CROSSING PROBABILITIES FOR PLANAR PERCOLATION

Vincent TASSION

Oxford Discrete Mathematics and Probability Seminar

Mai 25, 2021

Percolation: how does a fluid propagate in a random medium?

Percolation: how does a fluid propagate in a random medium?

Percolation: how does a fluid propagate in a random medium?

 $(\mathbb{Z}^d, E(\mathbb{Z}^d)), d \ge 2.$

An edge is \rightarrow open with probability p.

 \rightarrow closed with probability 1 - p.

Percolation configuration: $\omega \subset E(\mathbb{Z}^d)$

 $(\mathbb{Z}^d, E(\mathbb{Z}^d)), d \ge 2.$

Parameter:
$$0 \le p \le 1$$

An edge is \rightarrow open with probability p.

 \rightarrow closed with probability 1 - p.

Percolation configuration: $\omega \subset E(\mathbb{Z}^d)$ P_p := law of ω .

 $(\mathbb{Z}^d, E(\mathbb{Z}^d)), d \ge 2.$

Parameter:
$$0 \leq p \leq 1$$

An edge is \rightarrow open with probability p.

 \rightarrow closed with probability 1 - p.

Percolation configuration: $\omega \subset E(\mathbb{Z}^d)$ $P_p := \text{law of } \omega.$

Open path: path made of open edges.

 $(\mathbb{Z}^d, E(\mathbb{Z}^d)), d \ge 2.$

Parameter:
$$0 \le p \le 1$$

An edge is \rightarrow open with probability p.

 \rightarrow closed with probability 1 - p.

Percolation configuration: $\omega \subset E(\mathbb{Z}^d)$ $P_p := \text{law of } \omega.$

Open path: path made of open edges. **Cluster:** connected component of (\mathbb{Z}^d, ω) .

 $(\mathbb{Z}^d, E(\mathbb{Z}^d)), d \ge 2.$

Is there an infinite cluster?

Parameter: $0 \le p \le 1$

An edge is \rightarrow open with probability p.

 \rightarrow closed with probability 1 - p.

Percolation configuration: $\omega \subset E(\mathbb{Z}^d)$ $P_p := \text{law of } \omega.$

Open path: path made of open edges. **Cluster:** connected component of (\mathbb{Z}^d, ω) .

 $(\mathbb{Z}^d, E(\mathbb{Z}^d)), d \ge 2.$

An edge is \rightarrow open with probability p.

 \rightarrow closed with probability 1 - p.

Percolation configuration: $\omega \subset E(\mathbb{Z}^d)$ $P_p := \text{law of } \omega.$

Open path: path made of open edges. **Cluster:** connected component of (\mathbb{Z}^d, ω) .

Is there an infinite cluster?

 $(\mathbb{Z}^d, E(\mathbb{Z}^d)), d \ge 2.$

An edge is \rightarrow open with probability p.

 \rightarrow closed with probability 1 - p.

Percolation configuration: $\omega \subset E(\mathbb{Z}^d)$ $P_p := \text{law of } \omega.$

Open path: path made of open edges. **Cluster:** connected component of (\mathbb{Z}^d, ω) .

Is there an infinite cluster?

 $(\mathbb{Z}^d, E(\mathbb{Z}^d)), d \ge 2.$

Is there an infinite cluster?

Parameter:
$$0 \le p \le 1$$

An edge is \rightarrow open with probability p.

 \rightarrow closed with probability 1 - p.

Percolation configuration: $\omega \subset E(\mathbb{Z}^d)$ $P_p := \text{law of } \omega.$

Open path: path made of open edges. **Cluster:** connected component of (\mathbb{Z}^d, ω) .

 $(\mathbb{Z}^d, E(\mathbb{Z}^d)), d \ge 2.$

An edge is \rightarrow open with probability p.

 \rightarrow closed with probability 1 - p.

Percolation configuration: $\omega \subset E(\mathbb{Z}^d)$ $P_p := \text{law of } \omega.$

Open path: path made of open edges. **Cluster:** connected component of (\mathbb{Z}^d, ω) .

Is there an infinite cluster?

 $(\mathbb{Z}^d, E(\mathbb{Z}^d)), d \ge 2.$

Parameter:
$$0 \le p \le 1$$

An edge is \rightarrow open with probability p.

 \rightarrow closed with probability 1 - p.

Percolation configuration: $\omega \subset E(\mathbb{Z}^d)$ $P_p := \text{law of } \omega.$

Open path: path made of open edges. **Cluster:** connected component of (\mathbb{Z}^d, ω) .

Is there an infinite cluster?

Phase transition

$$\begin{array}{c|c}
0 & p < p_c & p_c \\
\hline P_p[\text{All clusters are finite}] = 1.
\end{array}$$

 $(\mathbb{Z}^d, E(\mathbb{Z}^d)), d \ge 2.$

Parameter:
$$0 \le p \le 1$$

An edge is \rightarrow open with probability p.

 \rightarrow closed with probability 1 - p.

Percolation configuration: $\omega \subset E(\mathbb{Z}^d)$ $P_p := \text{law of } \omega.$

Open path: path made of open edges. **Cluster:** connected component of (\mathbb{Z}^d, ω) .

Is there an infinite cluster?

Phase transition

Interactions with other fields

Interactions with other fields

Interactions with other fields

Motivations for robust results:

- → New results in other fields.
- → New methods for Bernoulli percolation.

ROBUST THEORY OF CROSSING PROBABILITIES IN DIMENSION 2.

1. RSW THEORY FOR BERNOULLI PERCOLATION ON \mathbb{Z}^2 .

Phase transition in dimension 2

Theorem [Kesten 80]

For Bernoulli percolation on $\mathbb{Z}^2,$ we have

$$p_c = \frac{1}{2}$$

Conjecture: critical behavior of the crossing probabilities

Fix $\lambda \ge 1$. For critical Bernoulli percolation on \mathbb{Z}^2 , we have

Properties of Cardy's formula:

Conjecture: critical behavior of the crossing probabilities

Fix $\lambda \ge 1$. For critical Bernoulli percolation on \mathbb{Z}^2 , we have

Properties of Cardy's formula:

• Conformal invariance.

Conjecture: critical behavior of the crossing probabilities

Fix $\lambda \ge 1$. For critical Bernoulli percolation on \mathbb{Z}^2 , we have

Properties of Cardy's formula:

- Conformal invariance.
- Universality.

Conjecture: critical behavior of the crossing probabilities

Fix $\lambda \ge 1$. For critical Bernoulli percolation on \mathbb{Z}^2 , we have

Properties of Cardy's formula:

- Conformal invariance.
- Universality.

For site percolation on hexagons:

Conjecture: critical behavior of the crossing probabilities

Fix $\lambda \ge 1$. For critical Bernoulli percolation on \mathbb{Z}^2 , we have

Properties of Cardy's formula:

- Conformal invariance.
- Universality.

For site percolation on hexagons:

• Cardy's formula and conformal invariance. [Smirnov 01]

Conjecture: critical behavior of the crossing probabilities

Fix $\lambda \ge 1$. For critical Bernoulli percolation on \mathbb{Z}^2 , we have

Properties of Cardy's formula:

- Conformal invariance.
- Universality.

For site percolation on hexagons:

• Cardy's formula and conformal invariance. [Smirnov 01] • Critical exponents $P_{p_c}\left[\begin{array}{c}n\\ p_{p_c}\left[\begin{array}{c}n\\ p_{p_c}\end{array}\right] = n^{-5/48 + o(1)}.$ [Lawler Schramm Werner 02]

Consider Bernoulli percolation on \mathbb{Z}^2 at $p_c = 1/2$.

RSW theorem [Russo 78] [Seymour Welsh 78]

Fix $\lambda \ge 1$. There exists $c(\lambda) > 0$ such that for every $n \ge 1$,

Consider Bernoulli percolation on \mathbb{Z}^2 at $p_c = 1/2$.

RSW theorem [Russo 78] [Seymour Welsh 78]

Fix $\lambda \ge 1$. There exists $c(\lambda) > 0$ such that for every $n \ge 1$,

Applications:

Consider Bernoulli percolation on \mathbb{Z}^2 at $p_c = 1/2$.

RSW theorem [Russo 78] [Seymour Welsh 78]

Fix $\lambda \ge 1$. There exists $c(\lambda) > 0$ such that for every $n \ge 1$,

Applications:

• Bounds on critical exponents:

$$\Rightarrow n^{-c_1} \leqslant \mathbb{P}_{p_c}\left[\boxed{\begin{array}{c} & n \\ & & \\ \end{array}} \right] \leqslant n^{-c_2}, c_1, c_2 > 0.$$

Consider Bernoulli percolation on \mathbb{Z}^2 at $p_c = 1/2$.

RSW theorem [Russo 78] [Seymour Welsh 78]

Fix $\lambda \ge 1$. There exists $c(\lambda) > 0$ such that for every $n \ge 1$,

Applications:

• Bounds on critical exponents:

• Study of near-critical regime $(p = p_c \pm \varepsilon)$.

Consider Bernoulli percolation on \mathbb{Z}^2 at $p_c = 1/2$.

RSW theorem [Russo 78] [Seymour Welsh 78]

Fix $\lambda \ge 1$. There exists $c(\lambda) > 0$ such that for every $n \ge 1$,

Applications:

• Bounds on critical exponents:

$$\Rightarrow n^{-c_1} \leq \mathbb{P}_{p_c}\left[\boxed{\qquad} \\ \boxed{\qquad} \\ \end{bmatrix} \leq n^{-c_2}, c_1, c_2 > 0.$$

- Study of near-critical regime $(p = p_c \pm \varepsilon)$.
- Tightness arguments for the scaling limit.

Bernoulli percolation: an independent percolation model

Bernoulli percolation: an independent percolation model

 $\mathbf{P}_p[e, f \text{ open}] = p^2$

Bernoulli percolation: an independent percolation model

 $P_p[e, f \text{ open}] = p^2 = P_p[e \text{ open}]P_p[f \text{ open}].$

1. RSW theory for Bernoulli percolation on \mathbb{Z}^2

[Russo '78][Seymour Welsh '78]

Symmetries:

 P_p is invariant under translations, reflections and $\pi/2$ -rotation.

Positive correlations [Harris 60]:

Symmetries:

 P_p is invariant under translations, reflections and $\pi/2$ -rotation.

Positive correlations [Harris 60]:

Symmetries:

 P_p is invariant under translations, reflections and $\pi/2$ -rotation.

Positive correlations [Harris 60]:

Symmetries:

 P_p is invariant under translations, reflections and $\pi/2$ -rotation.

Positive correlations [Harris 60]:

Symmetries:

 P_p is invariant under translations, reflections and $\pi/2$ -rotation.

Positive correlations [Harris 60]:

Symmetries:

 P_p is invariant under translations, reflections and $\pi/2$ -rotation.

Positive correlations [Harris 60]:

Symmetries:

 P_p is invariant under translations, reflections and $\pi/2$ -rotation.

Positive correlations [Harris 60]:

Symmetries:

 P_p is invariant under translations, reflections and $\pi/2$ -rotation.

Positive correlations [Harris 60]:

Two important properties of P_p

Symmetries:

 P_p is invariant under translations, reflections and $\pi/2$ -rotation.

Positive correlations [Harris 60]: Crossing events are positively correlated.

Goal: For
$$\lambda \ge 1$$
 and $n \ge 1$, $P\left[\begin{array}{c} \lambda n \\ \blacksquare \\ \blacksquare \\ \blacksquare \\ \blacksquare \\ \blacksquare \\ n \end{array} \right] \ge c(\lambda).$

Goal: For
$$\lambda \ge 1$$
 and $n \ge 1$, $P\left[\begin{array}{c} \lambda n \\ \blacksquare \\ \blacksquare \\ \blacksquare \\ \blacksquare \\ \blacksquare \\ n \end{array} \right] \ge c(\lambda).$

Step 0 (self-duality):
$$P\left[\prod_{n=1}^{n} n \right] = 1/2.$$

Goal: For
$$\lambda \ge 1$$
 and $n \ge 1$, $P\left[\begin{array}{c} \lambda n \\ \blacksquare \\ \blacksquare \\ \blacksquare \\ \blacksquare \\ \blacksquare \\ n \end{array} \right] \ge c(\lambda).$

Step 0 (self-duality):
$$P\left[\underbrace{n}_{n} \right] = 1/2.$$

Goal: For
$$\lambda \ge 1$$
 and $n \ge 1$, $P\left[\begin{array}{c} \lambda n \\ \blacksquare \\ \blacksquare \\ \blacksquare \\ \blacksquare \\ \blacksquare \\ n \end{array} \right] \ge c(\lambda).$

Step 0 (self-duality):
$$P\left[\underbrace{n}_{n} \right] = 1/2.$$

Step 1 (**RSW Lemma**):
$$P\left[\underbrace{n}_{n} \right] \ge c \Rightarrow P\left[\underbrace{2n}_{n} \right] \ge c'.$$

Step 2 (
$$\lambda = 2$$
 suffices):

$$P\left[\begin{array}{c}2n & \text{positive}\\ \hline n\end{array}\right] \ge c \xrightarrow{\text{correlations}} P\left[\begin{array}{c}3n\\ \hline n\end{array}\right] \ge c^{3}.$$

"Proof" of the RSW lemma

"Proof" of the RSW lemma
Known:
$$P_p\left[\begin{array}{c} \\ \end{array} n \right] \ge c.$$

"Proof" of the RSW lemma Known: $P_p\left[\boxed{n} n \right] \ge c.$ Goal: $P_p\left[\boxed{n} n \right] \ge c' > 0.$

"Proof" of the RSW lemma Known: $P_p\left[\boxed{} n \right] \ge c.$ Goal: $P_p\left[\boxed{} n \right] \ge c' > 0.$

"Proof" of the RSW lemma Known: $P_p\left[\boxed{\frown} n \right] \ge c.$ Goal: $P_p\left[\boxed{\frown} n \right] \ge c' > 0.$

"Proof" of the RSW lemma Known: $P_p\left[\boxed{\frown} n \right] \ge c.$ Goal: $P_p\left[\boxed{\frown} n \right] \ge c' > 0.$

Difficulty: "rule out" tortuous path.

The proof of RSW theorem: The key lemma

The proof of RSW theorem: The key lemma

 \mathbf{P} =general percolation process in the plane.

Bernoulli percolation

[Broadbent Hammersley, 57]

FK percolation [Fortuin Kasteleyn 74]

Voronoi percolation [Vahidi-Asl Wierman '90]

The proof of RSW theorem: The key lemma

 \mathbf{P} =general percolation process in the plane.

Bernoulli percolation

[Broadbent Hammersley, 57]

FK percolation [Fortuin Kasteleyn 74]

Voronoi percolation [Vahidi-Asl Wierman '90]

where c' = f(c) independent of n.
$\mathbf{P}{=}\mathsf{general}$ percolation process in the plane.

Bernoulli percolation

[Broadbent Hammersley, 57]

RSW Lemma

FK percolation [Fortuin Kasteleyn 74]

Voronoi percolation [Vahidi-Asl Wierman '90]

where c' = f(c) independent of n.

The RSW lemma holds for

• Bernoulli percolation [Russo 78] [Seymour Welsh 78] [Smirnov 00]

 $\mathbf{P}{=}\mathsf{general}$ percolation process in the plane.

Bernoulli percolation

[Broadbent Hammersley, 57]

RSW Lemma

FK percolation [Fortuin Kasteleyn 74]

Voronoi percolation [Vahidi-Asl Wierman '90]

where c' = f(c) independent of n.

The RSW lemma holds for

- Bernoulli percolation [Russo 78] [Seymour Welsh 78] [Smirnov 00]
- FK percolation [Duminil-Copin Beffara 12] [Duminil-Copin Sidoravicius T. 15]

 \mathbf{P} =general percolation process in the plane.

Bernoulli percolation

[Broadbent Hammersley, 57]

RSW Lemma

FK percolation [Fortuin Kasteleyn 74]

Voronoi percolation [Vahidi-Asl Wierman '90]

where c' = f(c) independent of n.

The RSW lemma holds for

- Bernoulli percolation [Russo 78] [Seymour Welsh 78] [Smirnov 00]
- FK percolation [Duminil-Copin Beffara 12] [Duminil-Copin Sidoravicius T. 15]
- Voronoi percolation [Bolóbas Riordan 06] [T 16]

 \mathbf{P} =general percolation process in the plane.

Bernoulli percolation

[Broadbent Hammersley, 57]

RSW Lemma

FK percolation [Fortuin Kasteleyn 74]

Voronoi percolation [Vahidi-Asl Wierman '90]

where c' = f(c) independent of n.

The RSW lemma holds for

- Bernoulli percolation [Russo 78] [Seymour Welsh 78] [Smirnov 00]
- FK percolation [Duminil-Copin Beffara 12] [Duminil-Copin Sidoravicius T. 15]
- Voronoi percolation [Bolóbas Riordan 06] [T 16]

All the proofs use Symmetries + Positive correlations + "something else".

General RSW Lemma.

General RSW Lemma.

RSW Lemma for symmetric positively correlated measures

[Köhler-Schindler T. 20+]

Let ${\bf P}$ be a planar percolation measure satisfying

- Symmetries,
- Positive correlations.

Then

$$\left(\mathbf{P}\left[\begin{array}{c}n\\ \mathbf{P}\left[\begin{array}{c}n\\ \mathbf$$

where c' = f(c) independent of n.

General RSW Lemma.

RSW Lemma for symmetric positively correlated measures

[Köhler-Schindler T. 20+]

Let ${\bf P}$ be a planar percolation measure satisfying

- Symmetries,
- Positive correlations.

Then

$$\left(\mathbf{P}\left[\begin{array}{c}n\\ \mathbf{P}\left[\begin{array}{c}n\\ \mathbf$$

where c' = f(c) independent of n.

→ Squares always crossed, long horizontal rectangles never crossed,

- → Squares always crossed, long horizontal rectangles never crossed,
- → Not reflection invariant.

Why are positive correlations important?

Why are positive correlations important?

→ Squares always crossed, long horizontal rectangles never crossed,

Why are positive correlations important?

→ Squares always crossed, long horizontal rectangles never crossed,
 → No positive correlation.

Sketch of proof

$$H_{yp}: P\left[\frac{n}{m}\right] \ge c + n$$

 $Gaol: P\left[\frac{n}{m}\right] \ge c'$

Sketch of proof

$$H_{yp}: P\left[\bigcap_{3n/2}^{n}\right] \ge c \quad \forall n$$

$$Gaal: P\left[\bigcap_{3n/2}^{n}\right] \ge c'$$

$$Assumption: P\left[\bigcap_{3n/2}^{n}\right] \le \varepsilon \quad \left(\underset{cst}{\varepsilon} > 0 \right)$$

_ the path is "tertuous" up to k

K

key lemma.

Def:
$$k = \min \{ m \le n : P[m] \\ 3m/2 \} \le \mathcal{E} \} - 1$$

_ the path is "tertuous" up to k

key lemma.

Conclusion :

_ the path is "tertuous" up to k

 $\geqslant \frac{c}{10}$

٩

key lemma.

Conclusion :

Critical behavior of Bernoulli percolation

✓ Robust RSW theory:

$$c(\lambda) \leq P_{p_c} \left[\underbrace{\overset{\lambda n}{\overbrace{}}_{n}}_{n} \right] \leq 1 - c(\lambda).$$

Critical behavior of Bernoulli percolation

✓ Robust RSW theory:

$$c(\lambda) \leq P_{p_c} \left[\underbrace{\overset{\lambda n}{\frown}}_{n} \right] \leq 1 - c(\lambda).$$

Critical behavior of Bernoulli percolation

✓ Robust RSW theory:

$$c(\lambda) \leq P_{p_c} \left[\underbrace{\overset{\lambda n}{\frown}}_{n} \right] \leq 1 - c(\lambda).$$

Perspectives:

• RSW for non positively correlated models.

Critical behavior of Bernoulli percolation

✓ Robust RSW theory:

$$c(\lambda) \leq P_{p_c} \left[\underbrace{\overset{\lambda n}{\frown}}_{n} \right] \leq 1 - c(\lambda).$$

- RSW for non positively correlated models.
- Prove Cardy's formula for some specific models.

Critical behavior of Bernoulli percolation

✓ Robust RSW theory:

$$c(\lambda) \leq P_{p_c} \left[\underbrace{\overset{\lambda n}{\frown}}_{n} \right] \leq 1 - c(\lambda).$$

- RSW for non positively correlated models.
- Prove Cardy's formula for some specific models.
- Universality and scaling limit.

Critical behavior of Bernoulli percolation

✔ Robust RSW theory:

$$c(\lambda) \leq P_{p_c} \left[\underbrace{\sum_{\lambda n}}_{\lambda n} \right] \leq 1 - c(\lambda).$$

- RSW for non positively correlated models.
- Prove Cardy's formula for some specific models.
- Universality and scaling limit.
- RSW theory in dimension 3.

Critical behavior of Bernoulli percolation

✔ Robust RSW theory:

$$c(\lambda) \leq P_{p_c} \left[\underbrace{\sum_{\lambda n}}_{\lambda n} \right] \leq 1 - c(\lambda).$$

- RSW for non positively correlated models.
- Prove Cardy's formula for some specific models.
- Universality and scaling limit.
- RSW theory in dimension 3.

Critical behavior of Bernoulli percolation

✔ Robust RSW theory:

$$c(\lambda) \leq P_{p_c} \left[\underbrace{\sum_{\lambda n}}_{\lambda n} \right] \leq 1 - c(\lambda).$$

- RSW for non positively correlated models.
- Prove Cardy's formula for some specific models.
- Universality and scaling limit.
- RSW theory in dimension 3.

