Random Friends Walking on Random Graphs

Noga Alon, Princeton and TAU Joint work with Colin Defant and Noah Kravitz

Oxford, Jan. 2021

Friends and Strangers Graphs

Example

Friendship Graph, example

Definition: Let X, Y be two n-vertex graphs. The Friends and Strangers Graph $\mathrm{FS}(\mathrm{X}, \mathrm{Y})$ is the graph whose vertices are the bijections from $\mathrm{V}(\mathrm{X})$ to $\mathrm{V}(\mathrm{Y})$ where two bijections are adjacent if one can be obtained from the other by a friendly swap.

Example:

$F S(X, Y)=2 C_{12}$

Previous Work

For any graph $\mathrm{Y}, \mathrm{FS}\left(\mathrm{K}_{\mathrm{n}}, \mathrm{Y}\right)$ is the Cayley graph of S_{n} generated by the transpositions corresponding to the edges of Y

Analyzing the 15-puzzle game is equivalent to analyzing $\mathrm{FS}\left(4\right.$ by 4 grid, $\mathrm{K}_{1,15}$)

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

Wilson (74) studied the connected components of FS(X, $\mathrm{K}_{1, \mathrm{n}-1}$) for arbitrary X

Stanley (12) studied the connected components of $\operatorname{FS}\left(P_{n}, P_{n}\right)$.

Defant and Kravitz (20) studied the connected components of $\operatorname{FS}\left(X, P_{n}\right), F S\left(X, C_{n}\right)$ for general X

Basic properties

Let X and Y be two n -vertex graphs
Isolated vertices of $\mathrm{FS}(\mathrm{X}, \mathrm{Y})$ correspond to edge-disjoint packings of X, Y in K_{n}
$\mathrm{FS}(\mathrm{X}, \mathrm{Y})$ is isomorphic to $\mathrm{FS}(\mathrm{Y}, \mathrm{X})$
If X is disconnected so is $\mathrm{FS}(\mathrm{X}, \mathrm{Y})$

If X, Y are bipartite and $\mathrm{n} \geq 3$ then $\mathrm{FS}(\mathrm{X}, \mathrm{Y})$ is disconnected

The star graph $\mathrm{K}_{1, \mathrm{n}-1}$

When is $\mathrm{FS}\left(\mathrm{X}, \mathrm{K}_{1, \mathrm{n}-1}\right)$ disconnected ?
\mathbf{X} is disconnected
X has a cut-vertex
X is bipartite ($n \geq 3$)
X is a cycle ($n \geq 4$)
[FS($\left.C_{n}, K_{1, n-1}\right)$ has ($\left.n-2\right)!$ components]

$\operatorname{FS}\left(\mathrm{Z}_{0}, \mathrm{~K}_{1,6}\right)$ has 6 components

Theorem (Wilson (74)): Let X be an n vertex graph, $n \geq 3$. Suppose X is biconnected, neither Z_{0} nor a cycle of length at least 4.

If X is non-bipartite, then $\operatorname{FS}\left(X, K_{1, n-1}\right)$ is connected.

If X is bipartite then $\mathrm{FS}\left(\mathrm{X}, \mathrm{K}_{1, \mathrm{n}-1}\right)$ has exactly two connected components

Proof combines the ear decomposition of a 2connected graph with some group theoretic arguments.

Connectivity: Typical and Extremal Questions

Minimum degree
Question 1a: what is the smallest d_{n} so that $\mathrm{FS}(\mathrm{X}, \mathrm{Y})$ is connected for every two n -vertex graphs X, Y each having minimum degree at least d_{n} ?

Question 1b: what is the smallest $d_{\mathrm{n}, \mathrm{n}}$ so that FS(X,Y) has exactly two connected components for every two subgraphs X, Y of $K_{n, n}$ each having minimum degree at least $d_{n, n}$?

Random Graphs

Question 2a: Let X, Y be independent binomial random graphs in $G(n, p)$. For which $p=p(n)$ is FS(X,Y) connected with high probability ?

Question 2b: Let X,Y be two independent bipartite random graphs in $G(n, n, p)$. For which $p=p(n)$ does $F S(X, Y)$ have exactly 2 connected components with high probability ?

Results

Minimum degree
Question 1a: what is the smallest d_{n} so that $F S(X, Y)$ is connected for every two n-vertex graphs X, Y each having minimum degree at least d_{n} ?

Theorem (A,Defant,Kravitz):

$$
\frac{3 n}{5}-2 \leq d_{n} \leq \frac{9 n}{14}+1
$$

The lower bound

Question 1b: what is the smallest $d_{n, n}$ so that $F S(X, Y)$ has exactly two connected components for every two subgraphs X, Y of $\mathrm{K}_{\mathrm{n}, \mathrm{n}}$ each having minimum degree at least $d_{n, n}$?

Theorem (A, Defant, Kravitz):

$$
\left\lceil\frac{3 n+1}{4}\right\rceil \leq d_{n, n} \leq\left\lceil\frac{3 n+2}{4}\right\rceil
$$

The lower bound

Random Graphs

Question 2a: Let \mathbf{X}, \mathbf{Y} be independent binomial random graphs in $G(n, p)$. For which $p=p(n)$ is $F(X, Y)$ connected with high probability?

Theorem (A, Defant, Kravitz): The threshold $p=p(n)$ for connectivity of $F S(X, Y)$ is

$$
p(n)=\frac{1}{n^{\frac{1}{2}+o(1)}}
$$

Question 2b: Let X,Y be two independent bipartite random graphs in $G(n, n, p)$. For which $p=p(n)$ does $F S(X, Y)$ have exactly 2 connected components with high probability?

Theorem (A,Defant,Kravitz): the threshold p(n) for having two components satisfies

$$
\Omega\left(\frac{1}{n^{1 / 2}}\right) \leq p(n) \leq \widetilde{O}\left(\frac{1}{n^{\frac{3}{10}}}\right)
$$

A bit about the proofs

Theorem: the threshold for connectivity of $\operatorname{FS}(X, Y)$ for X, Y in $G(n, p(n))$ is $\mathrm{n}^{-1 / 2+o(1)}$

Fact: for $p(n) \leq \frac{2^{-\frac{1}{2}}-\epsilon}{\sqrt{n}}$ then with high probability $\mathrm{FS}(\mathrm{X}, \mathrm{Y})$ is disconnected (has isolated vertices).

Proof: Sauer and Spencer (78) showed that if

$$
2 \Delta(X) \Delta(Y)<n
$$

then X and Y have an edge disjoint packing in K_{n}

The main part of the proof is:
Theorem: if $p(n) \geq \frac{\exp \left[(2 \log n)^{2 / 3}\right]}{n^{1 / 2}}$
then with high probability $\mathrm{FS}(\mathrm{X}, \mathrm{Y})$ is connected.

This is proved by showing that with high probability, for every bijection from $V(X)$ to $\mathrm{V}(\mathrm{Y})$ every pair of adjacent elements \mathbf{u}, \mathbf{v} in Y are exchangeable.

First attempt to establish that: hope that for every such u, v and f there is a common neighbor w of u and v in Y where $w^{\prime}=f^{-1}(w)$ is a common neighbor of $u^{\prime}=f^{-1}(u)$ and $v^{\prime}=f^{-1}(v)$.

W

But this fails with high probability for all

$$
p<1 / \sqrt{2}
$$

Second attempt: show that for every such u,v and f the following two graphs appear in X, Y

This will suffice by Wilson's Theorem
For $p(n) \geq \widetilde{\Omega}\left(1 / n^{0.25}\right)$ this holds with high probability, by Janson Inequalities

Yet it fails for $p(n)=1 / n^{1 / 2-0(1)}$

Need more complicated graphs

G^{*}

H^{*}

Here $\boldsymbol{m}=\left\lfloor\log \boldsymbol{n}^{2 / 3}\right\rfloor$ grows with n.

Need more complicated graphs

H^{*}
The proof these imply exchangeability applies Wilson's Theorem several times

The (non-tight) result for the bipartite case is obtained by a similar reasoning using specific constant size pairs of graphs that supply exchangability by sequences of friendly swaps found by computer search.

Open Problems

Is $p(n)=n^{-1 / 2+o(1)}$ the threshold for ensuring two connected components in the bipartite case too?

Is the smallest value d_{n} ensuring connectivity of $F S(X, Y)$ for every pair of n-vertex graphs X and Y with minimum degree at least d_{n} $3 n / 5+O(1)$?

Is there a hitting time result ? Namely, starting with two edgeless graphs (X_{0}, Y_{0}) on n vertices each, let (X_{i}, Y_{i}) be a random sequence of pairs of graphs, where each X_{i+1} is obtained from X_{i} by adding to it a uniform random yet unchosen edge, and each Y_{i+1} is defined analogously.

Let $t_{i s o}$ denote the smallest i so that $\operatorname{FS}\left(X_{i}, Y_{i}\right)$ has no isolated vertices.

Let $t_{\text {con }}$ denote the smallset i so that $F S\left(X_{i}, Y_{i}\right)$ is connected.

Is $\mathrm{t}_{\text {conn }}=\mathrm{t}_{\text {iso }}$ with high probability ? If not, is $t_{\text {con }}=(1+0(1)) t_{\text {iso }}$ with high probability?

Is the diameter of any connected component of $\mathrm{FS}(\mathrm{X}, \mathrm{Y})$ at most $\mathrm{n}^{\mathrm{O}(1)}$?

What about the mixing properties of the random walk on $\mathrm{FS}(\mathrm{X}, \mathrm{Y})$?
[The case $\mathrm{FS}\left(\mathrm{X}, \mathrm{K}_{\mathrm{n}}\right)$ is Aldous spectral gap conjecture settled by Caputo, Liggett and Richthammer (10)]

