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H-free: no induced subgraph isomorphic to H.
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Conjecture (Erdős, Hajnal, 1977)
For every graph H, there exists c > 0 such that every H-free graph G
has a clique or stable set of size at least |G|c .
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H has the EH-property if there exists c > 0 such that
max(α(G), ω(G)) ≥ |G|c for every H-free graph G.
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4 / 23



Theorem
The following graphs are known to have the EH-property:

P4-free graphs (Erdős, Hajnal, 1989)
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Graphs that can be made from graphs with the EH-property by
substitution (Alon, Pach, Solymosi, 2001)
The bull (Chudnovsky, Safra, 2008)
The cycle of length five (Chudnovsky, Scott, S., Spirkl, 2021).

It is open whether P5 has the EH-property.

4 / 23



Theorem
The following graphs are known to have the EH-property:

P4-free graphs (Erdős, Hajnal, 1989)
Graphs that can be made from graphs with the EH-property by
substitution (Alon, Pach, Solymosi, 2001)
The bull (Chudnovsky, Safra, 2008)
The cycle of length five (Chudnovsky, Scott, S., Spirkl, 2021).

It is open whether P5 has the EH-property.

Theorem (Blanco, Bucić, 2022)
There exists c > 0 such that

max(α(G), ω(G)) ≥ 2c(log |G|)2/3
.

for every P5-free graph G.
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Cograph: P4-free graph. Equivalently, a graph that can be constructed
starting from one-vertex graphs by repeatedly taking disjoint unions
and complete joins.
Define µ(G) = size of largest induced cograph in G.

5 / 23



Conjecture (Erdős-Hajnal, equivalent form)
For every graph H, there exists c > 0 such that µ(G) ≥ |G|c for every
H-free graph G.
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Theorem
For every H there exists c > 0 such that

µ(G) ≥ 2c log |G| ?? (The E-H conjecture)
for every H-free graph G.
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log |G| (Erdős, Hajnal, 1989)
for every H-free graph G.

7 / 23



Theorem
For every H there exists c > 0 such that

µ(G) ≥ 2c log |G| ?? (The E-H conjecture)

µ(G) ≥ 2c
√
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Disjoint subsets A,B of V (G) are
complete if every vertex in A is adjacent to every vertex in B;
anticomplete if there are no edges between A,B;
a pure pair if A is either complete or anticomplete to B.
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If every H-free graph has a pure pair (A,B) with
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√
log |G| log log |G| for H-free graphs.
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(A,B) is almost-pure if either every vertex in B has at most
|A|/(2µ(G)) neighbours in A, or every vertex in B has at most
|A|/(2µ(G)) non-neighbours in A.
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If every H-free graph has an almost-pure pair (A,B) with
|A| ≥ Ω(|G|/µ(G)k ) and |B| ≥ Ω(|G|), then
µ(G) ≥ 2c

√
log |G| log log |G| for H-free graphs. This is still open, but

related to what we do.
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Theorem
For all H, there exist k > 0 such that for every H-free graph G and
every x with 0 < x ≤ 1

8|H| , there is a sequence A1, . . . ,An of disjoint
subsets of V (G) with n ≥ log(1/x), and each of cardinality at least
bxk |G|c, such that for 1 ≤ i ≤ n, either
every vertex of Ai+1 ∪ · · · ∪ An has at most x |Ai | neighbours in Ai , or
every vertex of Ai+1 ∪ · · · ∪ An has at most x |Ai | non-neighbours in Ai .

A1 Ai Ai+1 Ai+2 An
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To deduce µ(G) ≥ 2c
√

log |G| log log |G|: take x = 1/(2µ(G)).
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Main theorem

indH(G): No of isomorphisms from H to induced subgraphs of G.
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Main theorem

indH(G): No of isomorphisms from H to induced subgraphs of G.

Theorem
For all H, there exist k1, k2 > 0 such that for every graph G and every x
with 0 < x ≤ 1

8|H| , if indH(G) < xk1 |G||H|, there is a sequence
A1, . . . ,An of disjoint subsets of V (G) with n ≥ log(1/x), and each of
cardinality at least bxk2 |G|c, such that for 1 ≤ i ≤ n, either
every vertex of Ai+1 ∪ · · · ∪ An has at most x |Ai | neighbours in Ai , or
every vertex of Ai+1 ∪ · · · ∪ An has at most x |Ai | non-neighbours in Ai .
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Key lemma

A B

Let g ∈ V (H). Let A,B ⊆ V (G), and suppose every vertex in A is
nonadjacent to at least a moderate amount of B.
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G[A ∪ B] contains many copies of H; or
there exists some B′ ⊆ B, not too small, such that G[B′] contains
surprisingly few copies of H \ g;
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Key lemma

A B

B′A′

Let g ∈ V (H). Let A,B ⊆ V (G), and suppose every vertex in A is
nonadjacent to at least a moderate amount of B. Then either:

G[A ∪ B] contains many copies of H; or
there exists some B′ ⊆ B, not too small, such that G[B′] contains
surprisingly few copies of H \ g; or
there exist A′ ⊆ A and B′ ⊆ B, not too small, such that there are
very few edges between A′ and B′.
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Key lemma

Theorem
Let H be a graph and let g ∈ V (H). Let b, c > 0, and let
a := b + (1 + c)|H|. Let G be a graph, let A,B be disjoint subsets of
V (G), and let 0 < x ≤ 1/2. Suppose that every vertex in A has at least
x |B| non-neighbours in B. Then either:

indH(G) ≥ xa|A| · |B||H|−1; or
there exists B′ ⊆ B with |B′| ≥ x |B| such that
indH\g(G[B′]) < xb|B′||H|−1; or
there exists A′ ⊆ A and B′ ⊆ B with |A′| ≥ xa|A| and |B′| ≥ xa|B|
such that the number of edges between A′,B′ is at most
2xc |A′| · |B′|.
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a := b + (1 + c)|H|. Let G be a graph, let A,B be disjoint subsets of
V (G), and let 0 < x ≤ 1/2. Suppose that every vertex in A has at least
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Key lemma

Proof: Induction on d .
Base case d = 0. Let v ∈ A, and let B′ be its non-neighbours in B. So
|B′| ≥ x |B|.
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So there are xb+|H|−1|A| · |B||H|−1 copies of H where g is mapped into
A and all the rest is mapped into B.

17 / 23



Key lemma

Inductive case d > 0. Let e = gh be an edge incident with g.
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2x |H|−1+b+c(d−1)|A| ≥ xa|A| and |B′| ≥ xa|B|.
If for some choice of C, there are only 2xc |A′| · |B′| edges between
A′,B′, the third outcome holds.
Otherwise, there are always at least 2xc |A′| · |B′| edges between
A′,B′; so the number of good copies of H is big and the first
outcome holds.
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Approximate blowups

J is a graph, t > 0 an integer, and q ≤ 1 a real number. A (t ,q)-blowup
of J in G means a family Aj (j ∈ V (J)) of pairwise disjoint subsets of
V (G), all of size t , such that for all distinct i , j ∈ V (J),

if ij /∈ E(J) then every vertex in Ai has at most q|Aj | neighbours in
Aj and vice versa;
if ij ∈ E(J) then every vertex in Ai has at most q|Aj |
non-neighbours in Aj and vice versa.
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Proof of the main theorem

Theorem
For all H, there exist k1, k2 > 0 such that for every graph G and every x
with 0 < x ≤ 1

8|H| , if indH(G) < xk1 |G||H|, there is a sequence
A1, . . . ,An of disjoint subsets of V (G) with n ≥ log(1/x), and each of
cardinality at least bxk2 |G|c, such that for 1 ≤ i ≤ n, either
every vertex of Ai+1 ∪ · · · ∪ An has at most x |Ai | neighbours in Ai , or
every vertex of Ai+1 ∪ · · · ∪ An has at most x |Ai | non-neighbours in Ai .
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Choose an induced subgraph J of H maximal such that there is an
approximate blowup of J in G. (ie a (t ,q)-blowup where
t = bx r1 |G|c and q = x r2 for appropriate r1, r2 depending on J.)
J 6= H since indH(G) < xk1 |G||H|. Choose i ∈ V (H) \ V (J).
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J

G
B

Case 1: there is a subset B disjoint from the Aj ’s, that is very sparse to
some Aj , and has size c|G|.
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Aj1 Aj2 Aj3 Aj4

j1 j2 j3 j4 i

J

G
B

Case 1: there is a subset B disjoint from the Aj ’s, that is very sparse to
some Aj , and has size c|G|. Start again, working completely inside
B. If this happens many times we generate the sequence of subsets of
the theorem.
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Aj1 Aj2 Aj3 Aj4

j1 j2 j3 j4 i

J

G

So most vertices in V (G) \
⋃

j∈V (J) Aj are adjacent to at least a small
fraction of each Aj , and also nonadjacent to at least a small fraction of
each Aj .
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J

G
Cj1

Dj1

So most vertices in V (G) \
⋃

j∈V (J) Aj are adjacent to at least a small
fraction of each Aj , and also nonadjacent to at least a small fraction of
each Aj . Use the key lemma to get a subset Cj1 of V (G) \

⋃
j∈V (J) Aj ,

not too small, that is very dense or very sparse (whichever we want) to
a subset Dj1 ⊆ Aj1 that is not too small.
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Cj2

Dj2

Repeat to get Cj2 ⊆ Cj1 not too small, that is dense or sparse to a
subset Dj2 ⊆ Aj2 that is not too small.
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j1 j2 j3 j4 i

J

G
Cj1

Dj1

Cj2

Dj2 Dj3 Dj4

Ai

Repeat to get Cj2 ⊆ Cj1 not too small, that is dense or sparse to a
subset Dj2 ⊆ Aj2 that is not too small.
Repeat for all other Aj . This give an approximate blowup of J+i,
contrary to the choice of J.
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