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Spin systems

x

y

x
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[Fortuin Kasteleyn 74]

Random functions

h

GFF percolation
Nodal lines

Motivations for robust results:

➜ New results in other fields.
➜ New methods for Bernoulli percolation.
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Robust theory of crossing probabilities
in dimension 2.

RSW theory for Bernoulli percolation on Z2

[Russo 78] [Seymour Welsh 78]

RSW theory for dependent planar models
[T. 16] [Köhler-Schindler T. 20]



1. RSW theory for Bernoulli percolation on Z2.



Phase transition in dimension 2

Theorem [Kesten 80]

For Bernoulli percolation on Z2, we have

pc “ 1
2

.

p ă 1
2 p ą 1

2
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Cardy’s formula

Conjecture: critical behavior of the crossing probabilities
Fix λ ě 1. For critical Bernoulli percolation on Z2, we have
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nÑ8
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„
λn

n


“ fpλqloomoon
Cardy’s formula
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For site percolation on hexagons:

Cardy’s formula and conformal invariance. [Smirnov 01]

Critical exponents

Ppc

”
n

ı
“ n´5{48`op1q. [Lawler Schramm Werner 02]
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1. RSW theory for Bernoulli percolation on Z2

[Russo ’78][Seymour Welsh ’78]

2. The RSW lemma and its generalizations
[Köhler-Schindler T. 20+]
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Why are positive correlations important?

1
2 ` 1

2

➜ Squares always crossed, long horizontal rectangles never crossed,
➜ No positive correlation.
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