Percolation on triangulations: A bijective path to Liouville quantum gravity

Olivier Bernardi - Brandeis University

Joint work with Nina Holden (ETH) & Xin Sun (Columbia)

Oxford Discrete Mathematics & Probability Online Seminar, April 2020

CLE on Liouville Quantum Gravity

"Random curves on a random surface"

CLE on Liouville Quantum Gravity

CLE on Liouville Quantum Gravity

CLE on Liouville Quantum Gravity

2D Brownian excursion

Site percolation: Color vertices *black* or *white* with probability 1/2.

Site percolation: Color vertices *black* or *white* with probability 1/2.

Questions:

• Crossing probabilities?

Site percolation: Color vertices *black* or *white* with probability 1/2.

Questions:

- Crossing probabilities?
- Law of interfaces?

Site percolation: Color vertices *black* or *white* with probability 1/2.

Questions:

- Crossing probabilities?
- Law of interfaces?
- Mixing properties?

Def. A triangulation of the disk is a decomposition into triangles.

Def. A triangulation of the disk is a decomposition into triangles (considered up to deformation).

Def. A triangulation of the disk is a decomposition into triangles (considered up to deformation).

(multiple edges allowed, loops forbidden)

Def. A triangulation of the disk is a decomposition into triangles (considered up to deformation).

Def. A triangulation is **rooted** by marking an edge on the boundary.

We can consider percolation on random triangulations of the disk. $(k \text{ exterior vertices}, n \text{ interior vertices}; uniform probability})$

We can consider percolation on random triangulations of the disk. $(k \text{ exterior vertices}, n \text{ interior vertices}; uniform probability})$

Same questions:

- Crossing probabilities?
- Law of interfaces?
- Mixing properties?

We can consider percolation on random triangulations of the disk. $(k \text{ exterior vertices}, n \text{ interior vertices}; uniform probability})$

Same questions:

- Crossing probabilities?
- Law of interfaces?
- Mixing properties?

Goal 1: Answer these questions. (as $n \to \infty$, $k \sim \sqrt{n}$)

We can consider percolation on random triangulations of the disk. $(k \text{ exterior vertices}, n \text{ interior vertices}; uniform probability})$

Same questions:

- Crossing probabilities?
- Law of interfaces?
- Mixing properties?

Goal 1: Answer these questions. (as $n \to \infty$, $k \sim \sqrt{n}$)

We can alternatively consider infinite triangulations.

Uniform Infinite Planar Triangulation [Angel,Schramm 04]

Is it interesting to study statistical mechanics on random lattices?

Vs

regular lattice

random lattice

Is it interesting to study statistical mechanics on random lattices?

Yes! New tools: random matrices, generating functions, bijections.

Is it interesting to study statistical mechanics on random lattices?

Yes! New tools: random matrices, generating functions, bijections.

Yes! The "critical exponents" on **regular Vs random** lattices are related by the **KPZ formula** [Knizhnik, Polyakov, Zamolodchikov].

Is it interesting to study statistical mechanics on random lattices?

Yes! New tools: random matrices, generating functions, bijections.

Yes! The "critical exponents" on **regular Vs random** lattices are related by the **KPZ formula** [Knizhnik, Polyakov, Zamolodchikov].

Yes! Critically weighted random lattices \rightsquigarrow random surfaces.

Triangulations as a random surface

Uniformly random triangulation with n triangles of side length $n^{-1/4}$.

Triangulations as a random surface

Uniformly random triangulation with n triangles of side length $n^{-1/4}$.

Theorem [LeGall 2013, Miermont 2013]^{*,**} Convergence in law as a metric space (Gromov-Hausdorff topology). Limit is a random compact metric space homeomorphic to 2D sphere, of Hausdorff dimension 4.

(* for a different family of planar maps) (** based on prior bijective results)

Triangulations as a random surface

Goal 2: Say something new about this random surface.

Conformal Loop Ensemble (CLE) on Liouville Quantum Gravity (LQG)

(image by J. Miller)

LQG is a random area measure μ on a \mathbb{C} -domain which is related to the Gaussian free field.

Random function chosen with probability proportional to

$$e^{-\sum_{i=1}^{n} \frac{(h(i) - h(i-1))^2}{2}}$$

Brownian motion

1D **LQG**

 $h_n: [n]^2 \to \mathbb{R}$

$$\boldsymbol{\mu} = e^{\gamma \mathbf{h}} dx dy$$

Random function chosen with probability proportional to

$$e^{-\sum_{u \sim v} \frac{(h(u) - h(v))^2}{2}}$$

Gaussian Free Field (a distribution)

LQG (area measure)

 $\gamma \in [0, 2]$ controls how wild LQG measure is. Today: $\gamma = \sqrt{8/3}$. "pure gravity" What is... a **SLE** (Schramm–Loewner evolution)?

What is... a **SLE** (Schramm–Loewner evolution)?

SLE_{κ} is a random (non-crossing, parametrized) curve in a \mathbb{C} -domain.

What is... a **SLE** (Schramm–Loewner evolution)?

SLE_{κ} is a random (non-crossing, parametrized) curve in a \mathbb{C} -domain.

The parameter κ determines how much the curve "wiggles".

 SLE_{κ} were introduced to describe the scaling limit of curves from statistical mechanics.
SLE are **characterized** by:

- Conformal invariance property
- Markov domain property

SLE are **characterized** by:

- Conformal invariance property
- Markov domain property

SLE are **characterized** by:

- Conformal invariance property
- Markov domain property

Today: $\kappa = 6$ (percolation)

Today: $\kappa = 6$ (percolation)

Theorem [Smirnov 01]: Convergence.

Today: $\kappa = 6$ (percolation)

Today: $\kappa = 6$ (percolation)

Conjectural relation (1990s)

Conjectural relation (1990s)

LQG was introduced in physics as a model of random surface describing space-time evolution of strings.

Conjectural relation (1990s)

Random triangulations gives another natural model of random surfaces.

It was conjectured that the two models were in fact exactly related.

Thm [Miller, Sheffield 2016]: Equality as metric spaces.

Goal 2': Establish a relation between LQG and "embedded" random triangulations.

Goal 3: Establish a relation between **percolation interfaces** on random triangulations and CLE_6 .

Convergence results

convergence

Percolation on random triangulations

under nice embedding

CLE on Liouville Quantum Gravity

Convergence results

CLE on Liouville Quantum Gravity

Let (M_n, σ_n) uniformly random percolated triangulation of size n (n interior vertices, \sqrt{n} exterior vertices).

There exist embeddings $\phi_n : M_n \to \mathbb{D}$ (and coupling) such that the following **converge jointly in probability**:

Let (M_n, σ_n) uniformly random percolated triangulation of size n (n interior vertices, \sqrt{n} exterior vertices).

There exist embeddings $\phi_n : M_n \to \mathbb{D}$ (and coupling) such that the following **converge jointly in probability**:

• Area measure: vertex counting measure $\rightarrow \sqrt{8/3}$ -LQG μ .

weak topology

Let (M_n, σ_n) uniformly random percolated triangulation of size n (n interior vertices, \sqrt{n} exterior vertices).

There exist embeddings $\phi_n : M_n \to \mathbb{D}$ (and coupling) such that the following **converge jointly in probability**:

- Area measure: vertex counting measure $\rightarrow \sqrt{8/3}$ -LQG μ .
- Percolation cycles: embedded percolation cycles $\gamma_1^n, \gamma_2^n, \dots$ $\longrightarrow \mathsf{CLE}_6$ loops $\gamma_1, \gamma_2, \dots$

uniform topology

Let (M_n, σ_n) uniformly random percolated triangulation of size n (n interior vertices, \sqrt{n} exterior vertices).

There exist embeddings $\phi_n : M_n \to \mathbb{D}$ (and coupling) such that the following **converge jointly in probability**:

- Area measure: vertex counting measure $\longrightarrow \sqrt{8/3}$ -LQG μ .
- Percolation cycles: embedded percolation cycles $\gamma_1^n, \gamma_2^n, \dots$ $\longrightarrow \mathsf{CLE}_6$ loops $\gamma_1, \gamma_2, \dots$
- **Exploration tree**: $\tau_n \rightarrow \text{Branching SLE}_6 \boldsymbol{\tau}$.

uniform topology on subtrees

Let (M_n, σ_n) uniformly random percolated triangulation of size n (n interior vertices, \sqrt{n} exterior vertices).

There exist embeddings $\phi_n : M_n \to \mathbb{D}$ (and coupling) such that the following **converge jointly in probability**:

- Area measure: vertex counting measure $\rightarrow \sqrt{8/3}$ -LQG μ .
- Percolation cycles: embedded percolation cycles $\gamma_1^n, \gamma_2^n, \dots$ $\longrightarrow \mathsf{CLE}_6$ loops $\gamma_1, \gamma_2, \dots$
- **Exploration tree**: $\tau_n \rightarrow \text{Branching SLE}_6 \boldsymbol{\tau}$.
- Pivotal measures: $\forall \epsilon, i, j, \nu_{i,n}^{\epsilon} \longrightarrow \nu_{i}^{\epsilon}$, and , $\nu_{i,j,n}^{\epsilon} \longrightarrow \nu_{i,j}^{\epsilon}$.

weak topology

Let (M_n, σ_n) uniformly random percolated triangulation of size n (n interior vertices, \sqrt{n} exterior vertices).

There exist embeddings $\phi_n : M_n \to \mathbb{D}$ (and coupling) such that the following **converge jointly in probability**:

- Area measure: vertex counting measure $\rightarrow \sqrt{8/3}$ -LQG μ .
- Percolation cycles: embedded percolation cycles $\gamma_1^n, \gamma_2^n, \dots$ $\longrightarrow \mathsf{CLE}_6$ loops $\gamma_1, \gamma_2, \dots$
- **Exploration tree**: $\tau_n \rightarrow \text{Branching SLE}_6 \boldsymbol{\tau}$.
- Pivotal measures: $\forall \epsilon, i, j, \nu_{i,n}^{\epsilon} \longrightarrow \nu_{i}^{\epsilon}$, and , $\nu_{i,j,n}^{\epsilon} \longrightarrow \nu_{i,j}^{\epsilon}$.
- Crossing events: For random vertex v_n , $E_b(v_n) \longrightarrow E_b(v)$.

Strategy of proof:

Strategy of proof:

The bijection

Kreweras walks

Def. A Kreweras walk is a lattice walk on \mathbb{Z}^2 using the steps a = (1,0), b = (0,1) and c = (-1,-1).

Thm [Bernardi 07/ Bernardi, Holden, Sun 18]:

There is a **bijection** between:

- $\mathcal{K} =$ set of Kreweras walks starting and ending at (0,0)and staying in \mathbb{N}^2 .
- $\mathcal{T} = \text{set of percolated triangulations of the disk}$ with 2 exterior vertices: one white and one black.

n interior vertices

Example: w = baabbcacc

Example: w = baabbcacc

Definition:

Example: w = baabbcacc

Definition:

Thm: This is a **bijection**.

3n steps

n interior vertices

Variants of the bijection

Spherical case

Disk case

UIPT case

Dictionary

Dictionary

Dictionary: percolation-interface to $v \leftrightarrow walk$ of excursions

Dictionary: percolation-interface to $v \leftrightarrow walk$ of excursions

discrete dictionary

[Bernardi, Holden, Sun]

continuum dictionary

[Duplantier, Miller, Sheffield]

discrete dictionary

[Bernardi, Holden, Sun]

Perfect correspondence!

continuum dictionary

[Duplantier, Miller, Sheffield]

Strengthening the convergence results

Holden, Sun + Albenque, Garban, Gwynne, Lawler, Li, Sepulveda + Miller, Sheffield

Cardy embedding of triangulations

Cardy embedding of triangulations

Thm [Holden, Sun]: Convergence holds for the **Cardy embedding**. (because $\phi_n \approx$ Cardy embedding)

Key ingredient used: "convergence componentwise"

Same triangulation k independent percolations

Same LQG k independent CLE

k Kreweras walks

Why useful?

To upgrade the "crossing event result" from an **annealed result** to a **quenched result**.

This implies (...) that $\phi_n \approx \text{Cardy embedding}$.

Why useful?

To upgrade the "crossing event result" from an **annealed result** to a **quenched result**.

This implies (...) that $\phi_n \approx \text{Cardy embedding}$.

How is it proved?

- LQG stay the same: prove the previous convergence is joint with convergence in Gromov-Hausdorff-Prokhorov topology.
- **CLE are independent**: prove CLE mixes fast (using pivotal point result).

Thanks.

