
$$

Problem. What is $f(n)=\min _{|P|=n} \operatorname{disc}(P)$?

What is discrepancy?
The maximum deviation from the expected value.

Example: discrepancy of n points $P \subset[0,1]^{2}$ is

$$
\operatorname{disc}(P)=\max _{\substack{R \subset[0,1] \\ R \text { rectangle }}}| | R \cap P|-n \cdot \operatorname{area}(R)| .
$$

Problem. What is $f(n)=\min _{|P|=n} \operatorname{disc}(P)$?

- If P is random, then $\operatorname{disc}(P) \approx \sqrt{n}$.

What is discrepancy?
The maximum deviation from the expected value.

Example: discrepancy of n points $P \subset[0,1]^{2}$ is

$$
\operatorname{disc}(P)=\max _{\substack{R \subset[0,1] \\ R \text { rectangle }}}| | R \cap P|-n \cdot \operatorname{area}(R)| .
$$

Problem. What is $f(n)=\min _{|P|=n} \operatorname{disc}(P)$?
■ If P is random, then $\operatorname{disc}(P) \approx \sqrt{n}$.

- $f(n)=\Theta(\log n)$.
G is a graph on n vertices of density $p=e(G) /\binom{n}{2}$.
G is a graph on n vertices of density $p=e(G) /\binom{n}{2}$.

Discrepancy of G :

$$
\operatorname{disc}(G)=\max _{U \subset V(G)}\left|e(G[U])-p\binom{|U|}{2}\right| .
$$

G is a graph on n vertices of density $p=e(G) /\binom{n}{2}$.

Discrepancy of G :

$$
\operatorname{disc}(G)=\max _{U \subset V(G)}\left|e(G[U])-p\binom{|U|}{2}\right| .
$$

Problem. What is $f_{p}(n)=\min _{G} \operatorname{disc}(G)$?
G is a graph on n vertices of density $p=e(G) /\binom{n}{2}$.

Discrepancy of G :

$$
\operatorname{disc}(G)=\max _{U \subset V(G)}\left|e(G[U])-p\binom{|U|}{2}\right| .
$$

Problem. What is $f_{p}(n)=\min _{G} \operatorname{disc}(G)$?

If $p \in\left[\frac{1}{n}, \frac{1}{2}\right]$, then $\mathbf{G}(n, p)$ has discrepancy $\approx p^{1 / 2} n^{3 / 2}$.
G is a graph on n vertices of density $p=e(G) /\binom{n}{2}$.

Discrepancy of G :

$$
\operatorname{disc}(G)=\max _{U \subset V(G)}\left|e(G[U])-p\binom{|U|}{2}\right|
$$

Problem. What is $f_{p}(n)=\min _{G} \operatorname{disc}(G)$?

If $p \in\left[\frac{1}{n}, \frac{1}{2}\right]$, then $\mathbf{G}(n, p)$ has discrepancy $\approx p^{1 / 2} n^{3 / 2}$.

Theorem (Erdős, Goldbach, Pach, Spencer 1988)
If $p \in\left[\frac{1}{n}, \frac{1}{2}\right]$, then $\operatorname{disc}(G)=\Omega\left(p^{1 / 2} n^{3 / 2}\right)$.

Positive discrepancy:

$$
\operatorname{disc}^{+}(G)=\max _{U \subset V(G)} e(G[U])-p\binom{|U|}{2}
$$

Positive discrepancy:

$$
\operatorname{disc}^{+}(G)=\max _{U \subset V(G)} e(G[U])-p\binom{|U|}{2}
$$

Negative discrepancy:

$$
\operatorname{disc}^{-}(G)=\max _{U \subset V(G)} p\binom{|U|}{2}-e(G[U])
$$

Positive discrepancy:

$$
\operatorname{disc}^{+}(G)=\max _{U \subset V(G)} e(G[U])-p\binom{|U|}{2}
$$

Negative discrepancy:

$$
\operatorname{disc}^{-}(G)=\max _{U \subset V(G)} p\binom{|U|}{2}-e(G[U])
$$

Problem. What is $f_{p}^{+}(n)=\min _{G} \operatorname{disc}^{+}(G)$ and similarly $f_{p}^{-}(n)$?

Positive discrepancy:

$$
\operatorname{disc}^{+}(G)=\max _{U \subset V(G)} e(G[U])-p\binom{|U|}{2}
$$

Negative discrepancy:

$$
\operatorname{disc}^{-}(G)=\max _{U \subset V(G)} p\binom{|U|}{2}-e(G[U])
$$

Problem. What is $f_{p}^{+}(n)=\min _{G} \operatorname{disc}^{+}(G)$ and similarly $f_{p}^{-}(n)$?
Examples:

- $\operatorname{disc}^{+}(\mathbf{G}(n, p))=\Theta\left(p^{1 / 2} n^{3 / 2}\right)=\operatorname{disc}^{-}(\mathbf{G}(n, p))$.

Positive discrepancy:

$$
\operatorname{disc}^{+}(G)=\max _{U \subset V(G)} e(G[U])-p\binom{|U|}{2}
$$

Negative discrepancy:

$$
\operatorname{disc}^{-}(G)=\max _{U \subset V(G)} p\binom{|U|}{2}-e(G[U])
$$

Problem. What is $f_{p}^{+}(n)=\min _{G} \operatorname{disc}^{+}(G)$ and similarly $f_{p}^{-}(n)$?
Examples:

- $\operatorname{disc}^{+}(\mathbf{G}(n, p))=\Theta\left(p^{1 / 2} n^{3 / 2}\right)=\operatorname{disc}^{-}(\mathbf{G}(n, p))$.
$\square \operatorname{disc}^{+}\left(\mathbf{K}_{\mathbf{n}, \mathbf{n}}\right)=\Theta(n)$ and $\operatorname{disc}^{-}\left(\mathbf{K}_{\mathbf{n}, \mathbf{n}}\right)=\Theta\left(n^{2}\right)$.

Theorem (Bollobás, Scott 2006)
If $p \in\left[\frac{1}{n}, \frac{1}{2}\right]$, then

- $\operatorname{disc}^{+}(G) \cdot \operatorname{disc}^{-}(G)=\Omega\left(p n^{3}\right)$.

Theorem (Bollobás, Scott 2006)
If $p \in\left[\frac{1}{n}, \frac{1}{2}\right]$, then

- $\operatorname{disc}^{+}(G) \cdot \operatorname{disc}^{-}(G)=\Omega\left(p n^{3}\right)$.
$■ \operatorname{disc}^{+}(G)=\Omega(n)$ and $\operatorname{disc}^{-}(G)=\Omega(n)$,

Theorem (Bollobás, Scott 2006)
If $p \in\left[\frac{1}{n}, \frac{1}{2}\right]$, then

- $\operatorname{disc}^{+}(G) \cdot \operatorname{disc}^{-}(G)=\Omega\left(p n^{3}\right)$.
- $\operatorname{disc}^{+}(G)=\Omega(n)$ and $\operatorname{disc}^{-}(G)=\Omega(n)$, Turán graphs have disc ${ }^{+}=\Theta(n)$.

Theorem (Bollobás, Scott 2006)

If $p \in\left[\frac{1}{n}, \frac{1}{2}\right]$, then

- $\operatorname{disc}^{+}(G) \cdot \operatorname{disc}^{-}(G)=\Omega\left(p n^{3}\right)$.
- $\operatorname{disc}^{+}(G)=\Omega(n)$ and $\operatorname{disc}^{-}(G)=\Omega(n)$, Turán graphs have disc ${ }^{+}=\Theta(n)$.

$$
f_{1 / 2}^{+}(n)=\Theta(n)
$$

Theorem (Bollobás, Scott 2006)

If $p \in\left[\frac{1}{n}, \frac{1}{2}\right]$, then

- $\operatorname{disc}^{+}(G) \cdot \operatorname{disc}^{-}(G)=\Omega\left(p n^{3}\right)$.
- $\operatorname{disc}^{+}(G)=\Omega(n)$ and $\operatorname{disc}^{-}(G)=\Omega(n)$, Turán graphs have disc ${ }^{+}=\Theta(n)$.
$f_{1 / 2}^{+}(n)=\Theta(n)$
Conjecture (Verstraete). If $\frac{1}{n} \leq p \leq \frac{1}{2}-\varepsilon$, then

$$
\operatorname{disc}^{+}(G)=\Omega\left(p^{1 / 2} n^{3 / 2}\right)
$$

MaxCut in a graph is the maximum number of edges in a cut.

MaxCut in a graph is the maximum number of edges in a cut.
Minimum bisection is the min. size of a cut into 2 equal parts.

MaxCut in a graph is the maximum number of edges in a cut.
Minimum bisection is the min. size of a cut into 2 equal parts.

Lemma

If G is regular, then

- MaxCut $=\frac{e(G)}{2}+\Theta\left(\operatorname{disc}^{-}(G)\right)$,

MaxCut in a graph is the maximum number of edges in a cut.
Minimum bisection is the min. size of a cut into 2 equal parts.

Lemma

If G is regular, then

- MaxCut $=\frac{e(G)}{2}+\Theta\left(\operatorname{disc}^{-}(G)\right)$,
- Minimum bisection $=\frac{e(G)}{2}-\Theta\left(\operatorname{disc}^{+}(G)\right)$.

MaxCut in a graph is the maximum number of edges in a cut.
Minimum bisection is the min. size of a cut into 2 equal parts.

Lemma

If G is regular, then

- MaxCut $=\frac{e(G)}{2}+\Theta\left(\operatorname{disc}^{-}(G)\right)$,
- Minimum bisection $=\frac{e(G)}{2}-\Theta\left(\operatorname{disc}^{+}(G)\right)$.

Theorem (Alon 1993)
If G is d-regular and $d=O\left(n^{1 / 9}\right)$, then

$$
\text { Minimum bisection }<\frac{d n}{4}-c d^{1 / 2} n
$$

MaxCut in a graph is the maximum number of edges in a cut.
Minimum bisection is the min. size of a cut into 2 equal parts.

Lemma

If G is regular, then

- MaxCut $=\frac{e(G)}{2}+\Theta\left(\operatorname{disc}^{-}(G)\right)$,
- Minimum bisection $=\frac{e(G)}{2}-\Theta\left(\operatorname{disc}^{+}(G)\right)$.

Theorem (Alon 1993)

If G is d-regular and $d=O\left(n^{1 / 9}\right)$, then

$$
\text { Minimum bisection }<\frac{d n}{4}-c d^{1 / 2} n
$$

Equivalently, $\operatorname{disc}^{+}(G)=\Omega\left(d^{1 / 2} n\right)=\Omega\left(p^{1 / 2} n^{3 / 2}\right)$.

Theorem (Räty, Sudakov, T. 2023+)
The minimum positive discrepancy among n vertex graphs of average degree d is

Theorem (Räty, Sudakov, T. 2023+)
The minimum positive discrepancy among n vertex graphs of average degree d is

- $\Theta\left(d^{1 / 2} n\right)$ if $d \in\left[1, n^{2 / 3}\right]$

Theorem (Räty, Sudakov, T. 2023+)
The minimum positive discrepancy among n vertex graphs of average degree d is

- $\Theta\left(d^{1 / 2} n\right)$ if $d \in\left[1, n^{2 / 3}\right]$
- $\Theta\left(n^{2} / d\right)$ if $d \in\left[n^{2 / 3}, n^{3 / 4}\right]$

Theorem (Räty, Sudakov, T. 2023+)
The minimum positive discrepancy among n vertex graphs of average degree d is

- $\Theta\left(d^{1 / 2} n\right)$ if $d \in\left[1, n^{2 / 3}\right]$
- $\Theta\left(n^{2} / d\right)$ if $d \in\left[n^{2 / 3}, n^{3 / 4}\right]$
- at least $\Omega\left(n^{2} / d\right)$ if $d \in\left[n^{3 / 4}, n^{4 / 5}\right]$

Theorem (Räty, Sudakov, T. 2023+)

The minimum positive discrepancy among n vertex graphs of average degree d is

- $\Theta\left(d^{1 / 2} n\right)$ if $d \in\left[1, n^{2 / 3}\right]$
- $\Theta\left(n^{2} / d\right)$ if $d \in\left[n^{2 / 3}, n^{3 / 4}\right]$
- at least $\Omega\left(n^{2} / d\right)$ if $d \in\left[n^{3 / 4}, n^{4 / 5}\right]$
- between $\tilde{\Omega}\left(d^{1 / 4} n\right)$ and $O\left(n^{4 / 3}\right)$ if $d \in\left[n^{4 / 5},\left(\frac{1}{2}-\varepsilon\right) n\right]$

Theorem (Räty, Sudakov, T. 2023+)

The minimum positive discrepancy among n vertex graphs of average degree d is

- $\Theta\left(d^{1 / 2} n\right)$ if $d \in\left[1, n^{2 / 3}\right]$
- $\Theta\left(n^{2} / d\right)$ if $d \in\left[n^{2 / 3}, n^{3 / 4}\right]$
- at least $\Omega\left(n^{2} / d\right)$ if $d \in\left[n^{3 / 4}, n^{4 / 5}\right]$
- between $\tilde{\Omega}\left(d^{1 / 4} n\right)$ and $O\left(n^{4 / 3}\right)$ if $d \in\left[n^{4 / 5},\left(\frac{1}{2}-\varepsilon\right) n\right]$

If G is d-regular with eigenvalues $d=\lambda_{1} \geq \cdots \geq \lambda_{n}$, then

$$
\operatorname{disc}^{+}(G) \leq \frac{\lambda_{2}}{2} n+d
$$

Proof. Let A be the adjacency matrix, v_{1}, \ldots, v_{n} an orthonormal basis.

If G is d-regular with eigenvalues $d=\lambda_{1} \geq \cdots \geq \lambda_{n}$, then

$$
\operatorname{disc}^{+}(G) \leq \frac{\lambda_{2}}{2} n+d
$$

Proof. Let A be the adjacency matrix, v_{1}, \ldots, v_{n} an orthonormal basis.
If $U \subset V(G)$ and x is the characteristic vector, then

$$
e(G[U])-p\binom{|U|}{2}=\frac{1}{2}\left(x^{T} A x-p x^{T}(J-I) x\right)
$$

If G is d-regular with eigenvalues $d=\lambda_{1} \geq \cdots \geq \lambda_{n}$, then

$$
\operatorname{disc}^{+}(G) \leq \frac{\lambda_{2}}{2} n+d
$$

Proof. Let A be the adjacency matrix, v_{1}, \ldots, v_{n} an orthonormal basis.
If $U \subset V(G)$ and x is the characteristic vector, then

$$
e(G[U])-p\binom{|U|}{2}=\frac{1}{2}\left(x^{T} A x-p x^{T}(J-I) x\right)
$$

Writing $x=\sum a_{i} v_{i}$, we have

$$
=\frac{1}{2}\left(\sum_{i=1}^{n} \lambda_{i} a_{i}^{2}-p n a_{1}^{2}+p\|x\|_{2}^{2}\right)
$$

If G is d-regular with eigenvalues $d=\lambda_{1} \geq \cdots \geq \lambda_{n}$, then

$$
\operatorname{disc}^{+}(G) \leq \frac{\lambda_{2}}{2} n+d
$$

Proof. Let A be the adjacency matrix, v_{1}, \ldots, v_{n} an orthonormal basis.
If $U \subset V(G)$ and x is the characteristic vector, then

$$
e(G[U])-p\binom{|U|}{2}=\frac{1}{2}\left(x^{T} A x-p x^{T}(J-I) x\right)
$$

Writing $x=\sum a_{i} v_{i}$, we have

$$
\begin{aligned}
& =\frac{1}{2}\left(\sum_{i=1}^{n} \lambda_{i} a_{i}^{2}-p n a_{1}^{2}+p\|x\|_{2}^{2}\right) \\
& \leq \frac{1}{2} \lambda_{2} \sum_{i=2}^{n} a_{i}^{2}+\frac{1}{2} p\|x\|_{2}^{2}
\end{aligned}
$$

If G is d-regular with eigenvalues $d=\lambda_{1} \geq \cdots \geq \lambda_{n}$, then

$$
\operatorname{disc}^{+}(G) \leq \frac{\lambda_{2}}{2} n+d
$$

Proof. Let A be the adjacency matrix, v_{1}, \ldots, v_{n} an orthonormal basis.
If $U \subset V(G)$ and x is the characteristic vector, then

$$
e(G[U])-p\binom{|U|}{2}=\frac{1}{2}\left(x^{T} A x-p x^{T}(J-I) x\right)
$$

Writing $x=\sum a_{i} v_{i}$, we have

$$
\begin{aligned}
& \quad=\frac{1}{2}\left(\sum_{i=1}^{n} \lambda_{i} a_{i}^{2}-p n a_{1}^{2}+p\|x\|_{2}^{2}\right) \\
& \leq \frac{1}{2} \lambda_{2} \sum_{i=2}^{n} a_{i}^{2}+\frac{1}{2} p\|x\|_{2}^{2} \leq \frac{\lambda_{2}}{2} n+d
\end{aligned}
$$

Constructions:

Constructions:

(i) \exists strongly-regular graph with $d \approx n^{3 / 4}$ and $\lambda_{2} \approx n^{1 / 4}$.

Constructions:

(i) \exists strongly-regular graph with $d \approx n^{3 / 4}$ and $\lambda_{2} \approx n^{1 / 4}$.

This gives a graph with $\operatorname{disc}^{+}(G) \approx n^{5 / 4} \approx n^{2} / d$.

Constructions:

(i) \exists strongly-regular graph with $d \approx n^{3 / 4}$ and $\lambda_{2} \approx n^{1 / 4}$.

This gives a graph with $\operatorname{disc}^{+}(G) \approx n^{5 / 4} \approx n^{2} / d$.
(ii) \exists strongly-regular graph with $d \approx \frac{1}{3} n$ and $\lambda_{2} \approx n^{1 / 3}$.

Constructions:

(i) \exists strongly-regular graph with $d \approx n^{3 / 4}$ and $\lambda_{2} \approx n^{1 / 4}$.

This gives a graph with $\operatorname{disc}^{+}(G) \approx n^{5 / 4} \approx n^{2} / d$.
(ii) \exists strongly-regular graph with $d \approx \frac{1}{3} n$ and $\lambda_{2} \approx n^{1 / 3}$.

This gives a graph with $\operatorname{disc}^{+}(G) \approx n^{4 / 3} \approx n d^{1 / 3}$.

Constructions:

(i) \exists strongly-regular graph with $d \approx n^{3 / 4}$ and $\lambda_{2} \approx n^{1 / 4}$.

This gives a graph with $\operatorname{disc}^{+}(G) \approx n^{5 / 4} \approx n^{2} / d$.
(ii) \exists strongly-regular graph with $d \approx \frac{1}{3} n$ and $\lambda_{2} \approx n^{1 / 3}$.

This gives a graph with $\operatorname{disc}^{+}(G) \approx n^{4 / 3} \approx n d^{1 / 3}$.
Alon-Boppana bound. If G has diameter ≥ 4, then $\lambda_{2} \geq d^{1 / 2}$.

Constructions:

(i) \exists strongly-regular graph with $d \approx n^{3 / 4}$ and $\lambda_{2} \approx n^{1 / 4}$.

This gives a graph with $\operatorname{disc}^{+}(G) \approx n^{5 / 4} \approx n^{2} / d$.
(ii) \exists strongly-regular graph with $d \approx \frac{1}{3} n$ and $\lambda_{2} \approx n^{1 / 3}$.

This gives a graph with $\operatorname{disc}^{+}(G) \approx n^{4 / 3} \approx n d^{1 / 3}$.
Alon-Boppana bound. If G has diameter ≥ 4, then $\lambda_{2} \geq d^{1 / 2}$.

Theorem (Balla, Räty, Sudakov, T. 2023+)

The minimum of λ_{2} among n-vertex d-regular graphs is

- $\Theta\left(d^{1 / 2}\right)$ if $d \in\left[1, n^{2 / 3}\right]$

Constructions:

(i) \exists strongly-regular graph with $d \approx n^{3 / 4}$ and $\lambda_{2} \approx n^{1 / 4}$.

This gives a graph with $\operatorname{disc}^{+}(G) \approx n^{5 / 4} \approx n^{2} / d$.
(ii) \exists strongly-regular graph with $d \approx \frac{1}{3} n$ and $\lambda_{2} \approx n^{1 / 3}$.

This gives a graph with $\operatorname{disc}^{+}(G) \approx n^{4 / 3} \approx n d^{1 / 3}$.
Alon-Boppana bound. If G has diameter ≥ 4, then $\lambda_{2} \geq d^{1 / 2}$.

Theorem (Balla, Räty, Sudakov, T. 2023+)

The minimum of λ_{2} among n-vertex d-regular graphs is

- $\Theta\left(d^{1 / 2}\right)$ if $d \in\left[1, n^{2 / 3}\right]$
- $\Theta(n / d)$ if $d \in\left[n^{2 / 3}, n^{3 / 4}\right]$

Constructions:

(i) \exists strongly-regular graph with $d \approx n^{3 / 4}$ and $\lambda_{2} \approx n^{1 / 4}$.

This gives a graph with $\operatorname{disc}^{+}(G) \approx n^{5 / 4} \approx n^{2} / d$.
(ii) \exists strongly-regular graph with $d \approx \frac{1}{3} n$ and $\lambda_{2} \approx n^{1 / 3}$.

This gives a graph with $\operatorname{disc}^{+}(G) \approx n^{4 / 3} \approx n d^{1 / 3}$.
Alon-Boppana bound. If G has diameter ≥ 4, then $\lambda_{2} \geq d^{1 / 2}$.

Theorem (Balla, Räty, Sudakov, T. 2023+)

The minimum of λ_{2} among n-vertex d-regular graphs is

- $\Theta\left(d^{1 / 2}\right)$ if $d \in\left[1, n^{2 / 3}\right]$
- $\Theta(n / d)$ if $d \in\left[n^{2 / 3}, n^{3 / 4}\right]$
\square between $\Omega\left(d^{1 / 3}\right)$ and $O\left(n^{1 / 3}\right)$ if $d \in\left[n^{3 / 4},\left(\frac{1}{2}-\varepsilon\right) n\right]$.

Theorem (baby version)
If G is d-regular and $d \ll n^{2 / 3}$, then

$$
\operatorname{disc}^{+}(G)=\Omega\left(d^{1 / 2} n\right)
$$

Theorem (baby version)
If G is d-regular and $d \ll n^{2 / 3}$, then

$$
\operatorname{disc}^{+}(G)=\Omega\left(d^{1 / 2} n\right)
$$

Proof. For each $v \in V(G)$, assign the vector $x_{v} \in \mathbb{R}^{V(G)}$ defined

$$
x_{v}(w)= \begin{cases}1 & \text { if } v=w \\ \frac{1}{\sqrt{d}} & \text { if } v \sim w, . \\ 0 & \text { if } v \nsim w .\end{cases}
$$

Theorem (baby version)
If G is d-regular and $d \ll n^{2 / 3}$, then

$$
\operatorname{disc}^{+}(G)=\Omega\left(d^{1 / 2} n\right)
$$

Proof. For each $v \in V(G)$, assign the vector $x_{v} \in \mathbb{R}^{V(G)}$ defined

$$
x_{v}(w)= \begin{cases}1 & \text { if } v=w \\ \frac{1}{\sqrt{d}} & \text { if } v \sim w, . \\ 0 & \text { if } v \nsim w .\end{cases}
$$

Let H be a random half-space in $\mathbb{R}^{V(G)}$ through the origin, and let U be the set of vertices v such that $x_{v} \in H$.

Theorem (baby version)
If G is d-regular and $d \ll n^{2 / 3}$, then

$$
\operatorname{disc}^{+}(G)=\Omega\left(d^{1 / 2} n\right)
$$

Proof. For each $v \in V(G)$, assign the vector $x_{v} \in \mathbb{R}^{V(G)}$ defined

$$
x_{v}(w)= \begin{cases}1 & \text { if } v=w \\ \frac{1}{\sqrt{d}} & \text { if } v \sim w, . \\ 0 & \text { if } v \nsim w .\end{cases}
$$

Let H be a random half-space in $\mathbb{R}^{V(G)}$ through the origin, and let U be the set of vertices v such that $x_{v} \in H$.

Observation: For $u, v \in V(G)$,

$$
\mathbb{P}(u, v \in U)=\frac{1}{4}+\Theta\left(\left\langle x_{u}, x_{v}\right\rangle\right)
$$

$$
x_{v}(w)= \begin{cases}1 & \text { if } v=w \\ \frac{1}{\sqrt{d}} & \text { if } v \sim w, . \\ 0 & \text { if } v \nsim w .\end{cases}
$$

$$
x_{v}(w)= \begin{cases}1 & \text { if } v=w \\ \frac{1}{\sqrt{d}} & \text { if } v \sim w \\ 0 & \text { if } v \nsim w\end{cases}
$$

Claim.

$$
\mathbb{E}\left[e(G[U])-\frac{d}{n-1}\binom{|U|}{2}\right]=\Omega\left(d^{1 / 2} n\right)
$$

$$
x_{v}(w)= \begin{cases}1 & \text { if } v=w, \\ \frac{1}{\sqrt{d}} & \text { if } v \sim w, . \\ 0 & \text { if } v \nsim w .\end{cases}
$$

Claim.

$$
\mathbb{E}\left[e(G[U])-\frac{d}{n-1}\binom{|U|}{2}\right]=\Omega\left(d^{1 / 2} n\right)
$$

Proof.

$$
\begin{aligned}
& \mathbb{E}\left[e(G[U])-\frac{d}{n-1}\binom{|U|}{2}\right] \\
& \approx \sum_{u \sim v}\left\langle x_{u}, x_{v}\right\rangle-\frac{d}{n} \sum_{u, v}\left\langle x_{u}, x_{v}\right\rangle
\end{aligned}
$$

$$
x_{v}(w)= \begin{cases}1 & \text { if } v=w \\ \frac{1}{\sqrt{d}} & \text { if } v \sim w, . \\ 0 & \text { if } v \nsim w .\end{cases}
$$

Claim.

$$
\mathbb{E}\left[e(G[U])-\frac{d}{n-1}\binom{|U|}{2}\right]=\Omega\left(d^{1 / 2} n\right)
$$

Proof.

$$
\begin{array}{r}
\mathbb{E}\left[e(G[U])-\frac{d}{n-1}\binom{|U|}{2}\right] \\
\approx \sum_{u \sim v}\left\langle x_{u}, x_{v}\right\rangle-\frac{d}{n} \sum_{u, v}\left\langle x_{u}, x_{v}\right\rangle \\
>\sum_{u \sim v} \frac{1}{\sqrt{d}}-\frac{d}{n} \sum_{u, v} \sum_{w \sim u, v} \frac{1}{d}
\end{array}
$$

$$
x_{v}(w)= \begin{cases}1 & \text { if } v=w \\ \frac{1}{\sqrt{d}} & \text { if } v \sim w, . \\ 0 & \text { if } v \nsim w .\end{cases}
$$

Claim.

$$
\mathbb{E}\left[e(G[U])-\frac{d}{n-1}\binom{|U|}{2}\right]=\Omega\left(d^{1 / 2} n\right)
$$

Proof.

$$
\begin{gathered}
\mathbb{E}\left[e(G[U])-\frac{d}{n-1}\binom{|U|}{2}\right] \\
\approx \sum_{u \sim v}\left\langle x_{u}, x_{v}\right\rangle-\frac{d}{n} \sum_{u, v}\left\langle x_{u}, x_{v}\right\rangle \\
>\sum_{u \sim v} \frac{1}{\sqrt{d}}-\frac{d}{n} \sum_{u, v} \sum_{w \sim u, v} \frac{1}{d} \approx \sqrt{d} n-d^{2} .
\end{gathered}
$$

$$
x_{v}(w)= \begin{cases}1 & \text { if } v=w \\ \frac{1}{\sqrt{d}} & \text { if } v \sim w, . \\ 0 & \text { if } v \nsim w .\end{cases}
$$

Claim.

$$
\mathbb{E}\left[e(G[U])-\frac{d}{n-1}\binom{|U|}{2}\right]=\Omega\left(d^{1 / 2} n\right)
$$

Proof.

$$
\begin{gathered}
\mathbb{E}\left[e(G[U])-\frac{d}{n-1}\binom{|U|}{2}\right] \\
\approx \sum_{u \sim v}\left\langle x_{u}, x_{v}\right\rangle-\frac{d}{n} \sum_{u, v}\left\langle x_{u}, x_{v}\right\rangle \\
>\sum_{u \sim v} \frac{1}{\sqrt{d}}-\frac{d}{n} \sum_{u, v} \sum_{w \sim u, v} \frac{1}{d} \approx \sqrt{d} n-d^{2} .
\end{gathered}
$$

$R H S \gtrsim \sqrt{d} n$ if $d \ll n^{2 / 3}$.

