Crossing probabilities for Planar percolation

Vincent Tassion
ETHzürich

Oxford Discrete Mathematics and Probability Seminar

Mai 25, 2021

Percolation: how does a fluid propagate in a random medium?

Percolation: how does a fluid propagate in a random medium?

How does water flow in rocks?

Percolation: how does a fluid propagate in a random medium?

How does water flow in rocks?

Bernoulli percolation [Broadbent and Hammersley, 1957]
$\left(\mathbb{Z}^{d}, E\left(\mathbb{Z}^{d}\right)\right), d \geqslant 2$.

Parameter: $0 \leqslant p \leqslant 1$.

Bernoulli percolation [Broadbent and Hammersley, 1957]
$\left(\mathbb{Z}^{d}, E\left(\mathbb{Z}^{d}\right)\right), d \geqslant 2$.

Parameter: $0 \leqslant p \leqslant 1$.

Bernoulli percolation [Broadbent and Hammersley, 1957]
$\left(\mathbb{Z}^{d}, E\left(\mathbb{Z}^{d}\right)\right), d \geqslant 2$.

Parameter: $0 \leqslant p \leqslant 1$.
An edge is \rightarrow open with probability p.
\rightarrow closed with probability $1-p$.

Bernoulli percolation [Broadbent and Hammersley, 1957]
$\left(\mathbb{Z}^{d}, E\left(\mathbb{Z}^{d}\right)\right), d \geqslant 2$.

Parameter: $0 \leqslant p \leqslant 1$.
An edge is \rightarrow open with probability p.
\rightarrow closed with probability $1-p$.

Bernoulli percolation [Broadbent and Hammersley, 1957]
$\left(\mathbb{Z}^{d}, E\left(\mathbb{Z}^{d}\right)\right), d \geqslant 2$.

Parameter: $0 \leqslant p \leqslant 1$.
An edge is \rightarrow open with probability p.
\rightarrow closed with probability $1-p$.

Bernoulli percolation [Broadbent and Hammersley, 1957]
$\left(\mathbb{Z}^{d}, E\left(\mathbb{Z}^{d}\right)\right), d \geqslant 2$.

Parameter: $0 \leqslant p \leqslant 1$.
An edge is \rightarrow open with probability p.
\rightarrow closed with probability $1-p$.

Bernoulli percolation [Broadbent and Hammersley, 1957]
$\left(\mathbb{Z}^{d}, E\left(\mathbb{Z}^{d}\right)\right), d \geqslant 2$.

Parameter: $0 \leqslant p \leqslant 1$.
An edge is \rightarrow open with probability p.
\rightarrow closed with probability $1-p$.

Bernoulli percolation [Broadbent and Hammersley, 1957]
$\left(\mathbb{Z}^{d}, E\left(\mathbb{Z}^{d}\right)\right), d \geqslant 2$.

Parameter: $0 \leqslant p \leqslant 1$.
An edge is \rightarrow open with probability p.
\rightarrow closed with probability $1-p$.

Bernoulli percolation [Broadbent and Hammersley, 1957]
$\left(\mathbb{Z}^{d}, E\left(\mathbb{Z}^{d}\right)\right), d \geqslant 2$.

Parameter: $0 \leqslant p \leqslant 1$
An edge is \rightarrow open with probability p.
\rightarrow closed with probability $1-p$.
Percolation configuration: $\omega \subset E\left(\mathbb{Z}^{d}\right)$.

Bernoulli percolation [Broadbent and Hammersley, 1957]

$\left(\mathbb{Z}^{d}, E\left(\mathbb{Z}^{d}\right)\right), d \geqslant 2$.

Parameter: $0 \leqslant p \leqslant 1$
An edge is \rightarrow open with probability p.
\rightarrow closed with probability $1-p$.
Percolation configuration: $\omega \subset E\left(\mathbb{Z}^{d}\right)$.
P_{p} := law of ω.

Bernoulli percolation [Broadbent and Hammersley, 1957]

$\left(\mathbb{Z}^{d}, E\left(\mathbb{Z}^{d}\right)\right), d \geqslant 2$.

Parameter: $0 \leqslant p \leqslant 1$
An edge is $\boldsymbol{\rightarrow}$ open with probability p.
\rightarrow closed with probability $1-p$.
Percolation configuration:

$$
\omega \subset E\left(\mathbb{Z}^{d}\right)
$$

P_{p} := law of ω.
Open path: path made of open edges.

Bernoulli percolation [Broadbent and Hammersley, 1957]
$\left(\mathbb{Z}^{d}, E\left(\mathbb{Z}^{d}\right)\right), d \geqslant 2$.

Parameter: $0 \leqslant p \leqslant 1$.
An edge is \rightarrow open with probability p.
\rightarrow closed with probability $1-p$.
Percolation configuration: $\omega \subset E\left(\mathbb{Z}^{d}\right)$.
$\mathrm{P}_{p}:=$ law of ω.

Open path: path made of open edges.
Cluster: connected component of $\left(\mathbb{Z}^{d}, \omega\right)$.

Bernoulli percolation [Broadbent and Hammersley, 1957]

$$
\left(\mathbb{Z}^{d}, E\left(\mathbb{Z}^{d}\right)\right), d \geqslant 2
$$

Parameter: $0 \leqslant p \leqslant 1$
An edge is $\boldsymbol{\rightarrow}$ open with probability p.
\rightarrow closed with probability $1-p$.
Percolation configuration: $\omega \subset E\left(\mathbb{Z}^{d}\right)$.
P_{p} := law of ω.
Open path: path made of open edges.
Cluster: connected component of $\left(\mathbb{Z}^{d}, \omega\right)$.

Is there an infinite cluster?

Bernoulli percolation [Broadbent and Hammersley, 1957]

$$
\left(\mathbb{Z}^{d}, E\left(\mathbb{Z}^{d}\right)\right), d \geqslant 2
$$

Parameter: $0 \leqslant p \leqslant 1$.
An edge is \rightarrow open with probability p.
\rightarrow closed with probability $1-p$.
Percolation configuration: $\omega \subset E\left(\mathbb{Z}^{d}\right)$.
P_{p} := law of ω.
Open path: path made of open edges.
Cluster: connected component of $\left(\mathbb{Z}^{d}, \omega\right)$.

Is there an infinite cluster?

Phase transition

Bernoulli percolation [Broadbent and Hammersley, 1957]

$$
\left(\mathbb{Z}^{d}, E\left(\mathbb{Z}^{d}\right)\right), d \geqslant 2
$$

Parameter: $0 \leqslant p \leqslant 1$.
An edge is \rightarrow open with probability p.
\rightarrow closed with probability $1-p$.
Percolation configuration: $\omega \subset E\left(\mathbb{Z}^{d}\right)$.
P_{p} := law of ω.
Open path: path made of open edges.
Cluster: connected component of $\left(\mathbb{Z}^{d}, \omega\right)$.

Is there an infinite cluster?

Phase transition

Bernoulli percolation [Broadbent and Hammersley, 1957]

$$
\left(\mathbb{Z}^{d}, E\left(\mathbb{Z}^{d}\right)\right), d \geqslant 2
$$

Parameter: $0 \leqslant p \leqslant 1$.
An edge is \rightarrow open with probability p.
\rightarrow closed with probability $1-p$.
Percolation configuration:

$$
\omega \subset E\left(\mathbb{Z}^{d}\right)
$$

P_{p} := law of ω.
Open path: path made of open edges.
Cluster: connected component of $\left(\mathbb{Z}^{d}, \omega\right)$.

Is there an infinite cluster?

Phase transition

Bernoulli percolation [Broadbent and Hammersley, 1957]

$$
\left(\mathbb{Z}^{d}, E\left(\mathbb{Z}^{d}\right)\right), d \geqslant 2
$$

Parameter: $0 \leqslant p \leqslant 1$.
An edge is \rightarrow open with probability p.
\rightarrow closed with probability $1-p$.
Percolation configuration: $\omega \subset E\left(\mathbb{Z}^{d}\right)$.
P_{p} := law of ω.
Open path: path made of open edges.
Cluster: connected component of $\left(\mathbb{Z}^{d}, \omega\right)$.

Is there an infinite cluster?

Phase transition

Bernoulli percolation [Broadbent and Hammersley, 1957]

$$
\left(\mathbb{Z}^{d}, E\left(\mathbb{Z}^{d}\right)\right), d \geqslant 2
$$

Parameter: $0 \leqslant p \leqslant 1$.
An edge is \rightarrow open with probability p.
\rightarrow closed with probability $1-p$.
Percolation configuration:

$$
\omega \subset E\left(\mathbb{Z}^{d}\right)
$$

P_{p} := law of ω.
Open path: path made of open edges.
Cluster: connected component of $\left(\mathbb{Z}^{d}, \omega\right)$.

Is there an infinite cluster?

Phase transition

Bernoulli percolation [Broadbent and Hammersley, 1957]

$$
\left(\mathbb{Z}^{d}, E\left(\mathbb{Z}^{d}\right)\right), d \geqslant 2
$$

Parameter: $0 \leqslant p \leqslant 1$.
An edge is \rightarrow open with probability p.
\rightarrow closed with probability $1-p$.
Percolation configuration:

$$
\omega \subset E\left(\mathbb{Z}^{d}\right)
$$

P_{p} := law of ω.
Open path: path made of open edges.
Cluster: connected component of $\left(\mathbb{Z}^{d}, \omega\right)$.

Is there an infinite cluster?

Phase transition

Simulations of the largest cluster in a box

Simulations of the largest cluster in a box

Simulations of the largest cluster in a box

Simulations of the largest cluster in a box

Simulations of the largest cluster in a box

Simulations of the largest cluster in a box

Simulations of the largest cluster in a box

Simulations of the largest cluster in a box

Simulations of the largest cluster in a box

Simulations of the largest cluster in a box

Interactions with other fields

Interactions with other fields

Interactions with other fields

Interactions with other fields

Interactions with other fields

Interactions with other fields

Interactions with other fields

Interactions with other fields

Interactions with other fields

Interactions with other fields

Motivations for robust results:
\rightarrow New results in other fields.
\rightarrow New methods for Bernoulli percolation.

Robust Theory of crossing probabilities IN DIMENSION 2.

1. RSW theory for Bernoulli percolation on \mathbb{Z}^{2}.

Phase transition in dimension 2

Theorem [Kesten 80]

For Bernoulli percolation on \mathbb{Z}^{2}, we have

$$
p_{c}=\frac{1}{2}
$$

$$
p<\frac{1}{2}
$$

What is special about $p=1 / 2$?
Planar duality:

What is special about $p=1 / 2$?
Planar duality:

What is special about $p=1 / 2$?
Planar duality:

What is special about $p=1 / 2$?
Planar duality:

What is special about $p=1 / 2$?
Planar duality:

What is special about $p=1 / 2$?
Planar duality:

What is special about $p=1 / 2$?
Planar duality:

What is special about $p=1 / 2$?
Planar duality:

Consequence: For every $n, \mathrm{P}_{p}\left[\begin{array}{|c}\square \\ \square \\ \square\end{array}\right]+\mathrm{P}_{p}\left[\begin{array}{c}n \\ \square\end{array}\right]=1$.

What is special about $p=1 / 2$?
Planar duality:

Consequence: For every $n, \mathrm{P}_{p}\left[\begin{array}{c}n \\ \square\end{array}\right]+\mathrm{P}_{p}\left[\begin{array}{|c}n \\ \square\end{array}\right]=1$.
\rightarrow For $p=1 / 2, \mathrm{P}_{p}\left[\begin{array}{|c}n \\ \square\end{array}\right]=1 / 2$.

Cardy's formula

Conjecture: critical behavior of the crossing probabilities
Fix $\lambda \geqslant 1$. For critical Bernoulli percolation on \mathbb{Z}^{2}, we have

Properties of Cardy's formula:

Cardy's formula

Conjecture: critical behavior of the crossing probabilities
Fix $\lambda \geqslant 1$. For critical Bernoulli percolation on \mathbb{Z}^{2}, we have

Properties of Cardy's formula:

- Conformal invariance.

Cardy's formula

Conjecture: critical behavior of the crossing probabilities
Fix $\lambda \geqslant 1$. For critical Bernoulli percolation on \mathbb{Z}^{2}, we have

Properties of Cardy's formula:

- Conformal invariance.
- Universality.

Cardy's formula

Conjecture: critical behavior of the crossing probabilities

Fix $\lambda \geqslant 1$. For critical Bernoulli percolation on \mathbb{Z}^{2}, we have

Properties of Cardy's formula:

- Conformal invariance.
- Universality.

For site percolation on hexagons:

Cardy's formula

Conjecture: critical behavior of the crossing probabilities

Fix $\lambda \geqslant 1$. For critical Bernoulli percolation on \mathbb{Z}^{2}, we have

Properties of Cardy's formula:

- Conformal invariance.
- Universality.

For site percolation on hexagons:

- Cardy's formula and conformal invariance. [Smirnov 01]

Cardy's formula

Conjecture: critical behavior of the crossing probabilities

Fix $\lambda \geqslant 1$. For critical Bernoulli percolation on \mathbb{Z}^{2}, we have

Properties of Cardy's formula:

- Conformal invariance.
- Universality.

For site percolation on hexagons:

- Cardy's formula and conformal invariance. [Smirnov 01]
- Critical exponents
$\mathrm{P}_{p_{c}}[\square]=n^{-5 / 48+o(1)}$. [Lawler Schramm Werner 02]

Russo-Seymour-Welsh theory for Bernoulli percolation

Russo-Seymour-Welsh theory for Bernoulli percolation

Consider Bernoulli percolation on \mathbb{Z}^{2} at $p_{c}=1 / 2$.

RSW theorem [Russo 78] [Seymour Welsh 78]

Fix $\lambda \geqslant 1$. There exists $c(\lambda)>0$ such that for every $n \geqslant 1$,

Russo-Seymour-Welsh theory for Bernoulli percolation

Consider Bernoulli percolation on \mathbb{Z}^{2} at $p_{c}=1 / 2$.

RSW theorem [Russo 78] [Seymour Welsh 78]

Fix $\lambda \geqslant 1$. There exists $c(\lambda)>0$ such that for every $n \geqslant 1$,

Applications:

Russo-Seymour-Welsh theory for Bernoulli percolation

Consider Bernoulli percolation on \mathbb{Z}^{2} at $p_{c}=1 / 2$.

RSW theorem [Russo 78] [Seymour Welsh 78]

Fix $\lambda \geqslant 1$. There exists $c(\lambda)>0$ such that for every $n \geqslant 1$,

Applications:

- Bounds on critical exponents:

$$
\rightarrow n^{-c_{1}} \leqslant \mathrm{P}_{p_{c}}\left[\right.
$$

Russo-Seymour-Welsh theory for Bernoulli percolation

Consider Bernoulli percolation on \mathbb{Z}^{2} at $p_{c}=1 / 2$.

RSW theorem [Russo 78] [Seymour Welsh 78]

Fix $\lambda \geqslant 1$. There exists $c(\lambda)>0$ such that for every $n \geqslant 1$,

Applications:

- Bounds on critical exponents:

$$
\rightarrow n^{-c_{1}} \leqslant \mathrm{P}_{p_{c}}\left[\begin{array}{|}
\square \\
\square
\end{array}\right] \leqslant n^{-c_{2}}, c_{1}, c_{2}>0
$$

- Study of near-critical regime $\left(p=p_{c} \pm \varepsilon\right)$.

Russo-Seymour-Welsh theory for Bernoulli percolation

Consider Bernoulli percolation on \mathbb{Z}^{2} at $p_{c}=1 / 2$.

RSW theorem [Russo 78] [Seymour Welsh 78]

Fix $\lambda \geqslant 1$. There exists $c(\lambda)>0$ such that for every $n \geqslant 1$,

Applications:

- Bounds on critical exponents:

$$
\rightarrow n^{-c_{1}} \leqslant \mathrm{P}_{p_{c}}[\boxed{\square} \square] \leqslant n^{-c_{2}}, c_{1}, c_{2}>0
$$

- Study of near-critical regime $\left(p=p_{c} \pm \varepsilon\right)$.
- Tightness arguments for the scaling limit.

Annulus argument

Annulus argument

(Rk: The proof of RSW gives $c=0.000000000000000000000000000000788 \ldots$...)

Annulus argument

(Rk: The proof of RSW gives $c=0.000000000000000000000000000000788 \ldots$..)

Annulus argument

(Rk: The proof of RSW gives $c=0.000000000000000000000000000000788 \ldots$)

Annulus argument

(Rk: The proof of RSW gives $c=0.000000000000000000000000000000788 \ldots$)

Annulus argument

(Rk: The proof of RSW gives $c=0.000000000000000000000000000000788 \ldots$)

Annulus argument

(Rk: The proof of RSW gives $c=0.000000000000000000000000000000788 \ldots$..)

Annulus argument

(Rk: The proof of RSW gives $c=0.000000000000000000000000000000788 \ldots$)

Annulus argument

(Rk: The proof of RSW gives $c=0.000000000000000000000000000000788 \ldots$)

Annulus argument

(Rk: The proof of RSW gives $c=0.000000000000000000000000000000788 \ldots$)

Bernoulli percolation: an independent percolation model

Bernoulli percolation: an independent percolation model

$$
\mathrm{P}_{p}[e, f \text { open }]=p^{2}
$$

Bernoulli percolation: an independent percolation model

$$
\mathrm{P}_{p}[e, f \text { open }]=p^{2}=\mathrm{P}_{p}[e \text { open }] \mathrm{P}_{p}[f \text { open }]
$$

1. RSW theory for Bernoulli percolation on \mathbb{Z}^{2}
[Russo '78][Seymour Welsh '78]
2. RSW theory for Bernoulli percolation on \mathbb{Z}^{2}
[Russo '78][Seymour Welsh '78]

3. The RSW lemma and its generalizations [Köhler-Schindler T. 20+]

Two important properties of P_{p}

Symmetries:
P_{p} is invariant under translations, reflections and $\pi / 2$-rotation.

Positive correlations [Harris 60]:
Crossing events are positively correlated.

Two important properties of P_{p}

Symmetries:
P_{p} is invariant under translations, reflections and $\pi / 2$-rotation.

Positive correlations [Harris 60]:
Crossing events are positively correlated.

Two important properties of P_{p}

Symmetries:
P_{p} is invariant under translations, reflections and $\pi / 2$-rotation.

Positive correlations [Harris 60]:
Crossing events are positively correlated.

Two important properties of P_{p}

Symmetries:
P_{p} is invariant under translations, reflections and $\pi / 2$-rotation.

Positive correlations [Harris 60]:
Crossing events are positively correlated.

Two important properties of P_{p}

Symmetries:
P_{p} is invariant under translations, reflections and $\pi / 2$-rotation.

Positive correlations [Harris 60]:
Crossing events are positively correlated.

Two important properties of P_{p}

Symmetries:
P_{p} is invariant under translations, reflections and $\pi / 2$-rotation.

Positive correlations [Harris 60]:
Crossing events are positively correlated.

Two important properties of P_{p}

Symmetries:
P_{p} is invariant under translations, reflections and $\pi / 2$-rotation.

Positive correlations [Harris 60]:
Crossing events are positively correlated.

Two important properties of P_{p}
Symmetries:
P_{p} is invariant under translations, reflections and $\pi / 2$-rotation.

Positive correlations [Harris 60]:
Crossing events are positively correlated.

Two important properties of P_{p}

Symmetries:

P_{p} is invariant under translations, reflections and $\pi / 2$-rotation.

Positive correlations [Harris 60]:
Crossing events are positively correlated.

Proof of the RSW theorem

$$
\text { Goal: For } \lambda \geqslant 1 \text { and } n \geqslant 1, \mathrm{P}\left[\begin{array}{ll}
\frac{\lambda n}{2} & \\
1 & \square
\end{array}\right] \geqslant c(\lambda) \text {. }
$$

Proof of the RSW theorem

Goal: For $\lambda \geqslant 1$ and $n \geqslant 1, \mathrm{P}\left[\begin{array}{lll}\hline \text { \# } & \lambda n \\ \square & \square & n\end{array}\right] \geqslant c(\lambda)$.

Step 0 (self-duality): $\mathrm{P}\left[\stackrel{n}{\square} \square^{n}\right]=1 / 2$.

Proof of the RSW theorem

Step 0 (self-duality): $\mathrm{P}[\stackrel{n}{\square} n]=1 / 2$.

Step 2 ($\lambda=2$ suffices):
p [$\mathrm{F} \sqrt{2 n} \sqrt{2 n}]=0$

positive

Proof of the RSW theorem

Goal: For $\lambda \geqslant 1$ and $n \geqslant 1, \mathrm{P}\left[\begin{array}{lll}\hline & \lambda n \\ \hline & 5 & 5\end{array}\right] \geqslant c(\lambda)$.

Step 0 (self-duality): $\mathrm{P}\left[\begin{array}{|}\square \\ \square\end{array}\right]=1 / 2$.

Step 1 (RSW Lemma): $\mathrm{P}\left[\begin{array}{|c}n \\ \square \\ \square\end{array}\right] \geqslant c \Rightarrow \mathrm{P}\left[\begin{array}{c}2 n \\ \square \\ \square\end{array}\right] \geqslant c^{\prime}$.
Step 2 ($\lambda=2$ suffices):
$\mathrm{P}\left[\square \square_{\square}^{2 n}\right] \geqslant c$

positive

"Proof" of the RSW lemma
"Proof" of the RSW lemma
Known: $\mathrm{P}_{p}[\square n] \geqslant c$.
"Proof" of the RSW lemma
Known: $\mathrm{P}_{p}[\square n] \geqslant c$.
Goal: $\mathrm{P}_{p}\left[\square_{n}^{3 n / 2}\right] \geqslant c^{\prime}>0$.
"Proof" of the RSW lemma
Known: $\mathrm{P}_{p}[\square n] \geqslant c . \quad$ Goal: $\mathrm{P}_{p}\left[\square n \geqslant c^{\prime}>0\right.$.
Idea: "glue" square crossings together.

"Proof" of the RSW lemma
Known: $\mathrm{P}_{p}[\square n] \geqslant c . \quad$ Goal: $\mathrm{P}_{p}\left[\square n \geqslant c^{\prime}>0\right.$.
Idea: "glue" square crossings together.

"Proof" of the RSW lemma
Known: $\mathrm{P}_{p}[\square n] \geqslant c . \quad$ Goal: $\mathrm{P}_{p}\left[\square n \geqslant c^{\prime}>0\right.$.
Idea: "glue" square crossings together.

"Proof" of the RSW lemma
Known: $\mathrm{P}_{p}[\square n] \geqslant c . \quad$ Goal: $\mathrm{P}_{p}\left[\square n \geqslant c^{\prime}>0\right.$.
Idea: "glue" square crossings together.

"Proof" of the RSW lemma
Known: $\mathrm{P}_{p}[\square n] \geqslant c . \quad$ Goal: $\mathrm{P}_{p}\left[\square n \geqslant c^{\prime}>0\right.$.
Idea: "glue" square crossings together.

"Proof" of the RSW lemma
Known: $\mathrm{P}_{p}[\square n] \geqslant c . \quad$ Goal: $\mathrm{P}_{p}\left[\square n \geqslant c^{\prime}>0\right.$.
Idea: "glue" square crossings together.

"Proof" of the RSW lemma
Known: $\mathrm{P}_{p}[\square n] \geqslant c . \quad$ Goal: $\mathrm{P}_{p}\left[\square n \geqslant c^{\prime}>0\right.$.
Idea: "glue" square crossings together.

Difficulty: "rule out" tortuous path.

The proof of RSW theorem: The key lemma

The proof of RSW theorem: The key lemma
$\mathbf{P}=$ general percolation process in the plane.

Bernoulli percolation
[Broadbent Hammersley, 57]

FK percolation
[Fortuin Kasteleyn 74]

Voronoi percolation
[Vahidi-Asl Wierman '90]

The proof of RSW theorem: The key lemma
$\mathbf{P}=$ general percolation process in the plane.

Bernoulli percolation
[Broadbent Hammersley, 57]

FK percolation
[Fortuin Kasteleyn 74]

Voronoi percolation
[Vahidi-Asl Wierman '90]

RSW Lemma

where $c^{\prime}=f(c)$ independent of n.

The proof of RSW theorem: The key lemma
$\mathbf{P}=$ general percolation process in the plane.

Bernoulli percolation
[Broadbent Hammersley, 57]

FK percolation
[Fortuin Kasteleyn 74]

Voronoi percolation
[Vahidi-Asl Wierman '90]

RSW Lemma

$$
\left(\mathbf{P}\left[\begin{array}{|c}
\square \\
\square
\end{array}\right] \geqslant c\right) \Rightarrow\left(\mathbf{P}\left[\begin{array}{|c}
\square \\
\square \\
\square
\end{array}\right] \geqslant c^{\prime}\right),
$$

where $c^{\prime}=f(c)$ independent of n.
The RSW lemma holds for

- Bernoulli percolation [Russo 78] [Seymour Welsh 78] [Smirnov 00]

The proof of RSW theorem: The key lemma
$\mathbf{P}=$ general percolation process in the plane.

Bernoulli percolation
[Broadbent Hammersley, 57]

FK percolation
[Fortuin Kasteleyn 74]

Voronoi percolation
[Vahidi-Asl Wierman '90]

RSW Lemma

$$
\left(\mathbf{P}\left[\begin{array}{|c}
\square \\
\square
\end{array}\right] \geqslant c\right) \Rightarrow\left(\mathbf{P}\left[\begin{array}{|c}
\square \\
\square \\
\square
\end{array}\right] \geqslant c^{\prime}\right),
$$

where $c^{\prime}=f(c)$ independent of n.
The RSW lemma holds for

- Bernoulli percolation [Russo 78] [Seymour Welsh 78] [Smirnov 00]
- FK percolation [Duminil-Copin Beffara 12] [Duminil-Copin Sidoravicius T. 15]

The proof of RSW theorem: The key lemma
$\mathbf{P}=$ general percolation process in the plane.

Bernoulli percolation
[Broadbent Hammersley, 57]

FK percolation
[Fortuin Kasteleyn 74]

Voronoi percolation
[Vahidi-Asl Wierman '90]

RSW Lemma

$$
\left(\mathbf{P}\left[\begin{array}{|c}
\square \\
\square
\end{array}\right] \geqslant c\right) \Rightarrow\left(\mathbf{P}\left[\begin{array}{|c}
\square \\
\square \\
\square
\end{array}\right] \geqslant c^{\prime}\right),
$$

where $c^{\prime}=f(c)$ independent of n.
The RSW lemma holds for

- Bernoulli percolation [Russo 78] [Seymour Welsh 78] [Smirnov 00]
- FK percolation [Duminil-Copin Beffara 12] [Duminil-Copin Sidoravicius T. 15]
- Voronoi percolation [Bolóbas Riordan 06] [T 16]

The proof of RSW theorem: The key lemma
$\mathbf{P}=$ general percolation process in the plane.

Bernoulli percolation
[Broadbent Hammersley, 57]

FK percolation
[Fortuin Kasteleyn 74]

Voronoi percolation
[Vahidi-Asl Wierman '90]

RSW Lemma

$$
\left(\mathbf{P}\left[\begin{array}{|c}
\square \\
\square
\end{array}\right] \geqslant c\right) \Rightarrow\left(\mathbf{P}\left[\begin{array}{|c}
\square \\
\square \\
\square
\end{array}\right] \geqslant c^{\prime}\right),
$$

where $c^{\prime}=f(c)$ independent of n.
The RSW lemma holds for

- Bernoulli percolation [Russo 78] [Seymour Welsh 78] [Smirnov 00]
- FK percolation [Duminil-Copin Beffara 12] [Duminil-Copin Sidoravicius T. 15]
- Voronoi percolation [Bolóbas Riordan 06] [T 16]

All the proofs use Symmetries + Positive correlations + "something else".

General RSW Lemma.

General RSW Lemma.

RSW Lemma for symmetric positively correlated measures

[Köhler-Schindler T. 20+]

Let \mathbf{P} be a planar percolation measure satisfying

- Symmetries,
- Positive correlations.

Then

$$
\left(\mathbf{P}\left[\begin{array}{|c}
\square \\
\square
\end{array}\right] \geqslant c\right) \Rightarrow\left(\mathbf{P}\left[\begin{array}{|c}
\square \\
\square \\
\square
\end{array}\right] \geqslant c^{\prime}\right),
$$

where $c^{\prime}=f(c)$ independent of n.

General RSW Lemma.

RSW Lemma for symmetric positively correlated measures

[Köhler-Schindler T. 20+]

Let \mathbf{P} be a planar percolation measure satisfying

- Symmetries,
- Positive correlations.

Then

$$
\left(\mathbf{P}\left[\begin{array}{|c}
\square \\
\square
\end{array}\right] \geqslant c\right) \Rightarrow\left(\mathbf{P}\left[\begin{array}{|c}
\square \\
\square \\
\square
\end{array}\right] \geqslant c^{\prime}\right),
$$

where $c^{\prime}=f(c)$ independent of n.

Why are symmetries important?

Why are symmetries important?

\rightarrow Squares always crossed, long horizontal rectangles never crossed,

Why are symmetries important?

\rightarrow Squares always crossed, long horizontal rectangles never crossed,
\rightarrow Not reflection invariant.

Why are positive correlations important?

Why are positive correlations important?

\rightarrow Squares always crossed, long horizontal rectangles never crossed,

Why are positive correlations important?

\rightarrow Squares always crossed, long horizontal rectangles never crossed,
\rightarrow No positive correlation.

Sketch of proof
$H_{y p} P[n] \geqslant c \quad \forall n$
Gail: $P\left[n \sim 2 c^{3 n / 2}\right] \geqslant c^{\prime}$

Sketch of proof
$H_{y p} p[n] \geqslant c \quad \forall_{n}$
Gail: $P[n \sim 2 n] \geqslant c^{3 n / 2}$
Assumption: $P\left[\begin{array}{l}\sim \sim \\ \sim n / 2\end{array}\right] \leqslant \varepsilon \quad\binom{\varepsilon>0}{$ cst }

Sketch of proof
$H_{y p}: P[n] \geqslant c \quad \forall_{n}$
Gail: $P[n \sim 2 n] c^{3 n / 2}$
Assumption: $P\left[n_{3 n / 2}^{\sim}\right] \leqslant \varepsilon \quad\binom{$ c 20}{ cst }
Def: $k=\min \left\{m \leqslant n: P\left[\frac{m \sim}{3 m / 2}\right] \leqslant \varepsilon\right\}-1$

$$
P\left[\frac{3 k / 2}{\sim} k\right] \rho \varepsilon
$$

Sketch of proof
$H_{y p} P[n] \geqslant c \quad \forall n$
Gail: $P[n / 2 n / 2] \geqslant c^{\circ}$

Def: $k=\min \left\{m \leqslant n: P\left[\frac{m \sim}{3 m / 2}\right] \leqslant \varepsilon\right\}-1$

\rightarrow the pall is "tortuous" up to k

Sketch of proof
$H_{y p}: P[n] \geqslant c \quad \forall_{n}$
Gail: $P\left[n \sim 2 c^{3 n / 2}\right] \geqslant c^{\prime}$
Assumption: $P\left[\begin{array}{l}\sim \sim \\ 3 n / 2\end{array}\right] \leqslant \varepsilon \quad\left(\begin{array}{l}\varepsilon_{c s t}>0\end{array}\right)$
Def: $k=\min \left\{m \leqslant n: P\left[\frac{m}{3 m / 2}\right] \leqslant \varepsilon\right\}-1$

$$
p\left[\frac{3 k / 2}{\sim} k\right]>\varepsilon
$$

\rightarrow the pall is "tortuous" up to k

Sketch of proof
$H_{y p}: P[n] \geqslant c \quad \forall_{n}$
Gail: $P\left[\sim_{n}^{3 n / 2}\right] \geqslant c^{\prime}$
Assumption: $P\left[\begin{array}{l}\sim \\ 3 n / 2\end{array}\right] \leqslant \varepsilon \quad\binom{\varepsilon>0}{$ cst }
Def: $k=\min \left\{m \leqslant n: P\left[\sim_{3 m / 2}^{\sim}\right] \leqslant \varepsilon\right\}-1$

$$
p\left[\frac{3 k / 2}{\sim}{ }^{k}\right]>\varepsilon
$$

\rightarrow the pall is "tortuous" up to k

Conclusion:

Sketch of proof
Hyp: $P[n] \geqslant c \quad \forall n_{n}$
Gail: $P\left[n=\frac{3 n / 2}{\sim}\right] \geqslant c^{\circ}$
Assumption: $P\left[\begin{array}{r}\sim \\ \sim n / 2\end{array}\right] \leqslant \varepsilon \quad\binom{\varepsilon>0}{$ cst }
Def: $k=\min \left\{m \leqslant n: P\left[\frac{m}{3 m / 2}\right] \leqslant \varepsilon\right\}-1$

$P\left[\frac{3 k / 2}{\sim} k\right] \supset \varepsilon$
\rightarrow the pall is "tortuous" up to k

Conclusion:

Conclusion and outlook

Critical behavior of Bernoulli percolation

\checkmark Robust RSW theory:

$$
c(\lambda) \leqslant \mathrm{P}_{p_{c}}\left[母^{\lambda n}\right] \leqslant 1-c(\lambda) .
$$

Conclusion and outlook

Critical behavior of Bernoulli percolation

\checkmark Robust RSW theory:

Perspectives:

Conclusion and outlook

Critical behavior of Bernoulli percolation

\checkmark Robust RSW theory:

Perspectives:

- RSW for non positively correlated models.

Conclusion and outlook

Critical behavior of Bernoulli percolation

\checkmark Robust RSW theory:

Perspectives:

- RSW for non positively correlated models.
- Prove Cardy's formula for some specific models.

Critical behavior of Bernoulli percolation

\checkmark Robust RSW theory:

Perspectives:

- RSW for non positively correlated models.
- Prove Cardy's formula for some specific models.
- Universality and scaling limit.

Critical behavior of Bernoulli percolation

\checkmark Robust RSW theory:

Perspectives:

- RSW for non positively correlated models.
- Prove Cardy's formula for some specific models.
- Universality and scaling limit.
- RSW theory in dimension 3.

Critical behavior of Bernoulli percolation

\checkmark Robust RSW theory:

Perspectives:

- RSW for non positively correlated models.
- Prove Cardy's formula for some specific models.
- Universality and scaling limit.
- RSW theory in dimension 3.

Critical behavior of Bernoulli percolation

\checkmark Robust RSW theory:

Perspectives:

- RSW for non positively correlated models.
- Prove Cardy's formula for some specific models.
- Universality and scaling limit.
- RSW theory in dimension 3.

