Sparse expanders have negative curvature

Justin Salez

Université Paris-Dauphine \& PSL

Motivation (Milman \& Naor, publicized by Ollivier)

Motivation (Milman \& Naor, publicized by Ollivier)

Ollivier'07-'10: a metric space has non-negative curvature if small balls are closer to each other than their centers are:

Motivation (Milman \& Naor, publicized by Ollivier)

Ollivier'07-'10: a metric space has non-negative curvature if small balls are closer to each other than their centers are:

- applies, in particular, to the discrete setting of graphs

Motivation (Milman \& Naor, publicized by Ollivier)

Ollivier'07-'10: a metric space has non-negative curvature if small balls are closer to each other than their centers are:

- applies, in particular, to the discrete setting of graphs
- remarkable impact on geometry, concentration \& mixing

Motivation (Milman \& Naor, publicized by Ollivier)

Ollivier'07-'10: a metric space has non-negative curvature if small balls are closer to each other than their centers are:

- applies, in particular, to the discrete setting of graphs
- remarkable impact on geometry, concentration \& mixing
... just like the classical notion of expansion!

Motivation (Milman \& Naor, publicized by Ollivier)

Ollivier'07-'10: a metric space has non-negative curvature if small balls are closer to each other than their centers are:

- applies, in particular, to the discrete setting of graphs
- remarkable impact on geometry, concentration \& mixing
... just like the classical notion of expansion!

Question: can expanders have non-negative curvature?

Ollivier's curvature on a locally finite graph $G=(V, E)$

Ollivier's curvature on a locally finite graph $G=(V, E)$

The curvature between two vertices x and y is defined as

$$
\kappa(x, y):=1-\frac{\mathcal{W}_{1}(P(x, \cdot), P(y, \cdot))}{\operatorname{dist}(x, y)}
$$

Ollivier's curvature on a locally finite graph $G=(V, E)$

The curvature between two vertices x and y is defined as

$$
\kappa(x, y):=1-\frac{\mathcal{W}_{1}(P(x, \cdot), P(y, \cdot))}{\operatorname{dist}(x, y)}
$$

- $\operatorname{dist}(\cdot, \cdot)$ is the graph distance on V

Ollivier's curvature on a locally finite graph $G=(V, E)$

The curvature between two vertices x and y is defined as

$$
\kappa(x, y):=1-\frac{\mathcal{W}_{1}(P(x, \cdot), P(y, \cdot))}{\operatorname{dist}(x, y)}
$$

- $\operatorname{dist}(\cdot, \cdot)$ is the graph distance on V
- $\mathcal{W}_{1}(\cdot, \cdot)$ is the $L^{1}-$ Wassertein metric:

$$
\mathcal{W}_{1}(\mu, \nu):=\min \{\mathbb{E}[\operatorname{dist}(X, Y)]: X \sim \mu, Y \sim \nu\}
$$

Ollivier's curvature on a locally finite graph $G=(V, E)$

The curvature between two vertices x and y is defined as

$$
\kappa(x, y):=1-\frac{\mathcal{W}_{1}(P(x, \cdot), P(y, \cdot))}{\operatorname{dist}(x, y)}
$$

- $\operatorname{dist}(\cdot, \cdot)$ is the graph distance on V
- $\mathcal{W}_{1}(\cdot, \cdot)$ is the $L^{1}-$ Wassertein metric:

$$
\mathcal{W}_{1}(\mu, \nu):=\min \{\mathbb{E}[\operatorname{dist}(X, Y)]: X \sim \mu, Y \sim \nu\}
$$

- P is the transition matrix of lazy simple random walk:

$$
P(x, y):= \begin{cases}\frac{1}{2 \operatorname{deg}(x)} & \text { if }\{x, y\} \in E ; \\ \frac{1}{2} & \text { if } x=y \\ 0 & \text { else }\end{cases}
$$

Online Graph Curvature Calculator (Stagg-Cushing)

Online Graph Curvature Calculator（Stagg－Cushing）

Ollver－Rical Curvature with idteness

Adjacency Matrix［Hide］

［ $[0,1,0,1,1,1,0,0,0,0,0,0][1,0,1,0,0,0,0,1,0,0,0,0][0,1,0,1,0,0,0,0,0,0,0,0][1,0,1,0,1,0,0,0,0,0,0,0][1,0,0,0,1,0,0,0,0,0,0,0],[1,0,0,0,0,0,1,0,0,0,0],[0,0,0,0,0,1,0,1,1,1,1],[0,1,0,0,0,0,1,0,0,0,0,0][0,0,0,0,0,0,0,1,0,0,0,0][0,0,0,0,0,0,0,1,0,0,0,0,0]$. ［0．0，0，0，0，0，0，，0，0，0，0，0｜］

Non-negatively curved graphs

Non-negatively curved graphs

G is non-negatively curved if $\kappa \geq 0$ everywhere

Non-negatively curved graphs

G is non-negatively curved if $\kappa \geq 0$ everywhere, i.e.

$$
\forall x, y \in V, \quad \mathcal{W}_{1}(P(x, \cdot), P(y, \cdot)) \leq \operatorname{dist}(x, y)
$$

Non-negatively curved graphs

G is non-negatively curved if $\kappa \geq 0$ everywhere, i.e.

$$
\forall x, y \in V, \quad \mathcal{W}_{1}(P(x, \cdot), P(y, \cdot)) \leq \operatorname{dist}(x, y)
$$

- Enough to check this on neighbours, i.e. when $\{x, y\} \in E$.

Non-negatively curved graphs

G is non-negatively curved if $\kappa \geq 0$ everywhere, i.e.

$$
\forall x, y \in V, \quad \mathcal{W}_{1}(P(x, \cdot), P(y, \cdot)) \leq \operatorname{dist}(x, y)
$$

- Enough to check this on neighbours, i.e. when $\{x, y\} \in E$.
- Starting point of the path coupling method (Bubley-Dyer'97)

Non-negatively curved graphs

G is non-negatively curved if $\kappa \geq 0$ everywhere, i.e.

$$
\forall x, y \in V, \quad \mathcal{W}_{1}(P(x, \cdot), P(y, \cdot)) \leq \operatorname{dist}(x, y)
$$

- Enough to check this on neighbours, i.e. when $\{x, y\} \in E$.
- Starting point of the path coupling method (Bubley-Dyer'97)
- Equivalent to $\|P f\|_{\text {LIP }} \leq\|f\|_{\text {LIP }}$ for all $f: V \rightarrow \mathbb{R}$.

Non-negatively curved graphs

G is non-negatively curved if $\kappa \geq 0$ everywhere, i.e.

$$
\forall x, y \in V, \quad \mathcal{W}_{1}(P(x, \cdot), P(y, \cdot)) \leq \operatorname{dist}(x, y)
$$

- Enough to check this on neighbours, i.e. when $\{x, y\} \in E$.
- Starting point of the path coupling method (Bubley-Dyer'97)
- Equivalent to $\|P f\|_{\text {LIP }} \leq\|f\|_{\text {LIP }}$ for all $f: V \rightarrow \mathbb{R}$.
- Remarkable consequences on geometry and concentration (Ollivier'09, Joulin-Ollivier'10, Lin-Lu-Yau'11, Eldan-Lee-Lehec'17, Jost-Münch-Rose '19, Münch'19, Cushing-Kamtue-Koolen-Liu-Münch-Peyerimhoff'20).

Non-negatively curved graphs

G is non-negatively curved if $\kappa \geq 0$ everywhere, i.e.

$$
\forall x, y \in V, \quad \mathcal{W}_{1}(P(x, \cdot), P(y, \cdot)) \leq \operatorname{dist}(x, y)
$$

- Enough to check this on neighbours, i.e. when $\{x, y\} \in E$.
- Starting point of the path coupling method (Bubley-Dyer'97)
- Equivalent to $\|P f\|_{\text {LIP }} \leq\|f\|_{\text {LIP }}$ for all $f: V \rightarrow \mathbb{R}$.
- Remarkable consequences on geometry and concentration (Ollivier'09, Joulin-Ollivier'10, Lin-Lu-Yau'11, Eldan-Lee-Lehec'17, Jost-Münch-Rose '19, Münch'19, Cushing-Kamtue-Koolen-Liu-Münch-Peyerimhoff'20).
- Intimately related to the cutoff phenomenon (S.'21)

Some examples of non-negatively curved graphs

Some examples of non-negatively curved graphs

- Complete graphs, paths, stars;

Some examples of non-negatively curved graphs

- Complete graphs, paths, stars;
- Cayley graphs of abelian groups;

Some examples of non-negatively curved graphs

- Complete graphs, paths, stars;
- Cayley graphs of abelian groups;
- Transposition graphs on symmetric groups;

Some examples of non-negatively curved graphs

- Complete graphs, paths, stars;
- Cayley graphs of abelian groups;
- Transposition graphs on symmetric groups;
- Prism graphs and Möbius ladders;

Some examples of non-negatively curved graphs

- Complete graphs, paths, stars;
- Cayley graphs of abelian groups;
- Transposition graphs on symmetric groups;
- Prism graphs and Möbius ladders;
- Hamming graphs, Johnson graphs, cocktail-party graphs;

Some examples of non-negatively curved graphs

- Complete graphs, paths, stars;
- Cayley graphs of abelian groups;
- Transposition graphs on symmetric groups;
- Prism graphs and Möbius ladders;
- Hamming graphs, Johnson graphs, cocktail-party graphs;
- Cartesian products of non-negatively curved graphs.

Some examples of non-negatively curved graphs

- Complete graphs, paths, stars;
- Cayley graphs of abelian groups;
- Transposition graphs on symmetric groups;
- Prism graphs and Möbius ladders;
- Hamming graphs, Johnson graphs, cocktail-party graphs;
- Cartesian products of non-negatively curved graphs.
- ...

Expanders

Expanders

The spectral gap of a finite graph G is $\gamma(G)=1-\lambda_{2}$, where

$$
1=\lambda_{1}>\lambda_{2} \geq \ldots \geq \lambda_{N} \geq 0
$$

are the $N=|V|$ ordered eigenvalues of the transition matrix P.

Expanders

The spectral gap of a finite graph G is $\gamma(G)=1-\lambda_{2}$, where

$$
1=\lambda_{1}>\lambda_{2} \geq \ldots \geq \lambda_{N} \geq 0
$$

are the $N=|V|$ ordered eigenvalues of the transition matrix P.

- controls the isoperimetric constant via Cheeger's inequality

Expanders

The spectral gap of a finite graph G is $\gamma(G)=1-\lambda_{2}$, where

$$
1=\lambda_{1}>\lambda_{2} \geq \ldots \geq \lambda_{N} \geq 0
$$

are the $N=|V|$ ordered eigenvalues of the transition matrix P.

- controls the isoperimetric constant via Cheeger's inequality
- coincides with the optimal constant in Poincaré's inequality

Expanders

The spectral gap of a finite graph G is $\gamma(G)=1-\lambda_{2}$, where

$$
1=\lambda_{1}>\lambda_{2} \geq \ldots \geq \lambda_{N} \geq 0
$$

are the $N=|V|$ ordered eigenvalues of the transition matrix P.

- controls the isoperimetric constant via Cheeger's inequality
- coincides with the optimal constant in Poincaré's inequality
- controls the mixing time of lazy simple random walk on G

Expanders

The spectral gap of a finite graph G is $\gamma(G)=1-\lambda_{2}$, where

$$
1=\lambda_{1}>\lambda_{2} \geq \ldots \geq \lambda_{N} \geq 0
$$

are the $N=|V|$ ordered eigenvalues of the transition matrix P.

- controls the isoperimetric constant via Cheeger's inequality
- coincides with the optimal constant in Poincaré's inequality
- controls the mixing time of lazy simple random walk on G

An expander family is a sequence of finite graphs $\left(G_{n}\right)$ with

Expanders

The spectral gap of a finite graph G is $\gamma(G)=1-\lambda_{2}$, where

$$
1=\lambda_{1}>\lambda_{2} \geq \ldots \geq \lambda_{N} \geq 0
$$

are the $N=|V|$ ordered eigenvalues of the transition matrix P.

- controls the isoperimetric constant via Cheeger's inequality
- coincides with the optimal constant in Poincaré's inequality
- controls the mixing time of lazy simple random walk on G

An expander family is a sequence of finite graphs $\left(G_{n}\right)$ with

- diverging size: $\left|V_{n}\right| \rightarrow \infty$

Expanders

The spectral gap of a finite graph G is $\gamma(G)=1-\lambda_{2}$, where

$$
1=\lambda_{1}>\lambda_{2} \geq \ldots \geq \lambda_{N} \geq 0
$$

are the $N=|V|$ ordered eigenvalues of the transition matrix P.

- controls the isoperimetric constant via Cheeger's inequality
- coincides with the optimal constant in Poincaré's inequality
- controls the mixing time of lazy simple random walk on G

An expander family is a sequence of finite graphs $\left(G_{n}\right)$ with

- diverging size: $\left|V_{n}\right| \rightarrow \infty$
- bounded degrees: $\sup _{n} \Delta\left(G_{n}\right)<\infty$

Expanders

The spectral gap of a finite graph G is $\gamma(G)=1-\lambda_{2}$, where

$$
1=\lambda_{1}>\lambda_{2} \geq \ldots \geq \lambda_{N} \geq 0
$$

are the $N=|V|$ ordered eigenvalues of the transition matrix P.

- controls the isoperimetric constant via Cheeger's inequality
- coincides with the optimal constant in Poincaré's inequality
- controls the mixing time of lazy simple random walk on G

An expander family is a sequence of finite graphs $\left(G_{n}\right)$ with

- diverging size: $\left|V_{n}\right| \rightarrow \infty$
- bounded degrees: $\sup _{n} \Delta\left(G_{n}\right)<\infty$
- uniform expansion: $\inf _{n} \gamma\left(G_{n}\right)>0$

Expanders

The spectral gap of a finite graph G is $\gamma(G)=1-\lambda_{2}$, where

$$
1=\lambda_{1}>\lambda_{2} \geq \ldots \geq \lambda_{N} \geq 0
$$

are the $N=|V|$ ordered eigenvalues of the transition matrix P.

- controls the isoperimetric constant via Cheeger's inequality
- coincides with the optimal constant in Poincaré's inequality
- controls the mixing time of lazy simple random walk on G

An expander family is a sequence of finite graphs $\left(G_{n}\right)$ with

- diverging size: $\left|V_{n}\right| \rightarrow \infty$
- bounded degrees: $\sup _{n} \Delta\left(G_{n}\right)<\infty$
- uniform expansion: $\inf _{n} \gamma\left(G_{n}\right)>0$

Far-reaching applications... (Hoory-Linial-Wigderson'06)

Back to the Milman-Naor-Ollivier question

Back to the Milman-Naor-Ollivier question

Theorem (S.'21). No expander family has non-negative curvature.

Back to the Milman-Naor-Ollivier question

Theorem (S.'21). No expander family has non-negative curvature. In fact, no graph sequence $\left(G_{n}\right)$ can simultaneously satisfy

Back to the Milman-Naor-Ollivier question

Theorem (S.'21). No expander family has non-negative curvature. In fact, no graph sequence $\left(G_{n}\right)$ can simultaneously satisfy
(A) weak sparsity:

$$
\sum_{x \in V_{n}} \operatorname{deg}(x) \log \operatorname{deg}(x) \lesssim\left|V_{n}\right|
$$

Back to the Milman-Naor-Ollivier question

Theorem (S.'21). No expander family has non-negative curvature. In fact, no graph sequence $\left(G_{n}\right)$ can simultaneously satisfy
(A) weak sparsity:

$$
\sum_{x \in V_{n}} \operatorname{deg}(x) \log \operatorname{deg}(x) \lesssim\left|V_{n}\right|
$$

(B) weak non-negative curvature: for every $\varepsilon>0$,

$$
\left|\left\{e \in E_{n}: \kappa(e) \leq-\varepsilon\right\}\right| \ll\left|E_{n}\right|
$$

Back to the Milman-Naor-Ollivier question

Theorem (S.'21). No expander family has non-negative curvature. In fact, no graph sequence $\left(G_{n}\right)$ can simultaneously satisfy
(A) weak sparsity:

$$
\sum_{x \in V_{n}} \operatorname{deg}(x) \log \operatorname{deg}(x) \lesssim\left|V_{n}\right|
$$

(B) weak non-negative curvature: for every $\varepsilon>0$,

$$
\left|\left\{e \in E_{n}: \kappa(e) \leq-\varepsilon\right\}\right| \ll\left|E_{n}\right|
$$

(C) weak expansion: there exists $\gamma>0$ such that

$$
\left|\left\{i: \lambda_{i}\left(G_{n}\right) \geq 1-\gamma\right\}\right| \ll\left|V_{n}\right|
$$

Back to the Milman-Naor-Ollivier question

Theorem (S.'21). No expander family has non-negative curvature. In fact, no graph sequence $\left(G_{n}\right)$ can simultaneously satisfy
(A) weak sparsity:

$$
\sum_{x \in V_{n}} \operatorname{deg}(x) \log \operatorname{deg}(x) \lesssim\left|V_{n}\right|
$$

(B) weak non-negative curvature: for every $\varepsilon>0$,

$$
\left|\left\{e \in E_{n}: \kappa(e) \leq-\varepsilon\right\}\right| \ll\left|E_{n}\right|
$$

(C) weak expansion: there exists $\gamma>0$ such that

$$
\left|\left\{i: \lambda_{i}\left(G_{n}\right) \geq 1-\gamma\right\}\right| \ll\left|V_{n}\right|
$$

\triangleright Sparse graphs either have a macroscopic fraction of edges with negative curvature or a macroscopic fraction of eigenvalues near 1

The "objective method" philosophy (Aldous-Steele'04)

The "objective method" philosophy (Aldous-Steele'04)

\triangleright replace the (hard, model-dependent) asymptotic analysis of large sparse graphs by the (elegant, unified) study of local weak limits

The "objective method" philosophy (Aldous-Steele'04)

\triangleright replace the (hard, model-dependent) asymptotic analysis of large sparse graphs by the (elegant, unified) study of local weak limits

- random assignment problem (Aldous-Steele'04)
- spanning trees (Lyons'05)
- antiferromagnetic Ising models (Dembo-Montanari'10)
- empirical eigenvalue distribution (Bordenave-Lelarge'10)
- rank of the adjacency matrix (Bordenave-Lelarge-S.'11)
- matchings (Elek-Lippner'10, Bordenave-Lelarge-S.'13)
- densest subgraph problem (Anantharam-S.'16)
- eigenvector distribution (Backhausz-Szegedy'19)
- interacting diffusions (Oliveira-Reis-Stolerman'20)
- ...

The "objective method" philosophy (Aldous-Steele'04)

\triangleright replace the (hard, model-dependent) asymptotic analysis of large sparse graphs by the (elegant, unified) study of local weak limits

- random assignment problem (Aldous-Steele'04)
- spanning trees (Lyons'05)
- antiferromagnetic Ising models (Dembo-Montanari'10)
- empirical eigenvalue distribution (Bordenave-Lelarge'10)
- rank of the adjacency matrix (Bordenave-Lelarge-S. '11)
- matchings (Elek-Lippner'10, Bordenave-Lelarge-S.'13)
- densest subgraph problem (Anantharam-S.'16)
- eigenvector distribution (Backhausz-Szegedy'19)
- interacting diffusions (Oliveira-Reis-Stolerman'20)
- ...
- curvature and expansion (this talk!)

Local convergence of rooted graphs

Local convergence of rooted graphs

A rooted graph (G, o) is a graph $G=(V, E)$ with a root $o \in V$

Local convergence of rooted graphs

A rooted graph (G, o) is a graph $G=(V, E)$ with a root $o \in V$, considered up to rooted isomorphism (i.e. relabelling)

Local convergence of rooted graphs

A rooted graph (G, o) is a graph $G=(V, E)$ with a root $o \in V$, considered up to rooted isomorphism (i.e. relabelling)

Write $B_{R}(G, o)$ for the ball of radius R around the root o in G :

Local convergence of rooted graphs

A rooted graph (G, o) is a graph $G=(V, E)$ with a root $o \in V$, considered up to rooted isomorphism (i.e. relabelling)

Write $B_{R}(G, o)$ for the ball of radius R around the root o in G :

Local convergence of rooted graphs

A rooted graph (G, o) is a graph $G=(V, E)$ with a root $o \in V$, considered up to rooted isomorphism (i.e. relabelling)

Write $B_{R}(G, o)$ for the ball of radius R around the root o in G :

Define the distance between (G, o) and $\left(G^{\prime}, o^{\prime}\right)$ to be $1 / R_{\star}$, where

$$
R_{\star}:=\inf \left\{R \geq 0: B_{R}(G, o) \not \equiv B_{R}\left(G^{\prime}, o^{\prime}\right)\right\}
$$

Local convergence of rooted graphs

A rooted graph (G, o) is a graph $G=(V, E)$ with a root $o \in V$, considered up to rooted isomorphism (i.e. relabelling)

Write $B_{R}(G, o)$ for the ball of radius R around the root o in G :

Define the distance between (G, o) and $\left(G^{\prime}, o^{\prime}\right)$ to be $1 / R_{\star}$, where

$$
R_{\star}:=\inf \left\{R \geq 0: B_{R}(G, o) \not \equiv B_{R}\left(G^{\prime}, o^{\prime}\right)\right\}
$$

$\triangleright \mathcal{G}_{\bullet}:=\{$ loc. finite, connected rooted graphs $\}$ is a Polish space.

Local weak convergence (Benjamini-Schramm'02)

Local weak convergence (Benjamini-Schramm'02)

Goal: capture the local geometry around all vertices.

Local weak convergence (Benjamini-Schramm'02)

Goal: capture the local geometry around all vertices.
Define the local profile of a finite graph $G=(V, E)$ as

$$
\mathcal{L}:=\frac{1}{|V|} \sum_{x \in V} \delta_{(G, x)} \in \mathcal{P}\left(\mathcal{G}_{\bullet}\right)
$$

Local weak convergence (Benjamini-Schramm'02)

Goal: capture the local geometry around all vertices.
Define the local profile of a finite graph $G=(V, E)$ as

$$
\mathcal{L}:=\frac{1}{|V|} \sum_{x \in V} \delta_{(G, x)} \in \mathcal{P}\left(\mathcal{G}_{\bullet}\right)
$$

Say that finite graphs $\left(G_{n}\right)$ converge if their local profiles $\left(\mathcal{L}_{n}\right)$ converge weakly

Local weak convergence (Benjamini-Schramm'02)

Goal: capture the local geometry around all vertices.
Define the local profile of a finite graph $G=(V, E)$ as

$$
\mathcal{L}:=\frac{1}{|V|} \sum_{x \in V} \delta_{(G, x)} \in \mathcal{P}\left(\mathcal{G}_{\bullet}\right)
$$

Say that finite graphs $\left(G_{n}\right)$ converge if their local profiles $\left(\mathcal{L}_{n}\right)$ converge weakly, i.e., \exists random rooted graph (\mathbb{G}, o) such that

$$
\frac{1}{\left|V_{n}\right|} \sum_{x \in V_{n}} f\left(G_{n}, x\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}[f(\mathbb{G}, o)]
$$

for all continuous (= local), bounded observables $f: \mathcal{G} \bullet \rightarrow \mathbb{R}$.

Local weak convergence (Benjamini-Schramm'02)

Goal: capture the local geometry around all vertices.
Define the local profile of a finite graph $G=(V, E)$ as

$$
\mathcal{L}:=\frac{1}{|V|} \sum_{x \in V} \delta_{(G, x)} \in \mathcal{P}\left(\mathcal{G}_{\bullet}\right)
$$

Say that finite graphs $\left(G_{n}\right)$ converge if their local profiles $\left(\mathcal{L}_{n}\right)$ converge weakly, i.e., \exists random rooted graph (\mathbb{G}, o) such that

$$
\frac{1}{\left|V_{n}\right|} \sum_{x \in V_{n}} f\left(G_{n}, x\right) \underset{n \rightarrow \infty}{\longrightarrow} \mathbb{E}[f(\mathbb{G}, o)]
$$

for all continuous (= local), bounded observables $f: \mathcal{G} \bullet \rightarrow \mathbb{R}$.
Intuition: (\mathbb{G}, o) describes how G_{n} looks from a random vertex.

Every reasonable sequence of sparse graphs has a limit

G_{n}	$(\mathbb{G}, 0)$

Every reasonable sequence of sparse graphs has a limit

G_{n}	(\mathbb{G}, o)
$n \times n$ square grid	

Every reasonable sequence of sparse graphs has a limit

G_{n}	(\mathbb{G}, o)
$n \times n$ square grid	Infinite square lattice

Every reasonable sequence of sparse graphs has a limit

G_{n}	(\mathbb{G}, o)
$n \times n$ square grid	Infinite square lattice
3-regular graph with girth n	

Every reasonable sequence of sparse graphs has a limit

G_{n}	(\mathbb{G}, o)
$n \times n$ square grid	Infinite square lattice
3-regular graph with girth n	Infinite 3-regular tree

Every reasonable sequence of sparse graphs has a limit

G_{n}	(\mathbb{G}, o)
$n \times n$ square grid	Infinite square lattice
3-regular graph with girth n	Infinite 3-regular tree
Binary tree of height n	

Every reasonable sequence of sparse graphs has a limit

G_{n}	(\mathbb{G}, o)
$n \times n$ square grid	Infinite square lattice
3-regular graph with girth n	Infinite 3-regular tree
Binary tree of height n	Canopy tree with random root

Every reasonable sequence of sparse graphs has a limit

G_{n}	(\mathbb{G}, o)
$n \times n$ square grid	Infinite square lattice
3-regular graph with girth n	Infinite 3-regular tree
Binary tree of height n	Canopy tree with random root
Erdős-Rényi model with $p \sim \frac{c}{n}$	

Every reasonable sequence of sparse graphs has a limit

G_{n}	(\mathbb{G}, o)
$n \times n$ square grid	Infinite square lattice
3-regular graph with girth n	Infinite 3-regular tree
Binary tree of height n	Canopy tree with random root
Erdős-Rényi model with $p \sim \frac{c}{n}$	Poisson(c) GW-tree

Every reasonable sequence of sparse graphs has a limit

G_{n}	(\mathbb{G}, o)
$n \times n$ square grid	Infinite square lattice
3-regular graph with girth n	Infinite 3-regular tree
Binary tree of height n	Canopy tree with random root
Erdős-Rényi model with $p \sim \frac{c}{n}$	Poisson(c) GW-tree
Config. model with d_{1}, \ldots, d_{n} iid π	UGW-tree with degree $\sim \pi$

Every reasonable sequence of sparse graphs has a limit

G_{n}	(\mathbb{G}, o)
$n \times n$ square grid	Infinite square lattice
$3-$ regular graph with girth n	Infinite 3-regular tree
Binary tree of height n	Canopy tree with random root
Erdős-Rényi model with $p \sim \frac{c}{n}$	Poisson(c) GW-tree
Config. model with d_{1}, \ldots, d_{n} iid π	UGW-tree with degree $\sim \pi$
Preferential attachment on n nodes	Polya-point tree

Every reasonable sequence of sparse graphs has a limit

G_{n}	(\mathbb{G}, o)
$n \times n$ square grid	Infinite square lattice
$3-$ regular graph with girth n	Infinite 3-regular tree
Binary tree of height n	Canopy tree with random root
Erdős-Rényi model with $p \sim \frac{c}{n}$	Poisson(c) GW-tree
Config. model with d_{1}, \ldots, d_{n} iid π	UGW-tree with degree $\sim \pi$
Preferential attachment on n nodes	Polya-point tree
Uniform random tree on $\{1, \ldots, n\}$	Infinite Skeleton tree

Every reasonable sequence of sparse graphs has a limit

G_{n}	(\mathbb{G}, o)
$n \times n$ square grid	Infinite square lattice
3-regular graph with girth n	Infinite 3-regular tree
Binary tree of height n	Canopy tree with random root
Erdös-Rényi model with $p \sim \frac{c}{n}$	Poisson(c) GW-tree
Config. model with d_{1}, \ldots, d_{n} iid π	UGW-tree with degree $\sim \pi$
Preferential attachment on n nodes	Polya-point tree
Uniform random tree on $\{1, \ldots, n\}$	Infinite Skeleton tree
Voronoï on n rand. points in $[0,1]^{2}$	Poisson-Voronoï on \mathbb{R}^{2}

Every reasonable sequence of sparse graphs has a limit

G_{n}	(\mathbb{G}, o)
$n \times n$ square grid	Infinite square lattice
3-regular graph with girth n	Infinite 3-regular tree
Binary tree of height n	Canopy tree with random root
Erdös-Rényi model with $p \sim \frac{c}{n}$	Poisson(c) GW-tree
Config. model with d_{1}, \ldots, d_{n} iid π	UGW-tree with degree $\sim \pi$
Preferential attachment on n nodes	Polya-point tree
Uniform random tree on $\{1, \ldots, n\}$	Infinite Skeleton tree
Voronoï on n rand. points in $[0,1]^{2}$	Poisson-Voronoï on \mathbb{R}^{2}
Uniform triangulation on n vertices	Uniform Infinite Planar Triang.

Every reasonable sequence of sparse graphs has a limit

G_{n}	(\mathbb{G}, o)
$n \times n$ square grid	Infinite square lattice
$3-$ regular graph with girth n	Infinite 3-regular tree
Binary tree of height n	Canopy tree with random root
Erdős-Rényi model with $p \sim \frac{c}{n}$	Poisson((c) GW-tree
Config. model with d_{1}, \ldots, d_{n} iid π	UGW-tree with degree $\sim \pi$
Preferential attachment on n nodes	Polya-point tree
Uniform random tree on $\{1, \ldots, n\}$	Infinite Skeleton tree
Voronoï on n rand. points in $[0,1]^{2}$	Poisson-Voronoï on \mathbb{R}^{2}
Uniform triangulation on n vertices	Uniform Infinite Planar Triang.

Theorem (Benjamini-Lyons-Schramm'15) For a sequence $\left(G_{n}\right)$ to admit subsequential limits, it is enough that it satisfies

$$
\sup _{n \geq 1}\left\{\frac{1}{\left|V_{n}\right|} \sum_{x \in V_{n}} \operatorname{deg}(x) 1_{\operatorname{deg}(x)>\Delta}\right\} \underset{\Delta \rightarrow \infty}{ } 0
$$

The "objective method" in action

[^0]
The "objective method" in action

Consider a sequence $\left(G_{n}\right)_{n \geq 1}$ satisfying the requirements A, B, C.

The "objective method" in action

Consider a sequence $\left(G_{n}\right)_{n \geq 1}$ satisfying the requirements A, B, C.
\triangleright upon extraction, there is a limiting random rooted graph (\mathbb{G}, o)

The "objective method" in action

Consider a sequence $\left(G_{n}\right)_{n \geq 1}$ satisfying the requirements A, B, C.
\triangleright upon extraction, there is a limiting random rooted graph (\mathbb{G}, o) :

$$
f\left(G_{n}, X_{n}\right) \xrightarrow[n \rightarrow \infty]{d} f(\mathbb{G}, o),
$$

for all local observables $f: \mathcal{G} \bullet \rightarrow \mathbb{R}$, where $X_{n} \sim \operatorname{unif}\left(V_{n}\right)$.

The "objective method" in action

Consider a sequence $\left(G_{n}\right)_{n \geq 1}$ satisfying the requirements A, B, C.
\triangleright upon extraction, there is a limiting random rooted graph (\mathbb{G}, o) :

$$
f\left(G_{n}, X_{n}\right) \xrightarrow[n \rightarrow \infty]{d} f(\mathbb{G}, o),
$$

for all local observables $f: \mathcal{G} \bullet \rightarrow \mathbb{R}$, where $X_{n} \sim \operatorname{unif}\left(V_{n}\right)$.
(A) $f(G, x)=\operatorname{deg}_{G}(x)$

The "objective method" in action

Consider a sequence $\left(G_{n}\right)_{n \geq 1}$ satisfying the requirements A, B, C.
\triangleright upon extraction, there is a limiting random rooted graph (\mathbb{G}, o) :

$$
f\left(G_{n}, X_{n}\right) \underset{n \rightarrow \infty}{d} f(\mathbb{G}, o),
$$

for all local observables $f: \mathcal{G} \bullet \rightarrow \mathbb{R}$, where $X_{n} \sim \operatorname{unif}\left(V_{n}\right)$.
(A) $f(G, x)=\operatorname{deg}_{G}(x)$ yields $\mathbb{E}\left[\operatorname{deg}_{\mathbb{G}}(o) \log \operatorname{deg}_{\mathbb{G}}(o)\right]<\infty$

The "objective method" in action

Consider a sequence $\left(G_{n}\right)_{n \geq 1}$ satisfying the requirements A, B, C.
\triangleright upon extraction, there is a limiting random rooted graph (\mathbb{G}, o) :

$$
f\left(G_{n}, X_{n}\right) \underset{n \rightarrow \infty}{d} f(\mathbb{G}, o),
$$

for all local observables $f: \mathcal{G} \bullet \rightarrow \mathbb{R}$, where $X_{n} \sim \operatorname{unif}\left(V_{n}\right)$.
(A) $f(G, x)=\operatorname{deg}_{G}(x)$ yields $\mathbb{E}\left[\operatorname{deg}_{\mathbb{G}}(o) \log \operatorname{deg}_{\mathbb{G}}(o)\right]<\infty$
(B) $f(G, x)=\min _{y \sim x} \kappa_{G}(x, y)$

The "objective method" in action

Consider a sequence $\left(G_{n}\right)_{n \geq 1}$ satisfying the requirements A, B, C.
\triangleright upon extraction, there is a limiting random rooted graph (\mathbb{G}, o) :

$$
f\left(G_{n}, X_{n}\right) \underset{n \rightarrow \infty}{d} f(\mathbb{G}, o),
$$

for all local observables $f: \mathcal{G} \bullet \rightarrow \mathbb{R}$, where $X_{n} \sim \operatorname{unif}\left(V_{n}\right)$.
(A) $f(G, x)=\operatorname{deg}_{G}(x)$ yields $\mathbb{E}\left[\operatorname{deg}_{\mathbb{G}}(o) \log \operatorname{deg}_{\mathbb{G}}(o)\right]<\infty$
(B) $f(G, x)=\min _{y \sim x} \kappa_{G}(x, y)$ yields $\kappa_{\mathbb{G}} \geq 0$ a.-s.

The "objective method" in action

Consider a sequence $\left(G_{n}\right)_{n \geq 1}$ satisfying the requirements A, B, C.
\triangleright upon extraction, there is a limiting random rooted graph (\mathbb{G}, o) :

$$
f\left(G_{n}, X_{n}\right) \underset{n \rightarrow \infty}{d} f(\mathbb{G}, o),
$$

for all local observables $f: \mathcal{G} \bullet \rightarrow \mathbb{R}$, where $X_{n} \sim \operatorname{unif}\left(V_{n}\right)$.
(A) $f(G, x)=\operatorname{deg}_{G}(x)$ yields $\mathbb{E}\left[\operatorname{deg}_{\mathbb{G}}(o) \log \operatorname{deg}_{\mathbb{G}}(o)\right]<\infty$
(B) $f(G, x)=\min _{y \sim x} \kappa_{G}(x, y)$ yields $\kappa_{\mathbb{G}} \geq 0$ a.-s.
(C) $f(G, x)=P_{G}^{t}(x, x)$

The "objective method" in action

Consider a sequence $\left(G_{n}\right)_{n \geq 1}$ satisfying the requirements A, B, C.
\triangleright upon extraction, there is a limiting random rooted graph (\mathbb{G}, o) :

$$
f\left(G_{n}, X_{n}\right) \underset{n \rightarrow \infty}{d} f(\mathbb{G}, o),
$$

for all local observables $f: \mathcal{G} \bullet \rightarrow \mathbb{R}$, where $X_{n} \sim \operatorname{unif}\left(V_{n}\right)$.
(A) $f(G, x)=\operatorname{deg}_{G}(x)$ yields $\mathbb{E}\left[\operatorname{deg}_{\mathbb{G}}(o) \log \operatorname{deg}_{\mathbb{G}}(o)\right]<\infty$
(B) $f(G, x)=\min _{y \sim x} \kappa_{G}(x, y)$ yields $\kappa_{\mathbb{G}} \geq 0$ a.-s.
(C) $f(G, x)=P_{G}^{t}(x, x)$ yields $\rho_{\mathbb{G}}<1$ a.-s.

The "objective method" in action

Consider a sequence $\left(G_{n}\right)_{n \geq 1}$ satisfying the requirements A, B, C.
\triangleright upon extraction, there is a limiting random rooted graph (\mathbb{G}, o) :

$$
f\left(G_{n}, X_{n}\right) \underset{n \rightarrow \infty}{d} f(\mathbb{G}, o),
$$

for all local observables $f: \mathcal{G} \bullet \rightarrow \mathbb{R}$, where $X_{n} \sim \operatorname{unif}\left(V_{n}\right)$.
(A) $f(G, x)=\operatorname{deg}_{G}(x)$ yields $\mathbb{E}\left[\operatorname{deg}_{\mathbb{G}}(o) \log \operatorname{deg}_{\mathbb{G}}(o)\right]<\infty$
(B) $f(G, x)=\min _{y \sim x} \kappa_{G}(x, y)$ yields $\kappa_{\mathbb{G}} \geq 0$ a.-s.
(C) $f(G, x)=P_{G}^{t}(x, x)$ yields $\rho_{\mathbb{G}}<1$ a.-s., where

$$
\rho_{\mathbb{G}}:=\lim _{t \rightarrow \infty}\left(P_{\mathbb{G}}^{t}(o, o)\right)^{1 / t} \quad(\text { spectral radius })
$$

The "objective method" in action

Consider a sequence $\left(G_{n}\right)_{n \geq 1}$ satisfying the requirements A, B, C.
\triangleright upon extraction, there is a limiting random rooted graph (\mathbb{G}, o) :

$$
f\left(G_{n}, X_{n}\right) \underset{n \rightarrow \infty}{d} f(\mathbb{G}, o),
$$

for all local observables $f: \mathcal{G} \bullet \rightarrow \mathbb{R}$, where $X_{n} \sim \operatorname{unif}\left(V_{n}\right)$.
(A) $f(G, x)=\operatorname{deg}_{G}(x)$ yields $\mathbb{E}\left[\operatorname{deg}_{\mathbb{G}}(o) \log \operatorname{deg}_{\mathbb{G}}(o)\right]<\infty$
(B) $f(G, x)=\min _{y \sim x} \kappa_{G}(x, y)$ yields $\kappa_{\mathbb{G}} \geq 0$ a.-s.
(C) $f(G, x)=P_{G}^{t}(x, x)$ yields $\rho_{\mathbb{G}}<1$ a.-s., where

$$
\rho_{\mathbb{G}}:=\lim _{t \rightarrow \infty}\left(P_{\mathbb{G}}^{t}(o, o)\right)^{1 / t} \quad(\text { spectral radius })
$$

Theorem (S.'21). No limit (\mathbb{G}, o) can satisfy these 3 properties.

Unimodularity

Unimodularity

Local weak limits enjoy a powerful invariance called unimodularity, formalizing the idea that the root is equally likely to be any vertex.

Unimodularity

Local weak limits enjoy a powerful invariance called unimodularity, formalizing the idea that the root is equally likely to be any vertex.

Think of it as stationarity under the Markov chain on $\mathcal{G} \bullet$ that keeps the underlying graph G and moves the root o according to P_{G}

Unimodularity

Local weak limits enjoy a powerful invariance called unimodularity, formalizing the idea that the root is equally likely to be any vertex.

Think of it as stationarity under the Markov chain on $\mathcal{G} \bullet$ that keeps the underlying graph G and moves the root o according to P_{G}
\triangleright Ergodic theory of random graphs (Aldous-Lyons'07, Benjamini-Curien'12, Benjamini-Duminil-Copin-Kozma-Yadin'15)

Unimodularity

Local weak limits enjoy a powerful invariance called unimodularity, formalizing the idea that the root is equally likely to be any vertex.

Think of it as stationarity under the Markov chain on $\mathcal{G} \bullet$ that keeps the underlying graph G and moves the root o according to P_{G}
\triangleright Ergodic theory of random graphs (Aldous-Lyons'07, Benjamini-Curien'12, Benjamini-Duminil-Copin-Kozma-Yadin'15)
\triangleright In particular, Kingman's sub-additive ergodic theorem and $\mathbb{E}\left[\operatorname{deg}_{\mathbb{G}}(o) \log \operatorname{deg}_{\mathbb{G}}(o)\right]<\infty$ ensure existence of entropy

Unimodularity

Local weak limits enjoy a powerful invariance called unimodularity, formalizing the idea that the root is equally likely to be any vertex.

Think of it as stationarity under the Markov chain on $\mathcal{G} \bullet$ that keeps the underlying graph G and moves the root o according to P_{G}
\triangleright Ergodic theory of random graphs (Aldous-Lyons'07, Benjamini-Curien'12, Benjamini-Duminil-Copin-Kozma-Yadin'15)
\triangleright In particular, Kingman's sub-additive ergodic theorem and $\mathbb{E}\left[\operatorname{deg}_{\mathbb{G}}(o) \log \operatorname{deg}_{\mathbb{G}}(o)\right]<\infty$ ensure existence of entropy:

$$
h_{\mathbb{G}}:=\lim _{t \rightarrow \infty} \frac{1}{t} \sum_{x \in \mathbb{V}} P_{\mathbb{G}}^{t}(o, x) \log \frac{1}{P_{\mathbb{G}}^{t}(o, x)}
$$

An entropic dichotomy

An entropic dichotomy

Theorem (S'21). Let (\mathbb{G}, o) be a unimodular random graph with min. curvature $\kappa_{\mathbb{G}}$, spectral radius $\rho_{\mathbb{G}}$ and entropy $h_{\mathbb{G}}$.

An entropic dichotomy

Theorem ($S^{\prime} 21$). Let (\mathbb{G}, o) be a unimodular random graph with min. curvature $\kappa_{\mathbb{G}}$, spectral radius $\rho_{\mathbb{G}}$ and entropy $h_{\mathbb{G}}$. Then, a.-s.,

1. Expansion implies positive entropy: $\rho_{\mathbb{G}}<1 \Longrightarrow h_{\mathbb{G}}>0$

An entropic dichotomy

Theorem ($\mathrm{S}^{\prime} 21$). Let (\mathbb{G}, o) be a unimodular random graph with \min. curvature $\kappa_{\mathbb{G}}$, spectral radius $\rho_{\mathbb{G}}$ and entropy $h_{\mathbb{G}}$. Then, a.-s.,

1. Expansion implies positive entropy: $\rho_{\mathbb{G}}<1 \Longrightarrow h_{\mathbb{G}}>0$
2. Non-neg. curvature implies zero entropy: $\kappa_{\mathbb{G}} \geq 0 \Longrightarrow h_{\mathbb{G}}=0$

An entropic dichotomy

Theorem ($\mathrm{S}^{\prime} 21$). Let (\mathbb{G}, o) be a unimodular random graph with \min. curvature $\kappa_{\mathbb{G}}$, spectral radius $\rho_{\mathbb{G}}$ and entropy $h_{\mathbb{G}}$. Then, a.-s.,

1. Expansion implies positive entropy: $\rho_{\mathbb{G}}<1 \Longrightarrow h_{\mathbb{G}}>0$
2. Non-neg. curvature implies zero entropy: $\kappa_{\mathbb{G}} \geq 0 \Longrightarrow h_{\mathbb{G}}=0$
\triangleright Expansion and non-neg. curvature are incompatible at infinity!

An entropic dichotomy

Theorem (S'21). Let (\mathbb{G}, o) be a unimodular random graph with min. curvature $\kappa_{\mathbb{G}}$, spectral radius $\rho_{\mathbb{G}}$ and entropy $h_{\mathbb{G}}$. Then, a.-s.,

1. Expansion implies positive entropy: $\rho_{\mathbb{G}}<1 \Longrightarrow h_{\mathbb{G}}>0$
2. Non-neg. curvature implies zero entropy: $\kappa_{\mathbb{G}} \geq 0 \Longrightarrow h_{\mathbb{G}}=0$
\triangleright Expansion and non-neg. curvature are incompatible at infinity!
Idea 1: curvature allows to couple random walks on \mathbb{G} so that they meet eventually a.-s. (Dyer-Bordewich'07, Münch'19)

An entropic dichotomy

Theorem (S'21). Let (\mathbb{G}, o) be a unimodular random graph with min. curvature $\kappa_{\mathbb{G}}$, spectral radius $\rho_{\mathbb{G}}$ and entropy $h_{\mathbb{G}}$. Then, a.-s.,

1. Expansion implies positive entropy: $\rho_{\mathbb{G}}<1 \Longrightarrow h_{\mathbb{G}}>0$
2. Non-neg. curvature implies zero entropy: $\kappa_{\mathbb{G}} \geq 0 \Longrightarrow h_{\mathbb{G}}=0$
\triangleright Expansion and non-neg. curvature are incompatible at infinity!
Idea 1: curvature allows to couple random walks on \mathbb{G} so that they meet eventually a.-s. (Dyer-Bordewich'07, Münch'19)

Idea 2: $h_{\mathbb{G}}=0$ means \mathbb{G} has the Liouville property (Avez'74, Kaĭmanovich-Vershik, Benjamini-Curien, Carrasco-Lessa'16)

An entropic dichotomy

Theorem (S'21). Let (\mathbb{G}, o) be a unimodular random graph with min. curvature $\kappa_{\mathbb{G}}$, spectral radius $\rho_{\mathbb{G}}$ and entropy $h_{\mathbb{G}}$. Then, a.-s.,

1. Expansion implies positive entropy: $\rho_{\mathbb{G}}<1 \Longrightarrow h_{\mathbb{G}}>0$
2. Non-neg. curvature implies zero entropy: $\kappa_{\mathbb{G}} \geq 0 \Longrightarrow h_{\mathbb{G}}=0$
\triangleright Expansion and non-neg. curvature are incompatible at infinity!
Idea 1: curvature allows to couple random walks on \mathbb{G} so that they meet eventually a.-s. (Dyer-Bordewich'07, Münch'19)

Idea 2: $h_{\mathbb{G}}=0$ means \mathbb{G} has the Liouville property (Avez'74, Kaĭmanovich-Vershik, Benjamini-Curien, Carrasco-Lessa'16)

Warning: false without unimodularity... (Benjamini-Kozma'10)

Further questions

Further questions

1. Quantitative version

Further questions

1. Quantitative version: how dense must a regular graph be in order to exhibit uniform expansion and non-negative curvature?

Further questions

1. Quantitative version: how dense must a regular graph be in order to exhibit uniform expansion and non-negative curvature?

- $d=\Omega(\log n)$ suffices (Alon-Roichman'94)

Further questions

1. Quantitative version: how dense must a regular graph be in order to exhibit uniform expansion and non-negative curvature?

- $d=\Omega(\log n)$ suffices (Alon-Roichman'94)
- Is this optimal?

Further questions

1. Quantitative version: how dense must a regular graph be in order to exhibit uniform expansion and non-negative curvature?

- $d=\Omega(\log n)$ suffices (Alon-Roichman'94)
- Is this optimal?

2. General theory

Further questions

1. Quantitative version: how dense must a regular graph be in order to exhibit uniform expansion and non-negative curvature?

- $d=\Omega(\log n)$ suffices (Alon-Roichman'94)
- Is this optimal?

2. General theory: what else can local weak limits say about the asymptotic mixing properties of large sparse graphs?

Further questions

1. Quantitative version: how dense must a regular graph be in order to exhibit uniform expansion and non-negative curvature?

- $d=\Omega(\log n)$ suffices (Alon-Roichman'94)
- Is this optimal?

2. General theory: what else can local weak limits say about the asymptotic mixing properties of large sparse graphs?

- Extends to Bakry-Émery curvature (credit to Cushing, Liu \& Münch), solving a conjecture of Cushing-Liu-Peyerimhoff'19.

Further questions

1. Quantitative version: how dense must a regular graph be in order to exhibit uniform expansion and non-negative curvature?

- $d=\Omega(\log n)$ suffices (Alon-Roichman'94)
- Is this optimal?

2. General theory: what else can local weak limits say about the asymptotic mixing properties of large sparse graphs?

- Extends to Bakry-Émery curvature (credit to Cushing, Liu \& Münch), solving a conjecture of Cushing-Liu-Peyerimhoff'19.
- What about mixing times, or functional-analytic constants?

Thanks！

4ロ〉4吕〉4 三

[^0]:

