A loglog step towards the Erdős-Hajnal conjecture

Paul Seymour (Princeton)
Joint work with Matija Bucić, Tung Nguyen and Alex Scott.

Induced subgraph: subgraph obtained by deleting vertices. H-free: no induced subgraph isomorphic to H. $\alpha(G)=$ size of the largest stable set in G.
$\omega(G)=$ size of the largest clique in G.

Induced subgraph: subgraph obtained by deleting vertices. H-free: no induced subgraph isomorphic to H.
$\alpha(G)=$ size of the largest stable set in G.
$\omega(G)=$ size of the largest clique in G.

- There are n-vertex graphs with $\max (\alpha(G), \omega(G)) \leq O(\log (n))$.

Induced subgraph: subgraph obtained by deleting vertices. H-free: no induced subgraph isomorphic to H.
$\alpha(G)=$ size of the largest stable set in G.
$\omega(G)=$ size of the largest clique in G.

- There are n-vertex graphs with $\max (\alpha(G), \omega(G)) \leq O(\log (n))$.
- $\max (\alpha(G), \omega(G)) \geq|G|^{1 / 2}$ for every P_{4}-free graph G.

Induced subgraph: subgraph obtained by deleting vertices. H-free: no induced subgraph isomorphic to H.
$\alpha(G)=$ size of the largest stable set in G.
$\omega(G)=$ size of the largest clique in G.

- There are n-vertex graphs with $\max (\alpha(G), \omega(G)) \leq O(\log (n))$.
- $\max (\alpha(G), \omega(G)) \geq|G|^{1 / 2}$ for every P_{4}-free graph G.
- $\alpha(G) \geq \frac{1}{2}|G|^{1 /(t-1)}$ for every K_{t}-free graph G.

Induced subgraph: subgraph obtained by deleting vertices.
H-free: no induced subgraph isomorphic to H.
$\alpha(G)=$ size of the largest stable set in G.
$\omega(G)=$ size of the largest clique in G.

- There are n-vertex graphs with $\max (\alpha(G), \omega(G)) \leq O(\log (n))$.
- $\max (\alpha(G), \omega(G)) \geq|G|^{1 / 2}$ for every P_{4}-free graph G.
- $\alpha(G) \geq \frac{1}{2}|G|^{1 /(t-1)}$ for every K_{t}-free graph G.
- $\max (\alpha(G), \omega(G)) \geq|G|^{1 / 4}$ for every bull-free graph G.
(Chudnovsky, Safra, 2008)

Induced subgraph: subgraph obtained by deleting vertices.
H-free: no induced subgraph isomorphic to H.
$\alpha(G)=$ size of the largest stable set in G.
$\omega(G)=$ size of the largest clique in G.

- There are n-vertex graphs with $\max (\alpha(G), \omega(G)) \leq O(\log (n))$.
- $\max (\alpha(G), \omega(G)) \geq|G|^{1 / 2}$ for every P_{4}-free graph G.
- $\alpha(G) \geq \frac{1}{2}|G|^{1 /(t-1)}$ for every K_{t}-free graph G.
- $\max (\alpha(G), \omega(G)) \geq|G|^{1 / 4}$ for every bull-free graph G.
(Chudnovsky, Safra, 2008)
- $\max (\alpha(G), \omega(G)) \geq|G|^{1 / 3}$ for every C_{4}-free graph G.

Induced subgraph: subgraph obtained by deleting vertices. H-free: no induced subgraph isomorphic to H.
$\alpha(\boldsymbol{G})=$ size of the largest stable set in \boldsymbol{G}.
$\omega(G)=$ size of the largest clique in G.

- There are n-vertex graphs with $\max (\alpha(G), \omega(G)) \leq O(\log (n))$.
- $\max (\alpha(G), \omega(G)) \geq|G|^{1 / 2}$ for every P_{4}-free graph G.
- $\alpha(G) \geq \frac{1}{2}|G|^{1 /(t-1)}$ for every K_{t}-free graph G.
- $\max (\alpha(G), \omega(G)) \geq|G|^{1 / 4}$ for every bull-free graph G.
(Chudnovsky, Safra, 2008)
- $\max (\alpha(G), \omega(G)) \geq|G|^{1 / 3}$ for every C_{4}-free graph G.

Conjecture (Erdős, Hajnal, 1977)

For every graph H, there exists $c>0$ such that every H-free graph G has a clique or stable set of size at least $|G|^{c}$.

H has the EH-property if there exists $c>0$ such that $\max (\alpha(G), \omega(G)) \geq|G|^{c}$ for every H-free graph G.

H has the EH-property if there exists $c>0$ such that $\max (\alpha(G), \omega(G)) \geq|G|^{c}$ for every H-free graph G.

Theorem (Alon, Pach, Solymosi, 2001)
If H_{1}, H_{2} have the EH-property, and H is obtained by substituting H_{1} for a vertex of H_{2}, then H has the EH-property.
H has the EH-property if there exists $c>0$ such that $\max (\alpha(G), \omega(G)) \geq|G|^{c}$ for every H-free graph G.

Theorem (Alon, Pach, Solymosi, 2001)
If H_{1}, H_{2} have the EH-property, and H is obtained by substituting H_{1} for a vertex of H_{2}, then H has the EH-property.

H has the EH-property if there exists $c>0$ such that $\max (\alpha(G), \omega(G)) \geq|G|^{c}$ for every H-free graph G.

Theorem (Alon, Pach, Solymosi, 2001)
If H_{1}, H_{2} have the EH-property, and H is obtained by substituting H_{1} for a vertex of H_{2}, then H has the EH-property.

Theorem

The following graphs are known to have the EH-property:

- P4-free graphs (Erdős, Hajnal, 1989)

Theorem

The following graphs are known to have the EH-property:

- P4-free graphs (Erdős, Hajnal, 1989)
- Graphs that can be made from graphs with the EH-property by substitution (Alon, Pach, Solymosi, 2001)

Theorem

The following graphs are known to have the EH-property:

- P4-free graphs (Erdős, Hajnal, 1989)
- Graphs that can be made from graphs with the EH-property by substitution (Alon, Pach, Solymosi, 2001)
- The bull (Chudnovsky, Safra, 2008)

Theorem

The following graphs are known to have the EH-property:

- P4-free graphs (Erdős, Hajnal, 1989)
- Graphs that can be made from graphs with the EH-property by substitution (Alon, Pach, Solymosi, 2001)
- The bull (Chudnovsky, Safra, 2008)
- The cycle of length five (Chudnovsky, Scott, S., Spirkl, 2021).

Theorem

The following graphs are known to have the EH-property:

- P4-free graphs (Erdős, Hajnal, 1989)
- Graphs that can be made from graphs with the EH-property by substitution (Alon, Pach, Solymosi, 2001)
- The bull (Chudnovsky, Safra, 2008)
- The cycle of length five (Chudnovsky, Scott, S., Spirkl, 2021).

It is open whether P_{5} has the EH-property.

Theorem

The following graphs are known to have the EH-property:

- P4-free graphs (Erdős, Hajnal, 1989)
- Graphs that can be made from graphs with the EH-property by substitution (Alon, Pach, Solymosi, 2001)
- The bull (Chudnovsky, Safra, 2008)
- The cycle of length five (Chudnovsky, Scott, S., Spirkl, 2021).

It is open whether P_{5} has the EH-property.
Theorem (Blanco, Bucić, 2022)
There exists $c>0$ such that

$$
\max (\alpha(G), \omega(G)) \geq 2^{c(\log \mid G)^{2 / 3}}
$$

for every P_{5}-free graph G.

Cograph: P_{4}-free graph. Equivalently, a graph that can be constructed starting from one-vertex graphs by repeatedly taking disjoint unions and complete joins.
Define $\mu(G)=$ size of largest induced cograph in G.

Conjecture (Erdős-Hajnal, equivalent form)
For every graph H, there exists $c>0$ such that $\mu(G) \geq|G|^{c}$ for every H-free graph G.

Conjecture (Erdős-Hajnal, equivalent form)

For every graph H, there exists $c>0$ such that $\mu(G) \geq|G|^{c}$ for every H-free graph G.

Theorem (Erdős, Hajnal, 1989)
For every H there exists $c>0$ such that $\mu(G) \geq 2^{c \sqrt{|\log | G \mid}}$ for every H-free graph G.

Conjecture (Erdős-Hajnal, equivalent form)
For every graph H, there exists $c>0$ such that $\mu(G) \geq|G|^{c}$ for every H-free graph G.

Theorem (Erdős, Hajnal, 1989)
For every H there exists $c>0$ such that $\mu(G) \geq 2^{c \sqrt{\log |G|}}$ for every H-free graph G.

Theorem (Bucić, Nguyen, Scott, S., 2022)
For every H there exists $c>0$ such that

$$
\mu(G) \geq 2^{c \sqrt{\log |G| \log \log |G|}}
$$

for every H-free graph G.

Theorem

For every H there exists $c>0$ such that

- $\mu(G) \geq 2^{c \log |G|}$?? (The E-H conjecture)
for every H-free graph G.

Theorem

For every H there exists $c>0$ such that

- $\mu(G) \geq 2^{c \log |G|}$?? (The E-H conjecture)
- $\mu(G) \geq 2^{c \sqrt{\log |G|}}$ (Erdős, Hajnal, 1989)
for every H-free graph G.

Theorem

For every H there exists $c>0$ such that

- $\mu(G) \geq 2^{c \log |G|}$?? (The E-H conjecture)
- $\mu(G) \geq 2^{c \sqrt{\log |G|}}$ (Erdős, Hajnal, 1989)
- $\mu(G) \geq 2^{c \sqrt{\log |G| \log \log |G|}}$ (Bucić, Nguyen, Scott, S., 2022)
for every H-free graph G.

Disjoint subsets A, B of $V(G)$ are complete if every vertex in A is adjacent to every vertex in B; anticomplete if there are no edges between A, B; a pure pair if A is either complete or anticomplete to B.

Disjoint subsets A, B of $V(G)$ are complete if every vertex in A is adjacent to every vertex in B; anticomplete if there are no edges between A, B; a pure pair if A is either complete or anticomplete to B.

- If we could prove that every H-free graph has a pure pair (A, B) with $|A|,|B| \geq \Omega(|G|)$, we could prove H has the EH-property. But this is true only for very small graphs H.

Disjoint subsets A, B of $V(G)$ are complete if every vertex in A is adjacent to every vertex in B; anticomplete if there are no edges between A, B; a pure pair if A is either complete or anticomplete to B.

- If we could prove that every H-free graph has a pure pair (A, B) with $|A|,|B| \geq \Omega(|G|)$, we could prove H has the EH-property. But this is true only for very small graphs H.
- If every H-free graph G has a pure pair (A, B) with
$|A|,|B| \geq \Omega\left(|G| / \mu(G)^{k}\right)$, then $\mu(G) \geq 2^{c \sqrt{\log |G|}}$ for H-free graphs.

Disjoint subsets A, B of $V(G)$ are complete if every vertex in A is adjacent to every vertex in B; anticomplete if there are no edges between A, B; a pure pair if A is either complete or anticomplete to B.

- If we could prove that every H-free graph has a pure pair (A, B) with $|A|,|B| \geq \Omega(|G|)$, we could prove H has the EH-property. But this is true only for very small graphs H .
- If every H-free graph G has a pure pair (A, B) with
$|A|,|B| \geq \Omega\left(|G| / \mu(G)^{k}\right)$, then $\mu(G) \geq 2^{c \sqrt{|\log | G \mid}}$ for H-free graphs.
- If every H-free graph has a pure pair (A, B) with
$|A| \geq \Omega\left(|G| / \mu(G)^{k}\right)$ and $|B| \geq \Omega(|G|)$, then
$\mu(G) \geq 2^{c \sqrt{\log |G| \log \log |G|}}$ for H-free graphs.
(A, B) is almost-pure if either every vertex in B has at most $|A| /(2 \mu(G))$ neighbours in A, or every vertex in B has at most $|A| /(2 \mu(G))$ non-neighbours in A.

(A, B) is almost-pure if either every vertex in B has at most $|A| /(2 \mu(G))$ neighbours in A, or every vertex in B has at most $|A| /(2 \mu(G))$ non-neighbours in A.

cograph
(A, B) is almost-pure if either every vertex in B has at most $|A| /(2 \mu(G))$ neighbours in A, or every vertex in B has at most $|A| /(2 \mu(G))$ non-neighbours in A.

(A, B) is almost-pure if either every vertex in B has at most $|A| /(2 \mu(G))$ neighbours in A, or every vertex in B has at most $|A| /(2 \mu(G))$ non-neighbours in A.

(A, B) is almost-pure if either every vertex in B has at most $|A| /(2 \mu(G))$ neighbours in A, or every vertex in B has at most $|A| /(2 \mu(G))$ non-neighbours in A.
(A, B) is almost-pure if either every vertex in B has at most $|A| /(2 \mu(G))$ neighbours in A, or every vertex in B has at most $|A| /(2 \mu(G))$ non-neighbours in A.
- If every H-free graph has an almost-pure pair (A, B) with $|A|,|B| \geq \Omega(|G|)$, then H has the EH-property. But still this is true only for very small graphs H.
(A, B) is almost-pure if either every vertex in B has at most $|A| /(2 \mu(G))$ neighbours in A, or every vertex in B has at most $|A| /(2 \mu(G))$ non-neighbours in A.
- If every H-free graph has an almost-pure pair (A, B) with $|A|,|B| \geq \Omega(|G|)$, then H has the EH-property. But still this is true only for very small graphs H.
- If every H-free graph has an almost-pure pair (A, B) with
$|A|,|B| \geq \Omega\left(|G| / \mu(G)^{k}\right)$, then $\mu(G) \geq 2^{c \sqrt{\log |G|}}$ for H-free graphs.
This is true, for all H, and this is how Erdős and Hajnal proved their theorem.
(A, B) is almost-pure if either every vertex in B has at most $|A| /(2 \mu(G))$ neighbours in A, or every vertex in B has at most $|A| /(2 \mu(G))$ non-neighbours in A.
- If every H-free graph has an almost-pure pair (A, B) with $|A|,|B| \geq \Omega(|G|)$, then H has the EH-property. But still this is true only for very small graphs H.
- If every H-free graph has an almost-pure pair (A, B) with
$|A|,|B| \geq \Omega\left(|G| / \mu(G)^{k}\right)$, then $\mu(G) \geq 2^{c \sqrt{\log |G|}}$ for H-free graphs.
This is true, for all H, and this is how Erdős and Hajnal proved their theorem.
- If every H-free graph has an almost-pure pair (A, B) with $|A| \geq \Omega\left(|G| / \mu(G)^{k}\right)$ and $|B| \geq \Omega(|G|)$, then
$\mu(G) \geq 2^{c \sqrt{\log |G| \log \log |G|}}$ for H-free graphs. This is still open, but related to what we do.

Theorem

For all H, there exist $k>0$ such that for every H-free graph G and every x with $0<x \leq \frac{1}{8|H|}$, there is a sequence A_{1}, \ldots, A_{n} of disjoint subsets of $V(G)$ with $n \geq \log (1 / x)$, and each of cardinality at least $\left\lfloor x^{k}|G|\right\rfloor$, such that for $1 \leq i \leq n$, either every vertex of $A_{i+1} \cup \cdots \cup A_{n}$ has at most $x\left|A_{i}\right|$ neighbours in A_{i}, or every vertex of $A_{i+1} \cup \cdots \cup A_{n}$ has at most $x\left|A_{i}\right|$ non-neighbours in A_{i}.

Theorem

For all H, there exist $k>0$ such that for every H-free graph G and every x with $0<x \leq \frac{1}{8|H|}$, there is a sequence A_{1}, \ldots, A_{n} of disjoint subsets of $V(G)$ with $n \geq \log (1 / x)$, and each of cardinality at least $\left\lfloor x^{k}|G|\right\rfloor$, such that for $1 \leq i \leq n$, either every vertex of $A_{i+1} \cup \cdots \cup A_{n}$ has at most $x\left|A_{i}\right|$ neighbours in A_{i}, or every vertex of $A_{i+1} \cup \cdots \cup A_{n}$ has at most $x\left|A_{i}\right|$ non-neighbours in A_{i}.

To deduce $\mu(G) \geq 2^{c \sqrt{\log |G| \log \log |G|}}$: take $x=1 /(2 \mu(G))$.

Theorem

For all H, there exist $k>0$ such that for every H-free graph G and every x with $0<x \leq \frac{1}{8|H|}$, there is a sequence A_{1}, \ldots, A_{n} of disjoint subsets of $V(G)$ with $n \geq \log (1 / x)$, and each of cardinality at least $\left\lfloor x^{k}|G|\right\rfloor$, such that for $1 \leq i \leq n$, either every vertex of $A_{i+1} \cup \cdots \cup A_{n}$ has at most $x\left|A_{i}\right|$ neighbours in A_{i}, or every vertex of $A_{i+1} \cup \cdots \cup A_{n}$ has at most $x\left|A_{i}\right|$ non-neighbours in A_{i}.

To deduce $\mu(G) \geq 2^{c \sqrt{\log |G| \log \log |G|}}$: take $x=1 /(2 \mu(G))$. Assume the union of the brown boxes is a cograph.

Theorem

For all H, there exist $k>0$ such that for every H-free graph G and every x with $0<x \leq \frac{1}{8|H|}$, there is a sequence A_{1}, \ldots, A_{n} of disjoint subsets of $V(G)$ with $n \geq \log (1 / x)$, and each of cardinality at least $\left\lfloor x^{k}|G|\right\rfloor$, such that for $1 \leq i \leq n$, either every vertex of $A_{i+1} \cup \cdots \cup A_{n}$ has at most $x\left|A_{i}\right|$ neighbours in A_{i}, or every vertex of $A_{i+1} \cup \cdots \cup A_{n}$ has at most $x\left|A_{i}\right|$ non-neighbours in A_{i}.

To deduce $\mu(G) \geq 2^{c \sqrt{\log |G| \log \log |G|}}$: take $x=1 /(2 \mu(G))$. Assume the union of the brown boxes is a cograph.

Theorem

For all H, there exist $k>0$ such that for every H-free graph G and every x with $0<x \leq \frac{1}{8|H|}$, there is a sequence A_{1}, \ldots, A_{n} of disjoint subsets of $V(G)$ with $n \geq \log (1 / x)$, and each of cardinality at least $\left\lfloor x^{k}|G|\right\rfloor$, such that for $1 \leq i \leq n$, either every vertex of $A_{i+1} \cup \cdots \cup A_{n}$ has at most $x\left|A_{i}\right|$ neighbours in A_{i}, or every vertex of $A_{i+1} \cup \cdots \cup A_{n}$ has at most $x\left|A_{i}\right|$ non-neighbours in A_{i}.

To deduce $\mu(G) \geq 2^{c \sqrt{\log |G| \log \log |G|}}$: take $x=1 /(2 \mu(G))$. Assume the union of the brown boxes is a cograph.

Main theorem

ind $_{H}(G)$: No of isomorphisms from H to induced subgraphs of G.

Main theorem

ind $_{H}(G)$: No of isomorphisms from H to induced subgraphs of G.

Theorem

For all H, there exist $k_{1}, k_{2}>0$ such that for every graph G and every x with $0<x \leq \frac{1}{8|H|}$, if ind ${ }_{H}(G)<x^{k_{1}}|G|^{|H|}$, there is a sequence A_{1}, \ldots, A_{n} of disjoint subsets of $V(G)$ with $n \geq \log (1 / x)$, and each of cardinality at least $\left\lfloor x^{k_{2}}|G|\right\rfloor$, such that for $1 \leq i \leq n$, either every vertex of $A_{i+1} \cup \cdots \cup A_{n}$ has at most $x\left|A_{i}\right|$ neighbours in A_{i}, or every vertex of $A_{i+1} \cup \cdots \cup A_{n}$ has at most $x\left|A_{i}\right|$ non-neighbours in A_{i}.

Key lemma

Let $g \in V(H)$. Let $A, B \subseteq V(G)$, and suppose every vertex in A is nonadjacent to at least a moderate amount of B.

Key lemma

Let $g \in V(H)$. Let $A, B \subseteq V(G)$, and suppose every vertex in A is nonadjacent to at least a moderate amount of B. Then either:

- $G[A \cup B]$ contains many copies of H;

Key lemma

Let $g \in V(H)$. Let $A, B \subseteq V(G)$, and suppose every vertex in A is nonadjacent to at least a moderate amount of B. Then either:

- $G[A \cup B]$ contains many copies of H; or
- there exists some $B^{\prime} \subseteq B$, not too small, such that $G\left[B^{\prime}\right]$ contains surprisingly few copies of $H \backslash g$;

Key lemma

Let $g \in V(H)$. Let $A, B \subseteq V(G)$, and suppose every vertex in A is nonadjacent to at least a moderate amount of B. Then either:

- $G[A \cup B]$ contains many copies of H; or
- there exists some $B^{\prime} \subseteq B$, not too small, such that $G\left[B^{\prime}\right]$ contains surprisingly few copies of $H \backslash g$; or
- there exist $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$, not too small, such that there are very few edges between A^{\prime} and B^{\prime}.

Key lemma

Theorem

Let H be a graph and let $g \in V(H)$. Let $b, c>0$, and let $a:=b+(1+c)|H|$. Let G be a graph, let A, B be disjoint subsets of $V(G)$, and let $0<x \leq 1 / 2$. Suppose that every vertex in A has at least $x|B|$ non-neighbours in B. Then either:

- $\operatorname{ind}_{H}(G) \geq x^{a}|A| \cdot|B|^{|H|-1}$; or
- there exists $B^{\prime} \subseteq B$ with $\left|B^{\prime}\right| \geq x|B|$ such that ind $_{H \backslash g}\left(G\left[B^{\prime}\right]\right)<x^{b}\left|B^{\prime}\right|^{|H|-1}$; or
- there exists $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ with $\left|A^{\prime}\right| \geq x^{a}|A|$ and $\left|B^{\prime}\right| \geq x^{a}|B|$ such that the number of edges between A^{\prime}, B^{\prime} is at most $2 x^{c}\left|A^{\prime}\right| \cdot\left|B^{\prime}\right|$.

Key lemma

Theorem

Let H be a graph and let $g \in V(H)$. Let $b, c>0$, and let $a:=b+(1+c)|H|$. Let G be a graph, let A, B be disjoint subsets of $V(G)$, and let $0<x \leq 1 / 2$. Suppose that every vertex in A has at least $x|B|$ non-neighbours in B. Then either:

- there are at least $x^{2}|A| \cdot|B|^{|H|-1}$ isomorphisms ϕ from H to induced subgraphs of G where $\phi(g) \in A$ and $\phi(h) \in B$ for all other $h \in V(H)$; or
- there exists $B^{\prime} \subseteq B$ with $\left|B^{\prime}\right| \geq x|B|$ such that ind $_{H \backslash g}\left(G\left[B^{\prime}\right]\right)<x^{b}\left|B^{\prime}\right|^{|H|-1}$; or
- there exists $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ with $\left|A^{\prime}\right| \geq x^{a}|A|$ and $\left|B^{\prime}\right| \geq x^{a}|B|$ such that the number of edges between A^{\prime}, B^{\prime} is at most $2 x^{c}\left|A^{\prime}\right| \cdot\left|B^{\prime}\right|$.

Key lemma

Theorem

Let H be a graph and let $g \in V(H)$. Let $b, c>0$, and let $a:=b+(1+c)|H|$. Let G be a graph, let A, B be disjoint subsets of $V(G)$, and let $0<x \leq 1 / 2$. Suppose that every vertex in A has at least $x|B|$ non-neighbours in B. Then either:

- there are at least $x^{a}|A| \cdot|B|^{|H|-1}$ isomorphisms ϕ from H to induced subgraphs of G where $\phi(g) \in A$ and $\phi(h) \in B$ for all other $h \in V(H)$; or
- there exists $B^{\prime} \subseteq B$ with $\left|B^{\prime}\right| \geq x|B|$ such that ind $_{H \backslash g}\left(G\left[B^{\prime}\right]\right)<x^{b}\left|B^{\prime}\right|^{|H|-1}$; or
- there exists $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ with $\left|A^{\prime}\right| \geq x^{a}|A|$ and $\left|B^{\prime}\right| \geq x^{a}|B|$ such that the number of edges between A^{\prime}, B^{\prime} is at most $2 x^{c}\left|A^{\prime}\right| \cdot\left|B^{\prime}\right|$.

Key lemma

Theorem

Let H be a graph and let $g \in V(H)$. Let $b, c>0$, and let $a:=b+(1+c)|H|$. Let G be a graph, let A, B be disjoint subsets of $V(G)$, and let $0<x \leq 1 / 2$. Suppose that every vertex in A has at least $x|B|$ non-neighbours in B. Then either:

- there are at least $x^{|H|-1+b+c d}|A| \cdot|B|^{|H|-1}$ isomorphisms ϕ from H to induced subgraphs of G where $\phi(g) \in A$ and $\phi(h) \in B$ for all other $h \in V(H)$, where g has degree d in H; or
- there exists $B^{\prime} \subseteq B$ with $\left|B^{\prime}\right| \geq x|B|$ such that ind $_{H \backslash g}\left(G\left[B^{\prime}\right]\right)<x^{b}\left|B^{\prime}\right|^{|H|-1}$; or
- there exists $A^{\prime} \subseteq A$ and $B^{\prime} \subseteq B$ with $\left|A^{\prime}\right| \geq x^{a}|A|$ and $\left|B^{\prime}\right| \geq x^{a}|B|$ such that the number of edges between A^{\prime}, B^{\prime} is at most $2 x^{c}\left|A^{\prime}\right| \cdot\left|B^{\prime}\right|$.

Key lemma

Proof: Induction on d.
Base case $d=0$. Let $v \in A$, and let B^{\prime} be its non-neighbours in B. So $\left|B^{\prime}\right| \geq x|B|$.

Key lemma

Proof: Induction on d.
Base case $d=0$. Let $v \in A$, and let B^{\prime} be its non-neighbours in B. So $\left|B^{\prime}\right| \geq x|B|$.

Key lemma

Proof: Induction on d.
Base case $d=0$. Let $v \in A$, and let B^{\prime} be its non-neighbours in B. So $\left|B^{\prime}\right| \geq x|B|$.

There are $x^{b}\left|B^{\prime}\right|^{|H|-1} \geq x^{b+|H|-1}|B|^{|H|-1}$ copies of $H \backslash g$ in $G\left[B^{\prime}\right]$ (or else the second outcome holds)

Key lemma

Proof: Induction on d.
Base case $d=0$. Let $v \in A$, and let B^{\prime} be its non-neighbours in B. So $\left|B^{\prime}\right| \geq x|B|$.

There are $x^{b}\left|B^{\prime}\right|^{|H|-1} \geq x^{b+|H|-1}|B|^{|H|-1}$ copies of $H \backslash g$ in $G\left[B^{\prime}\right]$ (or else the second outcome holds) So there are $x^{b+|H|-1}|B|^{|H|-1}$ copies of H where g is mapped to v and all the rest is mapped into B.

Key lemma

Proof: Induction on d.
Base case $d=0$. Let $v \in A$, and let B^{\prime} be its non-neighbours in B. So $\left|B^{\prime}\right| \geq x|B|$.

There are $x^{b}\left|B^{\prime}\right|^{|H|-1} \geq x^{b+|H|-1}|B|^{|H|-1}$ copies of $H \backslash g$ in $G\left[B^{\prime}\right]$ (or else the second outcome holds) So there are $x^{b+|H|-1}|B|^{|H|-1}$ copies of H where g is mapped to v and all the rest is mapped into B.
So there are $x^{b+|H|-1}|A| \cdot|B|^{|H|-1}$ copies of H where g is mapped into A and all the rest is mapped into B.

Key lemma

Inductive case $d>0$. Let $e=g h$ be an edge incident with g.

Key lemma

Inductive case $d>0$. Let $e=g h$ be an edge incident with g.

- From the induction, we may assume that there are at least $x^{|H|-1+b+c(d-1)}|A| \cdot|B|^{|H|-1}$ copies of $H \backslash e$ in G where g is mapped into A and all the rest into B. (Call these "good" copies.)

Key lemma

Inductive case $d>0$. Let $e=g h$ be an edge incident with g.

- From the induction, we may assume that there are at least $x^{|H|-1+b+c(d-1)}|A| \cdot|B|^{|H|-1}$ copies of $H \backslash e$ in G where g is mapped into A and all the rest into B. (Call these "good" copies.)
- There are at most $|B|^{|H|-2}$ copies of $H \backslash\{g, h\}$ in $G[B]$.

Key lemma

Inductive case $d>0$. Let $e=g h$ be an edge incident with g.

- From the induction, we may assume that there are at least $x^{|H|-1+b+c(d-1)}|A| \cdot|B|^{|H|-1}$ copies of $H \backslash e$ in G where g is mapped into A and all the rest into B. (Call these "good" copies.)
- There are at most $|B|^{|H|-2}$ copies of $H \backslash\{g, h\}$ in $G[B]$.
- So on average, each such copy extends to $x^{|H|-1+b+c(d-1)}|A| \cdot|B|$ good copies of $H \backslash e$.

Key lemma

Inductive case $d>0$. Let $e=g h$ be an edge incident with g.

- From the induction, we may assume that there are at least $x^{|H|-1+b+c(d-1)}|A| \cdot|B|^{|H|-1}$ copies of $H \backslash e$ in G where g is mapped into A and all the rest into B. (Call these "good" copies.)
- There are at most $|B|^{|H|-2}$ copies of $H \backslash\{g, h\}$ in $G[B]$.
- So on average, each such copy extends to $x^{|H|-1+b+c(d-1)}|A| \cdot|B|$ good copies of $H \backslash e$.

Key lemma

Inductive case $d>0$. Let $e=g h$ be an edge incident with g.

- From the induction, we may assume that there are at least $x^{|H|-1+b+c(d-1)}|A| \cdot|B|^{|H|-1}$ copies of $H \backslash e$ in G where g is mapped into A and all the rest into B. (Call these "good" copies.)
- There are at most $|B|^{|H|-2}$ copies of $H \backslash\{g, h\}$ in $G[B]$.
- So on average, each such copy extends to $x^{|H|-1+b+c(d-1)}|A| \cdot|B|$ good copies of $H \backslash e$.

Key lemma

Inductive case $d>0$. Let $e=g h$ be an edge incident with g.

- From the induction, we may assume that there are at least $x^{|H|-1+b+c(d-1)}|A| \cdot|B|^{|H|-1}$ copies of $H \backslash e$ in G where g is mapped into A and all the rest into B. (Call these "good" copies.)
- There are at most $|B|^{|H|-2}$ copies of $H \backslash\{g, h\}$ in $G[B]$.
- So on average, each such copy extends to $x^{|H|-1+b+c(d-1)}|A| \cdot|B|$ good copies of $H \backslash e$.

- On average (over the choices of C) there are at least $x^{|H|-1+b+c(d-1)}|A| \cdot|B|$ nonedges between A^{\prime} and B^{\prime}.

- On average (over the choices of C) there are at least $x^{|H|-1+b+c(d-1)}|A| \cdot|B|$ nonedges between A^{\prime} and B^{\prime}.
- Ignore all choices of C with fewer than $\frac{1}{2} x^{|H|-1+b+c(d-1)}|A| \cdot|B|$ nonedges between A^{\prime} and B^{\prime} (this loses at most half of the good copies of $H \backslash e$).

- On average (over the choices of C) there are at least $x^{|H|-1+b+c(d-1)}|A| \cdot|B|$ nonedges between A^{\prime} and B^{\prime}.
- Ignore all choices of C with fewer than $\frac{1}{2} x^{|H|-1+b+c(d-1)}|A| \cdot|B|$ nonedges between A^{\prime} and B^{\prime} (this loses at most half of the good copies of $H \backslash e$).
- So for all $C,\left|A^{\prime}\right| \geq \frac{1}{2} x^{|H|-1+b+c(d-1)}|A| \geq x^{a}|A|$ and $\left|B^{\prime}\right| \geq x^{a}|B|$.

- On average (over the choices of C) there are at least $x^{|H|-1+b+c(d-1)}|A| \cdot|B|$ nonedges between A^{\prime} and B^{\prime}.
- Ignore all choices of C with fewer than $\left.\frac{1}{2} x^{|H|}|+b+c(d-1)| A|\cdot| B \right\rvert\,$ nonedges between A^{\prime} and B^{\prime} (this loses at most half of the good copies of $H \backslash e)$.
- So for all $C,\left|A^{\prime}\right| \geq \frac{1}{2} x^{|H|-1+b+c(d-1)}|A| \geq x^{a}|A|$ and $\left|B^{\prime}\right| \geq x^{a}|B|$.
- If for some choice of C, there are only $2 x^{c}\left|A^{\prime}\right| \cdot\left|B^{\prime}\right|$ edges between A^{\prime}, B^{\prime}, the third outcome holds.

- On average (over the choices of C) there are at least $x^{|H|-1+b+c(d-1)}|A| \cdot|B|$ nonedges between A^{\prime} and B^{\prime}.
- Ignore all choices of C with fewer than $\left.\frac{1}{2} x^{|H|}|+b+c(d-1)| A|\cdot| B \right\rvert\,$ nonedges between A^{\prime} and B^{\prime} (this loses at most half of the good copies of $H \backslash e$).
- So for all $C, \left.\left|A^{\prime}\right| \geq \frac{1}{2} x^{|H|}|-1+b+c(d-1)| A\left|\geq x^{a}\right| A \right\rvert\,$ and $\left|B^{\prime}\right| \geq x^{a}|B|$.
- If for some choice of C, there are only $2 x^{c}\left|A^{\prime}\right| \cdot\left|B^{\prime}\right|$ edges between A^{\prime}, B^{\prime}, the third outcome holds.
- Otherwise, there are always at least $2 x^{c}\left|A^{\prime}\right| \cdot\left|B^{\prime}\right|$ edges between A^{\prime}, B^{\prime}; so the number of good copies of H is big and the first outcome holds.

Approximate blowups

J is a graph, $t>0$ an integer, and $q \leq 1$ a real number. $\mathrm{A}(t, q)$-blowup of J in G means a family $A_{j}(j \in V(J))$ of pairwise disjoint subsets of $V(G)$, all of size t, such that for all distinct $i, j \in V(J)$,

- if $i j \notin E(J)$ then every vertex in A_{i} has at most $q\left|A_{j}\right|$ neighbours in A_{j} and vice versa;
- if $i j \in E(J)$ then every vertex in A_{i} has at most $q\left|A_{j}\right|$ non-neighbours in A_{j} and vice versa.

Approximate blowups

J is a graph, $t>0$ an integer, and $q \leq 1$ a real number. $\mathrm{A}(t, q)$-blowup of J in G means a family $A_{j}(j \in V(J))$ of pairwise disjoint subsets of $V(G)$, all of size t, such that for all distinct $i, j \in V(J)$,

- if $i j \notin E(J)$ then every vertex in A_{i} has at most $q\left|A_{j}\right|$ neighbours in A_{j} and vice versa;
- if $i j \in E(J)$ then every vertex in A_{i} has at most $q\left|A_{j}\right|$ non-neighbours in A_{j} and vice versa.

Proof of the main theorem

Theorem

For all H, there exist $k_{1}, k_{2}>0$ such that for every graph G and every x with $0<x \leq \frac{1}{8|H|}$, if ind $H_{H}(G)<x^{k_{1}}|G|^{|H|}$, there is a sequence A_{1}, \ldots, A_{n} of disjoint subsets of $V(G)$ with $n \geq \log (1 / x)$, and each of cardinality at least $\left\lfloor x^{k_{2}}|G|\right\rfloor$, such that for $1 \leq i \leq n$, either every vertex of $A_{i+1} \cup \cdots \cup A_{n}$ has at most $x\left|A_{i}\right|$ neighbours in A_{i}, or every vertex of $A_{i+1} \cup \cdots \cup A_{n}$ has at most $x\left|A_{i}\right|$ non-neighbours in A_{i}.

Proof of the main theorem

Theorem

For all H, there exist $k_{1}, k_{2}>0$ such that for every graph G and every x with $0<x \leq \frac{1}{8|H|}$, if ind $H_{H}(G)<x^{k_{1}}|G|^{|H|}$, there is a sequence A_{1}, \ldots, A_{n} of disjoint subsets of $V(G)$ with $n \geq \log (1 / x)$, and each of cardinality at least $\left\lfloor x^{k_{2}}|G|\right\rfloor$, such that for $1 \leq i \leq n$, either every vertex of $A_{i+1} \cup \cdots \cup A_{n}$ has at most $x\left|A_{i}\right|$ neighbours in A_{i}, or every vertex of $A_{i+1} \cup \cdots \cup A_{n}$ has at most $x\left|A_{i}\right|$ non-neighbours in A_{i}.

- Choose an induced subgraph J of H maximal such that there is an approximate blowup of J in G. (ie a (t, q)-blowup where $t=\left\lfloor x^{r_{1}}|G|\right\rfloor$ and $q=x^{r_{2}}$ for appropriate r_{1}, r_{2} depending on J.)

Proof of the main theorem

Theorem

For all H, there exist $k_{1}, k_{2}>0$ such that for every graph G and every x with $0<x \leq \frac{1}{8|H|}$, if ind ${ }_{H}(G)<x^{k_{1}}|G|^{|H|}$, there is a sequence A_{1}, \ldots, A_{n} of disjoint subsets of $V(G)$ with $n \geq \log (1 / x)$, and each of cardinality at least $\left\lfloor x^{k_{2}}|G|\right\rfloor$, such that for $1 \leq i \leq n$, either every vertex of $A_{i+1} \cup \cdots \cup A_{n}$ has at most $x\left|A_{i}\right|$ neighbours in A_{i}, or every vertex of $A_{i+1} \cup \cdots \cup A_{n}$ has at most $x\left|A_{i}\right|$ non-neighbours in A_{i}.

- Choose an induced subgraph J of H maximal such that there is an approximate blowup of J in G. (ie a (t, q)-blowup where $t=\left\lfloor x^{r_{1}}|G|\right\rfloor$ and $q=x^{r_{2}}$ for appropriate r_{1}, r_{2} depending on J.)
- $J \neq H$ since $\operatorname{ind}_{H}(G)<x^{k_{1}}|G|^{|H|}$. Choose $i \in V(H) \backslash V(J)$.

$A_{j_{1}}$

G

Case 1: there is a subset B disjoint from the A_{j} 's, that is very sparse to some A_{j}, and has size $c|G|$.

Case 1: there is a subset B disjoint from the A_{j} 's, that is very sparse to some A_{j}, and has size $c|G|$. Start again, working completely inside B. If this happens many times we generate the sequence of subsets of the theorem.

So most vertices in $V(G) \backslash \bigcup_{j \in V(J)} A_{j}$ are adjacent to at least a small fraction of each A_{j}, and also nonadjacent to at least a small fraction of each A_{j}.

So most vertices in $V(G) \backslash \bigcup_{j \in V(J)} A_{j}$ are adjacent to at least a small fraction of each A_{j}, and also nonadjacent to at least a small fraction of each A_{j}. Use the key lemma to get a subset $C_{j 1}$ of $V(G) \backslash \bigcup_{j \in V(J)} A_{j}$, not too small, that is very dense or very sparse (whichever we want) to a subset $D_{j_{1}} \subseteq A_{j_{1}}$ that is not too small.

$A_{j 1} D_{j_{1}}$
$A_{i 2} D_{j_{2}}$

G

Repeat to get $C_{j_{2}} \subseteq C_{j_{1}}$ not too small, that is dense or sparse to a subset $D_{j_{2}} \subseteq A_{j_{2}}$ that is not too small.

$$
A_{i}\left[D_{i j}\right.
$$

$$
A_{j_{2}} D_{j_{2}}
$$

$$
A_{j_{3}} D_{j_{3}}
$$

$A_{j_{4}}\left(D_{j_{4}}\right.$

Repeat to get $C_{j_{2}} \subseteq C_{j_{1}}$ not too small, that is dense or sparse to a subset $D_{j_{2}} \subseteq A_{j_{2}}$ that is not too small.
Repeat for all other A_{j}. This give an approximate blowup of $\mathrm{J}+\mathrm{i}$, contrary to the choice of J.

