Skipless Chain Decompositions \& Improved Poset Saturation Bounds

Paul Bastide
Carla Groenland
Maria-Romina Ivan
Hugo Jacob
Tom Johnston

LaBRI, TU Delft
TU Delft
Cambridge
ENS Paris-Saclay
University of Bristol

Boolean lattice

The Boolean lattice of dimension n :

- elements: $2^{[n]}=\mathcal{P}(\{1, \ldots, n\})$
- relation: \subseteq

Boolean lattice

The Boolean lattice of dimension n :

- elements: $2^{[n]}=\mathcal{P}(\{1, \ldots, n\})$
- relation: \subseteq

A chain is a set system where every pair of elements is comparable.
An antichain is a set system where every pair of elements is incomparable.

Boolean lattice

The Boolean lattice of dimension n :

- elements: $2^{[n]}=\mathcal{P}(\{1, \ldots, n\})$
- relation: \subseteq

A chain is a set system where every pair of elements is comparable.
An antichain is a set system where every pair of elements is incomparable.

Boolean lattice

A chain $C=\left\{C_{1} \subsetneq C_{2} \subsetneq \ldots \subsetneq C_{k}\right\} \subseteq P$ is skipless in P if for all $i \in[k-1]$, there is no $X \in P$ with $C_{i} \subsetneq X \subsetneq C_{i+1}$.

Boolean lattice

$$
\begin{aligned}
& \text { A chain } C=\left\{C_{1} \subsetneq C_{2} \subsetneq \ldots \subsetneq C_{k}\right\} \subseteq P \text { is } \\
& \text { skipless in } P \text { if for all } i \in[k-1] \text {, there is no } \\
& X \in P \text { with } C_{i} \subsetneq X \subsetneq C_{i+1} \text {. }
\end{aligned}
$$

Chains in the hypercube

Theorem (Dilworth 1950)
For a family poset \mathcal{P}, the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P}.

Chains in the hypercube

Theorem (Dilworth 1950)
For a family poset \mathcal{P}, the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P}.

Can you ask for Dilworth theorem to use disjoint skipless chains?

Chains in the hypercube

Theorem (Dilworth 1950)
For a family poset \mathcal{P}, the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P}.

Can you ask for Dilworth theorem to use disjoint skipless chains? NO

Chains in the hypercube

Theorem (Dilworth 1950)
For a family poset \mathcal{P}, the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P}.

Can you ask for Dilworth theorem to use disjoint skipless chains? NO What if we view this poset embedded in the Boolean lattice...

Chains in the hypercube

Theorem (Dilworth 1950)
For a family poset \mathcal{P}, the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P}.

Can you ask for Dilworth theorem to use disjoint skipless chains? NO What if we view this poset embedded in the Boolean lattice...

Chains in the hypercube

Theorem (Dilworth 1950)
For a family poset \mathcal{P}, the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P}.

Can you ask for Dilworth theorem to use disjoint skipless chains? NO What if we view this poset embedded in the Boolean lattice...

Chains in the hypercube

Theorem (Dilworth 1950)
For a family poset \mathcal{P}, the size of the largest antichain is equal to the size of smallest chain disjoint chain decomposition of \mathcal{P}.

Can you ask for Dilworth theorem to use disjoint skipless chains? NO What if we view this poset embedded in the Boolean lattice...

True for every poset, and every way to embed it.

Cover chains with skipless chains

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]
Any subposet \mathcal{P} of $2^{[n]}$ with largest antichain of size k can be covered by a family of k disjoint skipless chains in $2^{[n]}$.
"Any family of k chains in $2^{[n]}$ can be covered by a family of k disjoint skipless chains in $2^{[n]}$."

Cover chains with skipless chains

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+]
Any subposet \mathcal{P} of $2{ }^{[n]}$ with largest antichain of size k can be covered by a family of k disjoint skipless chains in $2^{[n]}$.
"Any family of k chains in $2^{[n]}$ can be covered by a family of k disjoint skipless chains in $2{ }^{[n]}$."
We generalise a result of Lehman and Ron (2001) who proved the special case where all chains of the family are of size 2 and all top (resp. bottom) elements of the chain have the same size. We generalise a result from Duffus, Howard and Leader (2019) who proved the special case where the family is convex ${ }^{1}$.

[^0]
Lehman and Ron

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+] Any family of k chains in $2^{[n]}$ can be covered by a family of k disjoint skipless chains in $2^{[n]}$.

$$
\begin{array}{llll}
\mathcal{D}_{1} & \mathcal{D}_{2} & \mathcal{D}_{3} & \mathcal{D}_{4}
\end{array}
$$

Sketch of the sketch of the proof

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+] Any family of k chains in $2^{[n]}$ can be covered by a family of k disjoint skipless chains in $2^{[n]}$.

Sketch of the sketch of the proof

Structural Theorem [B., Groenland, Jacob, Johnston, 2022+] Any family of k chains in $2^{[n]}$ can be covered by a family of k disjoint skipless chains in $2^{[n]}$.

Antichain saturation

Antichain saturation

$\mathcal{F} \subseteq 2^{[n]}$, is k-saturated if:

- \mathcal{F} has no antichain of size k;
- $\mathcal{F} \cup\{x\}$ has an antichain of size k for any $x \in 2^{[n]} \backslash \mathcal{F}$.
$\operatorname{sat}^{*}(n, k)=\operatorname{minimum}|\mathcal{F}|$ over all k-saturated families \mathcal{F} in $2^{[n]}$.

Antichain saturation

$\mathcal{F} \subseteq 2^{[n]}$, is k-saturated if:

- \mathcal{F} has no antichain of size k;
- $\mathcal{F} \cup\{x\}$ has an antichain of size k for any $x \in 2^{[n]} \backslash \mathcal{F}$.
$\operatorname{sat}^{*}(n, k)=$ minimum $|\mathcal{F}|$ over all k-saturated families \mathcal{F} in $2^{[n]}$.

Red sets form an 2-saturated family for the hypercube $2^{[3]}$: sat $^{*}(3,2) \leq 4$. Can we extend this construction to k-saturated ?

Antichain saturation

Construction: $\operatorname{sat}^{*}(n, k) \leq(n-1)(k-1)+2$.

Antichain saturation

Construction: $\operatorname{sat}^{*}(n, k) \leq(n-1)(k-1)+2$.
Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan (2017).

$$
\begin{array}{c|ccc}
k & 2 & 3 & 4 \\
\operatorname{sat}^{*}(k, n) & n+1 & 2 n & 3 n-1
\end{array}
$$

Conjecture (FKKMRSS): $\forall k \geq 2$, $\operatorname{sat}^{*}(n, k) \sim n(k-1)$ as $n \rightarrow \infty$.

Antichain saturation

Construction: $\operatorname{sat}^{*}(n, k) \leq(n-1)(k-1)+2$.
Ferrara, Kay, Kramer, Martin, Reiniger, Smith and Sullivan (2017). Đanković and Ivan (2022+)

k	2	3	4	5	6
$\operatorname{sat}^{*}(k, n)$	$n+1$	$2 n$	$3 n-1$	$4 n-2$	$5 n-5$

Conjecture (FKKMRSS): $\forall k \geq 2$, $\operatorname{sat}^{*}(n, k) \sim n(k-1)$ as $n \rightarrow \infty$.

Conjecture (Đanković and Ivan): $\forall k \geq 2$, sat ${ }^{*}(n, k) \geq n(k-1)-C_{k}$.

Quick application

Consider $\mathcal{F} k$-saturated. Consider a chain decomposition (using Dilworth's Theorem) of \mathcal{F}.

Quick application

Consider $\mathcal{F} k$-saturated. Consider a chain decomposition (using Dilworth's Theorem) of \mathcal{F}.
For any element $Y \notin \mathcal{F}, Y$ can not be "added" to one of the chain (by Dilworth).

Quick application

Consider $\mathcal{F} k$-saturated. Consider a chain decomposition (using Dilworth's Theorem) of \mathcal{F}.
For any element $Y \notin \mathcal{F}, Y$ can not be "added" to one of the chain (by Dilworth).

Claim. For any ℓ such that $k \leq\binom{\ell}{\ell / 2\rfloor}$, each chain contains an element of size at most ℓ. They also all contains an element of size $n-\ell$.

Quick application

Consider $\mathcal{F} k$-saturated. Consider a chain decomposition (using Dilworth's Theorem) of \mathcal{F}.
For any element $Y \notin \mathcal{F}, Y$ can not be "added" to one of the chain (by Dilworth).

Claim. For any ℓ such that $k \leq\binom{\ell}{\ell \ell / 2\rfloor}$, each chain contains an element of size at most ℓ. They also all contains an element of size $n-\ell$.
P. If chain has smallest element X in $|X| \geq \ell$, then can extend the chain by some subset of X of size $\ell / 2$.

Quick application

Consider $\mathcal{F} k$-saturated. Consider a chain decomposition (using Dilworth's Theorem) of \mathcal{F}.
For any element $Y \notin \mathcal{F}, Y$ can not be "added" to one of the chain (by Dilworth).

Claim. For any ℓ such that $k \leq\binom{\ell}{\ell \ell / 2\rfloor}$, each chain contains an element of size at most ℓ. They also all contains an element of size $n-\ell$.
P. If chain has smallest element X in $|X| \geq \ell$, then can extend the chain by some subset of X of size $\ell / 2$.

Quick application

Consider $\mathcal{F} k$-saturated. Consider a chain decomposition (using Dilworth's Theorem) of \mathcal{F}.
For any element $Y \notin \mathcal{F}, Y$ can not be "added" to one of the chain (by Dilworth).

Claim. For any ℓ such that $k \leq\binom{\ell}{\ell \ell / 2\rfloor}$, each chain contains an element of size at most ℓ. They also all contains an element of size $n-\ell$.
P. If chain has smallest element X in $|X| \geq \ell$, then can extend the chain by some subset of X of size $\ell / 2$.

Quick application

Theorem [B., Groenland, Jacob, Johnston, 2022+]
Any family of $k-1$ chains in $2^{[n]}$ can be covered by a family of $k-1$ disjoint skipless chains in $2^{[n]}$.
$\mathcal{F} k$-saturated.

Quick application

Theorem [B., Groenland, Jacob, Johnston, 2022+]
Any family of $k-1$ chains in $2^{[n]}$ can be covered by a family of $k-1$ disjoint skipless chains in $2^{[n]}$.
$\mathcal{F} k$-saturated.
Dilworth $\Longrightarrow \mathcal{F}$ decompose in $C_{1}, C_{2}, \ldots, C_{k-1}$ chains.

Quick application

Theorem [B., Groenland, Jacob, Johnston, 2022+]
Any family of $k-1$ chains in $2^{[n]}$ can be covered by a family of $k-1$ disjoint skipless chains in $2^{[n]}$.
$\mathcal{F} k$-saturated.
Dilworth $\Longrightarrow \mathcal{F}$ decompose in $C_{1}, C_{2}, \ldots, C_{k-1}$ chains.
Claim \Longrightarrow all these chains start in layer $O(\log k)$ and end in layer $n-O(\log k)$.

Quick application

Theorem [B., Groenland, Jacob, Johnston, 2022+]
Any family of $k-1$ chains in $2^{[n]}$ can be covered by a family of $k-1$ disjoint skipless chains in $2^{[n]}$.
$\mathcal{F} k$-saturated.
Dilworth $\Longrightarrow \mathcal{F}$ decompose in $C_{1}, C_{2}, \ldots, C_{k-1}$ chains.
Claim \Longrightarrow all these chains start in layer $O(\log k)$ and end in layer $n-O(\log k)$.
Th. $\Longrightarrow \mathcal{F}$ coverable with $k-1$ skipless disjoint chains.

Quick application

Theorem [B., Groenland, Jacob, Johnston, 2022+]
Any family of $k-1$ chains in $2^{[n]}$ can be covered by a family of $k-1$ disjoint skipless chains in $2^{[n]}$.
$\mathcal{F} k$-saturated.
Dilworth $\Longrightarrow \mathcal{F}$ decompose in $C_{1}, C_{2}, \ldots, C_{k-1}$ chains.
Claim \Longrightarrow all these chains start in layer $O(\log k)$ and end in layer $n-O(\log k)$.
Th. $\Longrightarrow \mathcal{F}$ coverable with $k-1$ skipless disjoint chains. k-saturated $\Longrightarrow \mathcal{F}$ partitioned into $k-1$ skipless chains.

Quick application

Theorem [B., Groenland, Jacob, Johnston, 2022+]
Any family of $k-1$ chains in $2^{[n]}$ can be covered by a family of $k-1$ disjoint skipless chains in $2^{[n]}$.
$\mathcal{F} k$-saturated.
Dilworth $\Longrightarrow \mathcal{F}$ decompose in $C_{1}, C_{2}, \ldots, C_{k-1}$ chains.
Claim \Longrightarrow all these chains start in layer $O(\log k)$ and end in layer $n-O(\log k)$.
Th. $\Longrightarrow \mathcal{F}$ coverable with $k-1$ skipless disjoint chains. k-saturated $\Longrightarrow \mathcal{F}$ partitioned into $k-1$ skipless chains. Every chain contains at least $n-\Theta(\log k)$ elements.

Quick application

Theorem [B., Groenland, Jacob, Johnston, 2022+]
Any family of $k-1$ chains in $2^{[n]}$ can be covered by a family of $k-1$ disjoint skipless chains in $2^{[n]}$.
$\mathcal{F} k$-saturated.
Dilworth $\Longrightarrow \mathcal{F}$ decompose in $C_{1}, C_{2}, \ldots, C_{k-1}$ chains.
Claim \Longrightarrow all these chains start in layer $O(\log k)$ and end in layer $n-O(\log k)$.
Th. $\Longrightarrow \mathcal{F}$ coverable with $k-1$ skipless disjoint chains. k-saturated $\Longrightarrow \mathcal{F}$ partitioned into $k-1$ skipless chains. Every chain contains at least $n-\Theta(\log k)$ elements.

$$
\Longrightarrow|\mathcal{F}| \geq(n-2 \ell)(k-1)=n(k-1)-\Theta(k \log k)
$$

From asymptotic to exact

From asymptotic to exact

We now know that any $\mathcal{F} k$-saturated looks like this.
To get exact value, need to improve both the upper bound and the lower bound.

From asymptotic to exact

We now know that any $\mathcal{F} k$-saturated looks like this.
To get exact value, need to improve both the upper bound and the lower bound.

In the case $k-1=\binom{\ell}{\lfloor/ 2\rfloor}$ FKKMRSS (2017) improved the upper bound. Using the initial segment of colex.

Colex and shadow

Let $\mathcal{F} \subseteq\binom{[n]}{t}$. Its shadow is

$$
\partial \mathcal{F}=\left\{X \in\binom{[n]}{t-1}: X \subseteq Y \in \mathcal{F}\right\}
$$

Let $\mathcal{C}(m, t)$ denote the initial segment of colex of size m on layer t, e.g.

$$
\mathcal{C}(3,6)=\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\},\{1,2,5\},\{1,3,5\},\{2,3,5\} .
$$

Lower bound

Lower bound

Kruskal-Katona (1963)
 Initial segments of colex minimise the size of the shadow.

Lower bound

Kruskal-Katona (1963)

Initial segments of colex minimise the size of the shadow.

Lemma (B.,Groenland, Jacob, Johnston, 2023+)
The initial segment of colex minimise the matching to the shadow.

Lower bound

Exact values

$\nu(\mathcal{F}) \rightarrow$ the size of the maximum matching from \mathcal{F} to its shadow $\partial \mathcal{F}$.
$\mathcal{C}(m, t) \rightarrow$ initial segment of colex of size m on layer t.
Define the sequence $c_{\lfloor\ell / 2\rfloor}=k-1$, and for $0 \leq t<\lfloor\ell / 2\rfloor$, let $c_{t}=\nu\left(\mathcal{C}\left(c_{t+1}, t+1\right)\right)$.
B, Groenland, Jacob and Johnston (2023+)
For $n \geq 2 \ell+1$,

$$
\operatorname{sat}^{*}(n, k)=2 \sum_{t=0}^{\lfloor\ell / 2\rfloor} c_{t}+(k-1)(n-1-2\lfloor\ell / 2\rfloor) .
$$

The lower bound still holds for $n \geq \ell$ (and $\operatorname{sat}^{*}(n, k)=2^{n}$ for $n<\ell$).

Exact values

$\nu(\mathcal{F}) \rightarrow$ the size of the maximum matching from \mathcal{F} to its shadow $\partial \mathcal{F}$.
$\mathcal{C}(m, t) \rightarrow$ initial segment of colex of size m on layer t.
Define the sequence $c_{\lfloor\ell / 2\rfloor}=k-1$, and for $0 \leq t<\lfloor\ell / 2\rfloor$, let $c_{t}=\nu\left(\mathcal{C}\left(c_{t+1}, t+1\right)\right)$.
B, Groenland, Jacob and Johnston (2023+)
For $n \geq 2 \ell+1$,

$$
\operatorname{sat}^{*}(n, k)=2 \sum_{t=0}^{\lfloor\ell / 2\rfloor} c_{t}+(k-1)(n-1-2\lfloor\ell / 2\rfloor) .
$$

The lower bound still holds for $n \geq \ell$ (and sat ${ }^{*}(n, k)=2^{n}$ for $n<\ell$).
Open question: What happens when $n \leq 2 \ell$? Finding a matching between the top and the bottom is harder.

Upperbound

Lemma

There exist a "canonical" way to decompose any integer k in the following way:

$$
k-1=\binom{a_{r_{1}}}{r_{1}}+\cdots+\binom{a_{r_{s}}}{r_{s}},
$$

In particular if $k-1=\binom{\ell}{\lfloor\ell / 2\rfloor}$,

$$
s=1, r_{1}=\ell / 2, a_{r_{1}}=\ell
$$

Upperbound

Lemma

There exist a "canonical" way to decompose any integer k in the following way:

$$
k-1=\binom{a_{r_{1}}}{r_{1}}+\cdots+\binom{a_{r_{s}}}{r_{s}},
$$

satisfying the following conditions,

- $r_{1}>\cdots>r_{s} \geq 1$;
- $a_{r_{1}}>\cdots>a_{r_{s}} \geq 1$;
- for all $i \in[s]$, we have $r_{i} \leq\left\lceil a_{r_{i}} / 2\right\rceil$.

In particular if $k-1=\binom{\ell}{\lfloor\ell / 2\rfloor}$,

$$
s=1, r_{1}=\ell / 2, a_{r_{1}}=\ell
$$

General saturation

General saturation

Definition

$\mathcal{F} \subseteq 2^{[n]}$ a set system is \mathcal{P}-saturated if:

- \mathcal{F} has induced copy of \mathcal{P};
- $\mathcal{F} \cup\{x\}$ has an induced copy of \mathcal{P} for any $x \in 2^{[n]} \backslash \mathcal{P}$.

General saturation

Definition

$\mathcal{F} \subseteq 2^{[n]}$ a set system is \mathcal{P}-saturated if:

- \mathcal{F} has induced copy of \mathcal{P};
- $\mathcal{F} \cup\{x\}$ has an induced copy of \mathcal{P} for any $x \in 2^{[n]} \backslash \mathcal{P}$.

Theorem (Morrison, Noel and Scott 2014;

$$
\leq \operatorname{sat}^{*}\left(n, C_{k}\right) \leq 2^{0.98 k}
$$

General saturation

Definition

$\mathcal{F} \subseteq 2^{[n]}$ a set system is \mathcal{P}-saturated if:

- \mathcal{F} has induced copy of \mathcal{P};
- $\mathcal{F} \cup\{x\}$ has an induced copy of \mathcal{P} for any $x \in 2^{[n]} \backslash \mathcal{P}$.

Theorem (Morrison, Noel and Scott 2014;
Gerbner, Keszegh, Lemons, Palmer, Pálvölgyi, Patkós 2011)

$$
2^{(k-3) / 2} \leq \operatorname{sat}^{*}\left(n, C_{k}\right) \leq 2^{0.98 k}
$$

Table

poset P	sat (n, P)	sat* ${ }^{\text {(}}$, P)	
C_{2}, chain	$=1$	$=1$	
A_{2}, antichain	$=1$	$=n+1$	
C_{3}, chain	$=2$	$=2$	
$C_{2}+C_{1}$, chain and single	$=2$	$=4$	case analysis
\checkmark fork (or \wedge)	$=2$	$=n+1$	[F7]
A_{3}, antichain	$=2$	$=3 n-1$	F7]
C_{4}, chain	$=4$	$=4$	G6]
\vee_{3}, fork with three tines	$=3$	$\geq \log _{2} n$	F7]
\diamond, diamond	$=3$	$\begin{aligned} & \geq \sqrt{n} \\ & \leq n+1 \end{aligned}$	$\begin{aligned} & {[\mathrm{MSW}]} \\ & {[\mathrm{F} 7]} \end{aligned}$
\diamond^{-}, diamond minus an edge	$=3$	$=4$	case analysis
\bowtie, butterfly	$=4$	$\begin{aligned} & \geq n+1 \\ & \leq 6 n-10 \end{aligned}$	$\begin{aligned} & {[\mathrm{I}]} \\ & {[\text { Thm 3.16] }} \end{aligned}$
Y	$=3$	$\geq \log _{2} n$	[Thm. 3.6]
N	$=3$	$\begin{aligned} & \geq \sqrt{n} \\ & \leq 2 n \end{aligned}$	$\begin{aligned} & {[\mathrm{I}]} \\ & {[\mathrm{F} 7]} \end{aligned}$
$2 C_{2}$	$=3$	$\begin{aligned} & \geq n+2 \\ & \leq 2 n \end{aligned}$	$\begin{aligned} & {[\text { Thm. } 3.11]} \\ & {[\text { Prop. } 3.9]} \end{aligned}$

Figure 1: Table from Keszegh, Lemons, Martin, Pálvölgyi and Patkós 2022

Table

$C_{3}+C_{1}$, chain and single	$=3$	≤ 8	Prop. [3.18]
$V+1$, fork and single	$=3$	$\geq \log _{2} n$	[F7]
$C_{2}+A_{2}$	$=3$	≤ 8	Prop. [3.18]
A_{4}, antichain	$=3$	$\geq 3 n-1$	[F7]
		$\leq 4 n+2$	[F7]
C_{5}, chain	$=8$	$=8$	[G6]+[MNS]
C_{6}, chain	$=16$	$=16$	[G6]+[MNS]
C_{k}, chain ($k \geq 7$)	$\geq 2^{(k-3) / 2}$	$\geq 2^{(k-3) / 2}$	[G6]
	$\leq 2^{0.98 k}$	$\leq 2^{0.98 k}$	[MNS]
A_{k}, antichain	$=k-1$	$\geq\left(1-\frac{1}{\log _{2} k}\right) \frac{k}{\log _{2} k} n$	[MSW]
		$\leq k n-k-\frac{1}{2} \log _{2} k+O(1)$	[F7]
$3 C_{2}$	$=5$	≤ 14	Prop. 3.13]
$5 C_{2}$	$=9$	≤ 42	Prop. [3.18]
$7 C_{2}$	$=13$	≤ 60	[Prop. 3.18]
any poset on k elements	$\leq 2^{k-2}$	-	[Thm. 1.1]
UCTP (def. in Section 3.2)	$O(1)$	$\geq \log _{2} n$	[F7]
UCTP with top chain	$O(1)$	$\geq \log _{2} n$	[Thm. 3.6]
chain + shallower	$O(1)$	$O(1)$	[Thm. 3.8]

Figure 2: Table from Keszegh, Lemons, Martin, Pálvölgyi and Patkós 2022

General bounds

Very recently, a general lower bound has been shown.
Theorem (Freschi, Piga, Sharifzadeh and Treglown 2023)
For any poset P either sat $(n, P) \geq 2 \sqrt{n}-2$ or sat* $(n, P)=O_{P}(1)$.

General bounds

Very recently, a general lower bound has been shown.
Theorem (Freschi, Piga, Sharifzadeh and Treglown 2023)
For any poset P either sat ${ }^{*}(n, P) \geq 2 \sqrt{n}-2$ or sat* $(n, P)=O_{P}(1)$.
What about a general upper bound? Can we hope to have sat* $n, P) \leq 2^{\sqrt{n}}$ for every poset?

General bounds

Very recently, a general lower bound has been shown.
Theorem (Freschi, Piga, Sharifzadeh and Treglown 2023)
For any poset P either sat $(n, P) \geq 2 \sqrt{n}-2$ or sat* $(n, P)=O_{P}(1)$.
What about a general upper bound? Can we hope to have sat* $n, P) \leq 2^{\sqrt{n}}$ for every poset?
Theorem (B., Groenland, Ivan, Johnston, 2023+)
For any poset P, sat ${ }^{*}(n, P) \leq n^{|P|^{2}}$.

Cube dimension

For a poset \mathcal{P}, we define the cube-height $h^{*}(\mathcal{P})$ to be the minimum $h^{*} \in \mathbb{N}$ for which there exists $n \in \mathbb{N}$ such that $\binom{[n]}{\leq h^{*}}$ contains an induced copy of \mathcal{P}.

Cube dimension

For a poset \mathcal{P}, we define the cube-height $h^{*}(\mathcal{P})$ to be the minimum $h^{*} \in \mathbb{N}$ for which there exists $n \in \mathbb{N}$ such that $\binom{[n]}{\leq h^{*}}$ contains an induced copy of \mathcal{P}.

For a poset \mathcal{P}, we define the cube-width $w^{*}(\mathcal{P})$ to be the minimum $w^{*} \in \mathbb{N}$ such that there exists an induced copy of \mathcal{P} in $\left(\underset{\leq h^{*}(\mathcal{P})}{\left[w^{*}\right]}\right)$.

Cube dimension

For a poset \mathcal{P}, we define the cube-height $h^{*}(\mathcal{P})$ to be the minimum $h^{*} \in \mathbb{N}$ for which there exists $n \in \mathbb{N}$ such that $\binom{[n]}{\leq h^{*}}$ contains an induced copy of \mathcal{P}.

For a poset \mathcal{P}, we define the cube-width $w^{*}(\mathcal{P})$ to be the minimum $w^{*} \in \mathbb{N}$ such that there exists an induced copy of \mathcal{P} in $\left(\underset{\substack{\left[h^{*}\right] \\ \leq h^{*}(\mathcal{P})}}{[}\right)$.

Theorem (B., Groenland, Ivan, Johnston, 2023+)

For any poset P, sat $*(n, P) \leq n^{|P|^{2}}$.

Theorem (B., Groenland, Ivan, Johnston, 2023+)

For any poset P, sat $*(n, P) \leq n^{|P|^{2}}$.
We give a constructive proof.

Theorem (B., Groenland, Ivan, Johnston, 2023+)

For any poset P, sat $*(n, P) \leq n^{|P|^{2}}$.
We give a constructive proof.
\mathcal{F}_{0} : first $h^{*}(P)$ layers.
\mathcal{F}_{1} : Any completion.

Theorem (B., Groenland, Ivan, Johnston, 2023+)
For any poset $P, \operatorname{sat}^{*}(n, P) \leq n^{|P|^{2}}$.
We give a constructive proof.
\mathcal{F}_{0} : first $h^{*}(P)$ layers.
\mathcal{F}_{1} : Any completion.
Key lemma: \mathcal{F}_{1} has bounded VC-dimension.
Main idea: if we shatter a large enough set, we can find a copy of $P \backslash \max (P)$ in the first $h^{*}(P)$ layers such that we have, in \mathcal{F}_{0}, all possible relations to this copy.

General Upperbound

Theorem (B., Groenland, Ivan, Johnston, 2023+)
For any poset P, sat* $(n, P) \leq O\left(n^{w^{*}(P)-1}\right)$.

General Upperbound

Theorem (B., Groenland, Ivan, Johnston, 2023+)
For any poset P, sat $(n, P) \leq O\left(n^{w^{*}(P)-1}\right)$.

Remark

$$
\text { For every } P, \quad h^{*}(P) \leq|P|, \quad w^{*}(P) \leq|P| \cdot h^{*}(P) \leq|P|^{2} .
$$

General Upperbound

Theorem (B., Groenland, Ivan, Johnston, 2023+)
For any poset P, sat ${ }^{*}(n, P) \leq O\left(n^{w^{*}(P)-1}\right)$.

Remark

$$
\text { For every } P, \quad h^{*}(P) \leq|P|, \quad w^{*}(P) \leq|P| \cdot h^{*}(P) \leq|P|^{2} .
$$

With a bit more effort we proved:
Lemma (B., Groenland, Ivan, Johnston, 2023+)

$$
\text { For every } P, \quad w^{*}(P) \leq|P|^{2} / 4+1 .
$$

Open question

Conjecture
 For every poset $\mathcal{P}, w^{*}(\mathcal{P})=O(|\mathcal{P}|)$.

That would directly improve our upper bound!

Open question

Conjecture

For every poset $\mathcal{P}, w^{*}(\mathcal{P})=O(|\mathcal{P}|)$.
That would directly improve our upper bound!

Conjecture

For every poset \mathcal{P}, either sat ${ }^{*}(n, \mathcal{P})=O_{\mathcal{P}}(1)$ or sat ${ }^{*}(n, \mathcal{P})=\Theta_{\mathcal{P}}(n)$.

Open question

Conjecture

For every poset $\mathcal{P}, w^{*}(\mathcal{P})=O(|\mathcal{P}|)$.
That would directly improve our upper bound!

Conjecture

For every poset \mathcal{P}, either sat ${ }^{*}(n, \mathcal{P})=O_{\mathcal{P}}(1)$ or sat ${ }^{*}(n, \mathcal{P})=\Theta_{\mathcal{P}}(n)$.

$$
\operatorname{sat}^{*}\left(C_{2}, n\right)=1
$$

$$
\operatorname{sat}^{*}\left(2 C_{2}, n\right) \geq n
$$

$$
\text { sat }^{*}\left(3 C_{2}, n\right) \leq 14
$$

Open question

Conjecture

For every poset $\mathcal{P}, w^{*}(\mathcal{P})=O(|\mathcal{P}|)$.
That would directly improve our upper bound!

Conjecture

For every poset \mathcal{P}, either sat ${ }^{*}(n, \mathcal{P})=O_{\mathcal{P}}(1)$ or sat ${ }^{*}(n, \mathcal{P})=\Theta_{\mathcal{P}}(n)$.

$$
\operatorname{sat}^{*}\left(C_{2}, n\right)=1
$$

sat* $\left(2 C_{2}, n\right) \geq n$

Thank you!

Table

poset P	sat (n, P)	sat* (n, P)	
C_{2}, chain	$=1$	$=1$	
A_{2}, antichain	$=1$	$=n+1$	
C_{3}, chain	$=2$	$=2$	
$C_{2}+C_{1}$, chain and single	$=2$	$=4$	case analysis
\checkmark fork (or \wedge)	$=2$	$=n+1$	[F7]
A_{3}, antichain	$=2$	$=3 n-1$	[F7]
C_{4}, chain	$=4$	$=4$	[G6]
\vee_{3}, fork with three tines	$=3$	$\geq \log _{2} n$	[F7]
\diamond, diamond	$=3$	$\begin{aligned} & \geq \sqrt{n} \\ & \leq n+1 \end{aligned}$	$\begin{aligned} & {[\mathrm{MSW}]} \\ & {[\mathrm{F} 7]} \end{aligned}$
\diamond^{-}, diamond minus an edge	$=3$	$=4$	case analysis
\bowtie, butterfly	$=4$	$\begin{aligned} & \geq n+1 \\ & \leq 6 n-10 \end{aligned}$	$\begin{aligned} & {[\mathrm{I}]} \\ & {[\mathrm{Thm} 3.16]} \end{aligned}$
Y	$=3$	$\geq \log _{2} n$	Thm. 3.6]
N	$=3$	$\begin{aligned} & \geq \sqrt{n} \\ & \leq 2 n \end{aligned}$	$\begin{aligned} & {[\mathrm{I}]} \\ & {[\mathrm{F} 7]} \end{aligned}$
$2 \mathrm{C}_{2}$	$=3$	$\begin{aligned} & \geq n+2 \\ & \leq 2 n \\ & \hline \end{aligned}$	$\begin{aligned} & {[\text { Thm. } 3.11]} \\ & \text { [Prop. } 3.9] \\ & \hline \end{aligned}$

Figure 3: Table from [?]

Table

$C_{3}+C_{1}$, chain and single	$=3$	≤ 8	Prop. 3.18]
$V+1$, fork and single	$=3$	$\geq \log _{2} n$	[F7]
$C_{2}+A_{2}$	$=3$	≤ 8	Prop. [3.18]
A_{4}, antichain	$=3$	$\geq 3 n-1$	[F7]
		$\leq 4 n+2$	[F7]
C_{5}, chain	$=8$	$=8$	[G6]+[MNS]
C_{6}, chain	$=16$	$=16$	[G6]+[MNS]
C_{k}, chain ($k \geq 7$)	$\geq 2^{(k-3) / 2}$	$\geq 2^{(k-3) / 2}$	[G6]
	$\leq 2^{0.98 k}$	$\leq 2^{0.98 k}$	[MNS]
A_{k}, antichain	$=k-1$	$\geq\left(1-\frac{1}{\log _{2} k}\right) \frac{k}{\log _{2} k} n$	[MSW]
		$\leq k n-k-\frac{1}{2} \log _{2} k+O(1)$	[F7]
$3 C_{2}$	$=5$	≤ 14	Prop. 3.13]
$5 C_{2}$	$=9$	≤ 42	Prop. 3.18]
$7 C_{2}$	$=13$	≤ 60	Prop. [3.18]
any poset on k elements	$\leq 2^{k-2}$	-	[Thm. 1.1]
UCTP (def. in Section 3.2)	$O(1)$	$\geq \log _{2} n$	[F7]
UCTP with top chain	$O(1)$	$\geq \log _{2} n$	[Thm. 3.6]
chain + shallower	$O(1)$	$O(1)$	[Thm. 3.8]

Figure 4: Table from [?]

[^0]: ${ }^{1} \mathcal{F} \subseteq 2^{[n]}$ is convex if for all $X, Z \in \mathcal{F}$ and $X \subset Y \subset Z, Y \in \mathcal{F}$.

