Liouville quantum gravity with matter central charge in (1, 25): a probabilistic approach

Nina Holden

ETH Zürich, Institute for Theoretical Studies

Collaboration with Ewain Gwynne, Josh Pfeffer, and Guillaume Remy

October 6, 2020

How can you sample a surface uniformly at random?

Image: A matrix and a matrix

How can you sample a surface uniformly at random?

A uniform planar map

Holden (ETH Zürich)

LQG and central charge

October 6, 2020 2 / 32

Random planar maps

- A **planar map** is a graph drawn on the sphere, viewed modulo continuous deformations.
- For $n \in \mathbb{N}$ sample M_n uniformly at random from the collection of planar maps with n edges.

Scaling limits of uniform planar maps

 M_n uniform planar map with *n* edges. Does M_n converge as $n \to \infty$?

• Gromov-Hausdorff-Prokhorov topology for metric measure spaces (Le Gall'13, Miermont'13, ...)

Scaling limits of uniform planar maps

 M_n uniform planar map with *n* edges. Does M_n converge as $n \to \infty$?

- Gromov-Hausdorff-Prokhorov topology for metric measure spaces (Le Gall'13, Miermont'13, ...)
- Weak topology on measures on S² and uniform topology on metrics on S² under conformal embedding (H.-Sun'19)

Holden (ETH Zürich)

Scaling limits of uniform planar maps

 M_n uniform planar map with *n* edges. Does M_n converge as $n \to \infty$?

- Gromov-Hausdorff-Prokhorov topology for metric measure spaces (Le Gall'13, Miermont'13, ...)
- Weak topology on measures on S² and uniform topology on metrics on S² under conformal embedding (H.-Sun'19)

conformally embedded planar map

Liouville quantum gravity (LQG) surface

• Hamiltonian H(f) quantifies how much f deviates from being harmonic

$$H(f) = \frac{1}{2} \sum_{x \sim y} (f(x) - f(y))^2, \qquad f: \frac{1}{n} \mathbb{Z}^2 \cap [0, 1]^2 \to \mathbb{R}.$$

Holden (ETH Zürich)

LQG and central charge

• Hamiltonian H(f) quantifies how much f deviates from being harmonic

$$H(f)=\frac{1}{2}\sum_{x\sim y}(f(x)-f(y))^2, \qquad f:\frac{1}{n}\mathbb{Z}^2\cap[0,1]^2\to\mathbb{R}.$$

• Discrete Gaussian free field (GFF): Random function h_n s.t. $h_n|_{\partial} = 0$ and the probability density relative to the product of Lebesgue measure is proportional to

 $\exp(-H(h_n)).$

• Hamiltonian H(f) quantifies how much f deviates from being harmonic

$$H(f)=\frac{1}{2}\sum_{x\sim y}(f(x)-f(y))^2, \qquad f:\frac{1}{n}\mathbb{Z}^2\cap[0,1]^2\to\mathbb{R}.$$

Discrete Gaussian free field (GFF): Random function h_n s.t. h_n|∂ = 0 and the probability density relative to the product of Lebesgue measure is proportional to

 $\exp(-H(h_n)).$

•
$$h_n(z) \sim \mathcal{N}(0, \frac{1}{2\pi} \log n + O(1))$$
 and $\operatorname{Cov}(h_n(z), h_n(w)) = -\frac{1}{2\pi} \log |z - w| + O(1)$.

• Hamiltonian H(f) quantifies how much f deviates from being harmonic

$$H(f)=\frac{1}{2}\sum_{x\sim y}(f(x)-f(y))^2, \qquad f:\frac{1}{n}\mathbb{Z}^2\cap[0,1]^2\to\mathbb{R}.$$

- Discrete Gaussian free field (GFF): Random function h_n s.t. h_n|_∂ = 0 and the probability density relative to the product of Lebesgue measure is proportional to exp(−H(h_n)).
- $h_n(z) \sim \mathcal{N}(0, \frac{1}{2\pi} \log n + O(1))$ and $Cov(h_n(z), h_n(w)) = -\frac{1}{2\pi} \log |z w| + O(1).$
- The **Gaussian free field** *h* is the limit of h_n when $n \to \infty$.

• Hamiltonian H(f) quantifies how much f deviates from being harmonic

$$H(f)=\frac{1}{2}\sum_{x\sim y}(f(x)-f(y))^2, \qquad f:\frac{1}{n}\mathbb{Z}^2\cap [0,1]^2\to\mathbb{R}.$$

- Discrete Gaussian free field (GFF): Random function h_n s.t. h_n|_∂ = 0 and the probability density relative to the product of Lebesgue measure is proportional to exp(-H(h_n)).
- $h_n(z) \sim \mathcal{N}(0, \frac{1}{2\pi} \log n + O(1))$ and $Cov(h_n(z), h_n(w)) = -\frac{1}{2\pi} \log |z w| + O(1).$
- The Gaussian free field h is the limit of h_n when $n \to \infty$.
- The GFF is a random distribution (i.e., random generalized function).

Holden (ETH Zürich)

Liouville quantum gravity (LQG)

- Let $\gamma \in (0,2)$ and let *h* be the Gaussian free field (GFF).
- LQG surface: $e^{\gamma h}(dx^2 + dy^2)$.
- The definition of an LQG surface does not make literal sense since *h* is a distribution and not a function.
- Measure μ and distance function (metric) D defined by considering regularization h_{ϵ} of h.¹

$$\mu(U) = \lim_{\epsilon \to 0} \epsilon^{\gamma^2/2} \int_U e^{\gamma h_\epsilon(z)} d^2 z, \quad U \subset \mathbb{C},$$
$$D(z_1, z_2) = \lim_{\epsilon \to 0} a_\epsilon \inf_{P: z_1 \to z_2} \int_P e^{\gamma h_\epsilon(z)/d} dz, \quad z_1, z_2 \in \mathbb{C}.$$

• LQG for $\gamma = \sqrt{8/3}$ describes the scaling limit of uniform planar maps.

¹Metric construction: Gwynne-Miller'19, Ding-Dubedat-Dunlap-Falconet'19, Dubedat-Falconet-Gwynne-Pfeffer-Sun'19. Hausdorff dim. (\mathbb{C} , *D*) denoted by $d = d(\gamma) \otimes d$

Holden (ETH Zürich)

LQG and central charge

October 6, 2020 6 / 32

Equivalence of Brownian map & Liouville quantum gravity

Planar maps reweighted by Laplacian determinant

- $\bullet~$ Let $\boldsymbol{c} \in \mathbb{R}$ be a matter central charge.^2
- Let *M* be a random planar map of size *n* such that

$$\mathbb{P}[M = \mathfrak{m}] \propto (\det \Delta_{\mathfrak{m}})^{-\mathbf{c}/2}$$

where $\Delta_{\mathfrak{m}}$ is a linear operator derived from the adjacency matrix of $\mathfrak{m}.$

- Physics heuristic: The law of *M* has been "reweighted by the number of ways to embedded *M* in **c**-dimensional space".
- Kirchhoff's matrix-tree theorem: det $\Delta_{\mathfrak{m}} = \#$ spanning trees on \mathfrak{m} .
- David-Distler-Kawai (DDK) ansatz: $M \Rightarrow e^{\gamma h} d^2 z$ as $n \rightarrow \infty$ for $\mathbf{c} \leq 1$, where

$${f c}=25-6(\gamma/2+2/\gamma)^2,\qquad \gamma\in (0,2].$$

• DDK ansatz best understood mathematically for $\mathbf{c} = 0$ ($\gamma = \sqrt{8/3}$).

²Note that this is different from the Liouville central charge $c_{12} = 26 - c_{12} + c_{$

Holden (ETH Zürich)

Mathematical progress on DDK ansatz for $\mathbf{c} \leq 1$

• Convergence to LQG in the mating-of-trees topology

• Duplantier-Miller-Sheffield'14, Sheffield'16 ($\mathbf{c} \in (-2, 1)$), Gwynne-Mao-Sun'19 ($\mathbf{c} \in (-2, 1)$), Gwynne-Kassel-Miller-Wilson'18 ($\mathbf{c} < -2$), Kenyon-Miller-Sheffield-Wilson'19 ($\mathbf{c} = -7$), Gwynne-H.-Sun'16 ($\mathbf{c} = -7$), Li-Sun-Watson'17 ($\mathbf{c} = -12.5$), Bernardi-H.-Sun'18 ($\mathbf{c} = 0$)

Mathematical progress on DDK ansatz for $\mathbf{c} < 1$

Convergence to LQG in the mating-of-trees topology

• Duplantier-Miller-Sheffield'14, Sheffield'16 ($\mathbf{c} \in (-2, 1)$), Gwynne-Mao-Sun'19 ($\mathbf{c} \in (-2, 1)$), Gwynne-Kassel-Miller-Wilson'18 ($\mathbf{c} < -2$), Kenyon-Miller-Sheffield-Wilson'19 (c = -7), Gwynne-H.-Sun'16 $(\mathbf{c} = -7)$, Li-Sun-Watson'17 $(\mathbf{c} = -12.5)$, Bernardi-H.-Sun'18 $(\mathbf{c} = 0)$

• Random planar map exponents consistent with LQG predictions, e.g.

- various results on stable maps (Borot, Bouttier, Budd, Chen, Curien, Guitter, Kortchemski, Le Gall, Maillard, Miermont, Richier, etc.) and CLE on LQG (Duplantier, Miller, Sheffield, Werner)
- nesting statistics in O(n) loop model (Borot-Bouttier-Duplantier'16)
- volume growth exponent $\mathbf{c} \in (-\infty, -2] \cup \{0\}$ (Gwynne-H.-Sun'20)
- Ising perimeter and interface exponent (Chen-Turunen'18, Turunen'20)

Mathematical progress on DDK ansatz for $c\leq 1$

- Convergence to LQG in the mating-of-trees topology
 - Duplantier-Miller-Sheffield'14, Sheffield'16 ($\mathbf{c} \in (-2, 1)$), Gwynne-Mao-Sun'19 ($\mathbf{c} \in (-2, 1)$), Gwynne-Kassel-Miller-Wilson'18 ($\mathbf{c} < -2$), Kenyon-Miller-Sheffield-Wilson'19 ($\mathbf{c} = -7$), Gwynne-H.-Sun'16 ($\mathbf{c} = -7$), Li-Sun-Watson'17 ($\mathbf{c} = -12.5$), Bernardi-H.-Sun'18 ($\mathbf{c} = 0$)

• Random planar map exponents consistent with LQG predictions, e.g.

- various results on stable maps (Borot, Bouttier, Budd, Chen, Curien, Guitter, Kortchemski, Le Gall, Maillard, Miermont, Richier, etc.) and CLE on LQG (Duplantier, Miller, Sheffield, Werner)
- nesting statistics in O(n) loop model (Borot-Bouttier-Duplantier'16)
- volume growth exponent $\textbf{c} \in (-\infty,-2] \cup \{0\}$ (Gwynne-H.-Sun'20)
- Ising perimeter and interface exponent (Chen-Turunen'18, Turunen'20)
- Reweighting discretized LQG surface by $(\det \Delta)^{-c/2}$
 - Ang-Park-Pfeffer-Sheffield'20

Reweighted planar maps

 $\begin{array}{ccc} \mathbf{c}=-7 & \mathbf{c}=-5 & \mathbf{c}=0 \\ \gamma=\sqrt{4/3}\approx 1.15 & \gamma\approx 1.24 & \gamma=\sqrt{8/3}\approx 1.63 \end{array}$

As $\mathbf{c} \to -\infty$, $\gamma \to 0$ and $e^{\gamma h}(dx^2 + dy^2)$ approaches Euclidean geometry. Physics conj.: For $\mathbf{c} > 1$, random planar map \Rightarrow continuum random tree.

Simulations by Bettinelli

Holden (ETH Zürich)

Can we define some non-trivial geometry for LQG with $\mathbf{c} > 1$?

Holden (ETH Zürich)

LQG and central charge

October 6, 2020 11 / 32

Can we define some non-trivial geometry for LQG with $\mathbf{c} > 1$?

Yes, when $\mathbf{c} \in (1, 25)$.

Let $\mu = e^{\gamma h} d^2 z$ be the c-LQG area measure in $[0, 1]^2$ for $\mathbf{c} < 1$.

Let $\mu = e^{\gamma h} d^2 z$ be the c-LQG area measure in $[0, 1]^2$ for $\mathbf{c} < 1$.

Let $\mu = e^{\gamma h} d^2 z$ be the c-LQG area measure in $[0, 1]^2$ for $\mathbf{c} < 1$.

Let $\mu = e^{\gamma h} d^2 z$ be the c-LQG area measure in $[0, 1]^2$ for $\mathbf{c} < 1$.

Let $\mu = e^{\gamma h} d^2 z$ be the c-LQG area measure in $[0, 1]^2$ for $\mathbf{c} < 1$.

Let $\mu = e^{\gamma h} d^2 z$ be the c-LQG area measure in $[0, 1]^2$ for $\mathbf{c} < 1$.

Illustration of LQG area measure

Area measure $\mu=e^{\gamma h}d^2 z$, $\gamma=1.5$, ${f c}=-1.04$

(simulation by Miller and Sheffield)

Illustration of LQG area measure

$\gamma = 1, \, \mathbf{c} = -12.5$ $\gamma = 1.5, \, \mathbf{c} = -1.04$ $\gamma = 1.75, \, \mathbf{c} = -0.57$

Area measure $\mu = e^{\gamma h} d^2 z$

(simulation by Miller and Sheffield)

イロト 不得 トイヨト イヨト 二日

The Hausdorff dimension of an LQG surface

- Recall: A **c**-LQG surf. has measure μ and distance func. (metric) D.
- d_{c} = Hausdorff dimension of metric space (\mathbb{C} , D).
- Volume of metric ball: $\mu(\mathcal{B}(z,r)) = r^{d_c+o(1)}$ (Ang-Falconet-Sun'20).

Bounds for dc: Ang'19, Ding-Goswami'19, Ding-Gwynne'18, Gwynne-Pfeffer'19

< 4[™] >

< 4[™] >

< 4[™] >

Let $\mathbf{c} < 1$.

By Ding-Zeitouni-Zhang'18, Ding-Gwynne'18,

$$\#\mathcal{B}_r(0)=r^{d_c+o(1)},$$

where $B_r(0)$ is the graph metric ball of radius r and $d_c > 2$ is the Hausdorff dimension of c-LQG.

Let $\mathbf{c} < 1$.

By Ding-Zeitouni-Zhang'18, Ding-Gwynne'18,

$$\#\mathcal{B}_r(0)=r^{d_c+o(1)},$$

where $B_r(0)$ is the graph metric ball of radius r and $d_c > 2$ is the Hausdorff dimension of c-LQG.

Let c < 1.

By Ding-Zeitouni-Zhang'18, Ding-Gwynne'18,

$$\#\mathcal{B}_r(0)=r^{d_{\mathbf{c}}+o(1)},$$

where $B_r(0)$ is the graph metric ball of radius r and $d_c > 2$ is the Hausdorff dimension of c-LQG.

Gwynne-Miller-Sheffield'17 proved that a related discretization of c-LQG converges to c-LQG under the Tutte embedding.

Let c < 1.

By Ding-Zeitouni-Zhang'18, Ding-Gwynne'18,

$$\#\mathcal{B}_r(0)=r^{d_{\mathbf{c}}+o(1)},$$

where $B_r(0)$ is the graph metric ball of radius r and $d_c > 2$ is the Hausdorff dimension of c-LQG.

Gwynne-Miller-Sheffield'17 proved that a related discretization of c-LQG converges to c-LQG under the Tutte embedding.

These results suggest that the square subdivision planar map M is in the **c**-universality class of planar maps.

Conjecture: The graph metric of *M* appropriately rescaled converges to the c-LQG metric *D* associated with the GFF *h* as $\epsilon \rightarrow 0$.

Ding-Dunlap'20 proves tightness for a related metric.

Approximate LQG area measure via GFF circle average

LQG area measure: $\mu = e^{\gamma h} d^2 z$; GFF circle average: $h_{|S|}(z_S)$.

$$\mu(S)^{1/\gamma} \approx |S|^Q e^{h_{|S|}(z_S)}, \qquad Q = 2/\gamma + \gamma/2$$

Coupling constant	γ	$\gamma \in (0,2]$	$ \gamma =2$
Background charge	$Q=2/\gamma+\gamma/2$	$Q \ge 2$	$Q \in (0,2)$
Matter central charge	$c = 25 - 6Q^2$	$\mathbf{c} \leq 1$	$\mathbf{c} \in (1, 25)$

Holden (ETH Zürich)

The square subdivision model with GFF circle averages

Fix $\epsilon > 0$. Divide a square S iff $|S|^Q e^{h_{|S|}(z_S)} > \epsilon$.

The square subdivision model with GFF circle averages

Fix $\epsilon > 0$. Divide a square *S* iff $|S|^Q e^{h_{|S|}(z_S)} > \epsilon$. We now have a model for LQG with $\mathbf{c} \in (1, 25)$!

The square subdivision model with GFF circle averages

Fix $\epsilon > 0$. Divide a square S iff $|S|^Q e^{h_{|S|}(z_S)} > \epsilon$.

We now have a model for LQG with $c \in (1, 25)$!

Our model for LQG with $\mathbf{c} \in (1, 25)$

Let M be planar map of squares defined using GFF circle averages.

M is our model for LQG with $\mathbf{c} \in (1, 25)$.

For $\mathbf{c} < 1$ the square subdivision terminates with probability 1.

For $\mathbf{c} \in (1, 25)$, as $\epsilon \to 0$ the probability that the square subdivision terminates goes to 0.

Dense set of "infinite mass" points $(d = 2 - Q^2/2, \text{Hu-Miller-Peres'10}).$

Finite and infinite volume models for $\mathbf{c} \in (1, 25)$

Finite volume: continuum random tree

Infinite volume

Left figure due to Kortchemski.

Holden (ETH Zürich)

Is our model the "correct" model for $\mathbf{c} \in (1, 25)$?

Ang-Park-Pfeffer-Sheffield'20 argue as follows:

- Let $\mathbf{c} \in \mathbb{R}$, $\epsilon > 0$, and $n \in \mathbb{N}$.
- Let M be obtained from square subdivision for central charge 0 and square size ϵ , conditioned on #V(M) = n.
- Reweight the prob. meas. by Laplacian determinant (defined via smooth approx. to h and Polyakov-Alvarez) to power -c/2.
- For the resulting probability measure, M has the law of square subdivision for central charge c, conditioned on #V(M) = n.

Superpolynomial ball volume growth

Superpolynomial ball volume growth

Let
$$\mathbf{c} \in (1, 25)$$
. Almost surely, $\lim_{r \to \infty} \frac{\log \# \mathcal{B}_r(0)}{\log r} = \infty$.

Large squares well connected: Any two big squares (side length > ϵ^{1/Q}) have distance < ϵ^{-C} for some C > 0.

Holden (ETH Zürich)

LQG and central charge

October 6, 2020 25 / 32

Theorem (Gwynne-H.-Pfeffer-Remy'19, Infinite dimension)

Let
$$\mathbf{c} \in (1, 25)$$
. Almost surely, $\lim_{r \to \infty} \frac{\log \# \mathcal{B}_r(0)}{\log r} = \infty.$

- Large squares well connected: Any two big squares (side length $> \epsilon^{1/Q}$) have distance $< \epsilon^{-C}$ for some C > 0.
- O Many small squares close to a big square: For any K > 0 there are > ε^{-cK} squares of side length < ε^K with distance < ε^{-C} from a big square (C and c indep. of K).

Holden (ETH Zürich)

Theorem (Gwynne-H.-Pfeffer-Remy'19, Infinite dimension)

Let
$$\mathbf{c} \in (1, 25)$$
. Almost surely, $\lim_{r \to \infty} \frac{\log \# \mathcal{B}_r(0)}{\log r} = \infty.$

- Large squares well connected: Any two big squares (side length > ϵ^{1/Q}) have distance < ϵ^{-C} for some C > 0.
- O Many small squares close to a big square: For any K > 0 there are > ε^{-cK} squares of side length < ε^K with distance < ε^{-C} from a big square (C and c indep. of K).
- Origin close to a big square: The origin has distance < ϵ^{-C} to a big square.

Theorem (Gwynne-H.-Pfeffer-Remy'19, Infinite dimension)

Let
$$\mathbf{c} \in (1, 25)$$
. Almost surely, $\lim_{r \to \infty} \frac{\log \# \mathcal{B}_r(0)}{\log r} = \infty.$

- Large squares well connected: Any two big squares (side length > ϵ^{1/Q}) have distance < ϵ^{-C} for some C > 0.
- O Many small squares close to a big square: For any K > 0 there are > ε^{-cK} squares of side length < ε^K with distance < ε^{-C} from a big square (C and c indep. of K).
- Origin close to a big square: The origin has distance < e^{-C} to a big square.

By the triangle inequality and the above, $\#B_r(0) > e^{-cK}$ for $r = 3e^{-C}$.

Point-to-point distances grow polynomially

Let $D_h^{\epsilon}(\cdot, \cdot)$ denote the graph metric in the planar map of squares.

Proposition 1 (Gwynne-H.-Pfeffer-Remy'19)

For $\mathbf{c} < 25$, there exists $\underline{\alpha}, \overline{\alpha} > 0$ s.t. for fixed $z_1, z_2 \in \mathbb{C}$, a.s.

$$e^{-\underline{lpha}+o(1)} \leq D_h^\epsilon(z_1,z_2) \leq e^{-\overline{lpha}-o(1)} \quad \text{as } \epsilon o 0.$$

Ding-Gwynne'20 gets tightness for point-to-point distances in Liouville first passage percolation for $\mathbf{c} \in (1, 25)$.

Liouville first passage percolation

•
$$D_h^{\mathsf{LFPP},\epsilon}(z_1,z_2) := a_\epsilon \inf_{P:z_1 \to z_2} \int_P e^{\xi h_\epsilon(z)} dz,$$

 $\xi > 0.$

- If $\xi = \gamma_{c}/d_{c}$ and c < 1 then $D_{h}^{\text{LFPP},\epsilon}$ converges to the LQG metric in probability as $\epsilon \to 0$.
- Ding-Gwynne'20: If $\xi > \xi_{crit} := \gamma_1/d_1$ then $D_h^{LFPP,\epsilon}$ is tight for the topology on lower semi-continuous functions.
- If D_h^{LFPP} is a subsequential limit then
 - $D_h^{\mathsf{LFPP}}(z_1,z_2)<\infty$ a.s. for fixed z_1,z_2 and
 - the "infinite mass" points have infinite D_h^{LFPP} -distance from all other points.
- Conjecture: D_h^{LFPP} is unique.
- $\xi > \xi_{\rm crit}$ corresponds to ${f c} > 1$ via analytic continuation.

KPZ (Knizhnik-Polyakov-Zamolodchikov) formula

- Let X be a fractal independent of the Gaussian free field h.
- Let $N_0^{\epsilon}(X)$ and $N_h^{\epsilon}(X)$ denote the number of squares intersecting X.
- Let d_X (resp. d_X^c) denote Euclidean (resp. c-LQG) dimension of X.
- KPZ formula: $d_X = Q d_X^{c} 0.5 (d_X^{c})^2$
- KPZ formula used in physics to predict exponents and dimensions.

KPZ (Knizhnik-Polyakov-Zamolodchikov) formula

Recall that $N_h^{\epsilon}(X)$ is the number of squares intersecting X.

Theorem (Gwynne-H.-Pfeffer-Remy'19; KPZ formula for c < 25)

If $\dim_{\mathsf{Haus}}(X) = \dim_{\mathsf{Mink}}(X) = d_X$ then a.s. for sufficiently small $\epsilon > 0$,

$$N_h^{\epsilon}(X) = \begin{cases} \epsilon^{-(Q-\sqrt{Q^2-2d_X})+o_{\epsilon}(1)} & \text{if } d_X < Q^2/2, \\ \infty & \text{if } d_X > Q^2/2. \end{cases}$$

Furthermore, $\mathbb{E}[N_h^{\epsilon}(X)] = \epsilon^{-(Q-\sqrt{Q^2-2d_X})+o_{\epsilon}(1)}$ for $d_X < Q^2/2$.

- $X \cap$ "infinite mass points" $\neq \emptyset \Leftrightarrow d_X > Q^2/2 \Leftrightarrow$ exponent complex
- Variants of KPZ formula for c ≤ 1: Benjamini-Schramm'09, Duplantier-Sheffield'11, Rhodes-Vargas'11, Barral-Jin-Rhodes-Vargas'13, Aru'15, Gwynne-H.-Miller'15, Berestycki-Garban-Rhodes-Vargas'16, Gwynne-Pfeffer'19, etc.

Holden (ETH Zürich)

• Scaling limit results for planar maps reweighted by $(\det \Delta)^{-c/2}$.

- Scaling limit results for planar maps reweighted by $(\det \Delta)^{-c/2}$.
- Scaling limit results for coarse-grained versions of LQG.
 - examples: square subdivision, Liouville first passage percolation

- Scaling limit results for planar maps reweighted by $(\det \Delta)^{-c/2}$.
- Scaling limit results for coarse-grained versions of LQG.
 - examples: square subdivision, Liouville first passage percolation
- Combinatorial random planar map model for $\mathbf{c} \in (1, 25)$.

- Scaling limit results for planar maps reweighted by $(\det \Delta)^{-c/2}$.
- Scaling limit results for coarse-grained versions of LQG.
 - examples: square subdivision, Liouville first passage percolation
- Combinatorial random planar map model for $\mathbf{c} \in (1, 25)$.
- $e^{\gamma h} d^2 z$ for $\gamma \in \mathbb{C}$.
 - works of Junnila, Lacoin, Rhodes, Saksman, Vargas, Viitasaari, Webb

- Scaling limit results for planar maps reweighted by $(\det \Delta)^{-c/2}$.
- Scaling limit results for coarse-grained versions of LQG.
 - examples: square subdivision, Liouville first passage percolation
- Combinatorial random planar map model for $\mathbf{c} \in (1, 25)$.
- $e^{\gamma h} d^2 z$ for $\gamma \in \mathbb{C}$.
 - works of Junnila, Lacoin, Rhodes, Saksman, Vargas, Viitasaari, Webb
- Path integral approach e^{-S_L(φ)}Dφ to c > 1, where Dφ is "Lebesgue measure on the space of functions" and

$$S_{\mathsf{L}}(\varphi) := rac{1}{\pi} \int |\partial_z \varphi(z)|^2 + \pi \widetilde{\mu} e^{\gamma \varphi(z)} d^2 z, \qquad \widetilde{\mu} > 0.$$

 ${\scriptstyle \bullet}\,$ see David-Kupiainen-Rhodes-Vargas'16 and related works for ${\scriptstyle c}<1$

Open problems and further directions (cont.)

- Schramm-Loewner evolution (SLE) for $\mathbf{c} > 1$.
 - SLE is a one parameter family of random fractal curves describing the scaling limit of statistical physics models. Parameter κ > 0 or c ≤ 1.
 - Natural couplings between SLE and LQG w/same central charge, i.e. $\gamma = \min{\{\sqrt{\kappa}; 4/\sqrt{\kappa}\}}$ (works of Duplantier, Miller, Sheffield, Werner).

Open problems and further directions (cont.)

- Schramm-Loewner evolution (SLE) for $\mathbf{c} > 1$.
 - SLE is a one parameter family of random fractal curves describing the scaling limit of statistical physics models. Parameter $\kappa > 0$ or $\mathbf{c} \leq 1$.
 - Natural couplings between SLE and LQG w/same central charge, i.e. $\gamma = \min\{\sqrt{\kappa}; 4/\sqrt{\kappa}\}$ (works of Duplantier, Miller, Sheffield, Werner).
- Physical meaning of complex dimensions, for example in the KPZ formula $d_X^c = Q \sqrt{Q^2 2d_X}$ for $d_X > Q^2/2$.

Thanks!

Holden (ETH Zürich)

LQG and central charge

October 6, 2020 32 / 3

Image: A match a ma

2