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A word is an expression

w = w(x) =
s∏

j=1

x
ε(j)
i(j)

i(1), . . . , i(s) ∈ {1, . . . , k}, ε(j) = ±1 ∀j

(think of k as fixed and large)

The verbal mapping on a group G:

fw : G(k) → G

gfw = w(g) =
s∏

j=1

g
ε(j)
i(j)

where g = (g1, . . . , gk).

Obviously fw only depends on the equivalence

class of w, i.e. the element represented by w

in the free group F on x1, . . . , xk:

gfw = wπg

where πg : F → G sends xi to gi (i = 1, . . . , k).
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Given a group G, a generalized word over G is

an expression

w = w(x) =
t∏

l=1

x
ε(l)α(l)
il

(1)

i1, . . . , it ∈ {1, . . . , k}, ε(l) = ±1, α(l) ∈ Aut(G)

In this case

fw(g) = w(g) =
t∏

l=1

g
ε(l)α(l)
il

.

Given a finite group G and a word w, there is

a positive word w∗ such that fw = fw∗ on G(k):

supposing G has order m, we obtain w∗ from

w by replacing each occurrence of x−1 in w by

xm−1, for each variable x.

So when studying the map fw on a given fi-

nite group, we may w.l.o.g. assume that w is

positive.

3



Topics

1. Fibres over finite groups

2. Ellipticity in profinite groups

3. Ellipticity in finite groups

4. Algebraic groups

5. Finite simple groups
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Notation

For a subset S of a group G and m ∈ N,

S∗m = {s1s2 . . . sm | si ∈ S} .

For a word w in k variables,

Gw =
{
w(g)±1 | g ∈ G(k)

}
,

w(G) = 〈Gw〉

G+w = G(k)fw =
{
w(g) | g ∈ G(k)

}
.

The word w has width m in G if w(G) = G∗mw ,

and positive width m if w(G) = G∗m+w.

F denotes a free group on sufficiently many

variables, sometimes infinitely many.

δl(G) denotes the lth term of the derived series

of G
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Fibres over finite groups

G abelian ⇒ fw a homomorphism ⇒

∣∣∣f−1
w (g)

∣∣∣ = ∣∣∣f−1
w (1)

∣∣∣ = |G|k

|w(G)|
≥ |G|k−1

(g ∈ G+w)

Definition.

P (G,w = g) =

∣∣∣f−1
w (g)

∣∣∣
|G|k

(k >> 0)

this is the probability that w represents g.

P (G,w) = P (G,w = 1) :

the probability that w represents 1. Thus

G abelian ⇒
P (G,w = g) = P (G,w) ≥ |G|−1 (2)

(∀w, ∀g ∈ G+w).
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Suppose that G is not nilpotent. Let

wn = [x1, . . . , xn].

Then wn(G) 6= 1 for each n, so for each n

there exists hn ∈ G with 1 6= hn ∈ G+wn. Then

1

|G|n
≤ P (G,wn = hn)

≤
(|G| − 1)n

|G|n
−→ 0 as n→∞.

Thus P (G,w = h) takes arbitrarily small posi-

tive values as w varies over all words, and the

outer inequality in (2) is violated.

Now suppose that G is not soluble. Then G

has a just-non-soluble quotient Q; that is, Q

contains a unique minimal normal subgroup

δl(Q) = M = S1 × · · · × Sr,

S1, . . . , Sr isomorphic non-abelian simple groups.
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Lemma 1 For each n ∈ N there is a word wn

in n variables such that for

g = (g1, . . . , gn) ∈ Q(n),

wn(g) = 1 ⇒ 〈g1, . . . , gn〉 6= Q. (3)

Proof to come.

Now, Let P (Q,n) denote the probability that

a random n-tuple in Q generates Q. Then:

P (Q,n) ≥ 1−m2−n (4)

where m is the number of maximal subgroups

of Q. To see this, put

Y =
{
g ∈ Q(n) | 〈g1, . . . , gn〉 6= Q

}
and observe that

|Y | =

∣∣∣∣∣∣
⋃

L<maxQ

L(n)

∣∣∣∣∣∣ ≤ m

(
|Q|
2

)n
.
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Recall now that Q is a quotient of our group G;

combining (3) and (4) we see that for w = wn,

P (G,w) ≤ P (Q,w) ≤ 1− P (Q,n) ≤ m2−n.

Thus if G is not soluble, P (G,w) takes arbi-

trarily small values, and (2) is violated.

Proof of Lemma 1. W.l.o.g. n ≥ d(G). Let

F be the free group on {x1, . . . , xn}, let K be

the intersection of the kernels of all epimor-

phisms from F onto Q, and set E = Kδl(F ). If

π : F → Q is an epimorphism then

Eπ = δl(Q) = M ; it follows that E/K := H

is a subdirect product in a direct product P of

copies of M = S1 × · · · × Sr.
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Such a subdirect product takes the form

H = ∆1 × · · · ×∆r,

where each ∆j is a diagonal subgroup in some

sub-product of the simple factors of P . It fol-

lows that H contains an element whose projec-

tion to each simple factor in P is non-trivial,

and hence lies in no proper normal subgroup

of H.

Thus there exists w ∈ E such that
〈
wE

〉
K = E.

Now suppose that Q = 〈g1, . . . , gn〉. Define

π : F → Q by xiπ = gi (i = 1, . . . , n). Then

w(g) = wπ, and so〈
w(g)M

〉
=
〈
wE

〉
π = Eπ = M.

Hence w(g) 6= 1 and the lemma follows.
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Theorem 1 (Abért, Nikolov/Segal) Let G be

a finite group, and put ε(G) = p−|G| where p is

the largest prime divisor of |G|.

(i) The following are equivalent:

(a) G is soluble,

(b) infw P (G,w) > 0,

(c) infw P (G,w) > ε(G).

(ii) The following are equivalent:

(a) G is nilpotent,

(b) infw,g
{
P (G,w = g) | g ∈ G+w

}
> 0,

(c) infw,g
{
P (G,w = g) | g ∈ G+w

}
> ε(G).

It remains to prove (a)⇒(c) in both cases.
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Case 1: Where |G| = ph = m.
Fix a ‘basis’ b = (b1, . . . , bh) for G, so that

1 < 〈b1〉 < 〈b1, b2〉 < . . . < 〈b1, b2, . . . , bh〉 = G

is a central series with cyclic factors of order
p. Then each element of G is uniquely of the
form

g = b
x1
1 · · · bxhh = bx

with x1, . . . , xh ∈ P = {0,1,2, , . . . , p− 1}.

Identify G with a subgroup of GLm(Fp) by tak-
ing the regular representation.

Set Vs = linear span of (G − 1)s in Mm(Fp)
(s ≥ 1)

V0 = {1}.

G unipotent ⇒ Vn = 0 for all n ≥ m.

For j = (j1, j2, . . .) we set |j| = j1 + j2 + . . . .
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Lemma 2 There exist matrices Bj = Bj(b) ∈
V|j| and polynomials Fj ∈ Fp[X1, . . . , Xh] such
that

bx =
∑

j∈P(h)

Fj(x1, . . . , xh)Bj (x ∈ P(h));

each Fj has total degree at most |j|.

Proof. Put ai = bi − 1 for each i. Then for
0 ≤ x ≤ p− 1 we have

bxi =
x∑

j=0

(x
j

)
a
j
i =1 +

x∑
j=1

c(j)x(x− 1) . . . (x− j + 1)aji

=
p−1∑
j=0

Fj(x)a
j
i ,

where

F0(X) = 1

Fj(X) = c(j)X(X − 1) . . . (X − j + 1) (j > 1)

The lemma follows on setting

Fj(X1, . . . , Xh) = Fj1(X1) . . . Fjh(Xh),

Bj = a
j1
1 a

j2
2 . . . a

jh
h .
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Next, let w be a positive generalized word over

G.

Lemma 3 There exist matrices B(w)j ∈ V|j|
and polynomials F (w)j ∈ Fp[X11, . . . , Xnh] for

j ∈ P(ht) such that for x1, . . . ,xk ∈ P(h) we

have

w(bx1, . . . ,bxk) =
∑

j∈P(ht)

F (w)j(x1, . . . ,xk)B(w)j;

each F (w)j has total degree at most |j|.

Proof. For each l, the tuple bα(l) = (bα(l)1 , . . . , b
a(l)
h )

is again a basis for G, and for j ∈ P(h) we put

B(l)j = Bj(b
α(l)). Then for x1, . . . ,xk ∈ P(h)

we have

w(bx1, . . . ,bxk) =
t∏

l=1

∑
j∈P(h)

Fj(xil)B(l)j

=
∑

j1,...,jt

F (w)j(x1, . . . ,xk)B(w)j
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where for j = (j1, . . . , jt)

F (w)j(X1, . . . ,Xk) = Fj1(Xi1) . . . Fjt(Xit),

B(w)j = B(1)j1 . . . B(t)jt.

Proposition 1 Let c ∈ G and suppose that

c = w(h) for some h ∈ G(k). Then∣∣∣f−1
w (c)

∣∣∣ ≥ p |G|k ε(G).

Proof. Let’s take the elements of G as basis

for the regular representation. Then for g ∈ G
we have

g = c⇐⇒ g1c = 1,

where g1c denotes the (1, c)-entry of the matrix

g.

Define a map ψ : Phk → Fp by

ψ(x1, . . . ,xk) = 1− w(bx1, . . . ,bxk)1c.
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Lemma 3 shows that ψ is equal to a polynomial

of total degree at most m−1, since for |j| ≥ m

we have

B(w)j ∈ V|j| = 0.

Also ψ(z1, . . . , zk) = 0 where (bz1, . . . ,bzk) = h.

Identifying P with Fp, we can now apply the

Chevalley-Warning theorem to infer that ψ

has at least phk−m+1 zeros in Phk. Each one

corresponds to a solution of w(bx1, . . . ,bxk) =

c, giving the result since ε(G) = p−m.

Lemma 4 If G = AB is finite where A and B

are proper subgroups of G then

ε(G) ≤ ε(A)ε(B). (5)

Proof. Say p is the largest prime factor of

both |G| and |A|, and q is the largest prime

factor of |B|. Then q ≤ p so

p|G| ≥ p|A|+|B| ≥ p|A|q|B|.
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Case 2. Suppose G = P1 × · · · × Pr is nilpo-

tent, where Pi is a pi-group, p1, . . . , pr distinct

primes. Let w be a positive generalized word

over G.

If ci ∈ Pi and c = c1 . . . cr ∈ Gfw then ci ∈ Pifw

for each i. So Proposition 1 gives∣∣∣f−1
w (c)

∣∣∣ = ∏∣∣∣f−1
w (ci)

∣∣∣ ≥∏
pi |Pi|k ε(Pi)

≥
∏
pi · |G|k ε(G). (6)

In particular, taking w to be an ordinary word

(which we may assume to be positive), we see

that

P (G,w = c) =

∣∣∣f−1
w (c)

∣∣∣
|G|k

> ε(G),

which completes the proof of Theorem 1(ii).
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Case 3. Fix a positive word w. Suppose that

G is soluble, but not nilpotent. Put

N = Fit(G)

K/N Cmin G/N

P ∈ Sylp(K)

H = NG(P )

where K/N is a p-group. Then H < G be-

cause K is not nilpotent, and by the Frattini

argument

K = NP

G = KH = NH.

Arguing by induction on the group order, we

may suppose that∣∣∣f−1
w (1)

∣∣∣ > |H|k ε(H).

18



Now fix h ∈ H(k) such that w(h) = 1. There

is a generalized word w′h over N such that

w(a · h) = w′h(a)w(h)

for all a ∈ N(k), where

a · h = (a1h1, . . . , akhk).

Apply (6) to the group N :∣∣∣∣f−1
w′h

(1)
∣∣∣∣ > |N |k ε(N).

So: the number of pairs (a,h) ∈ N(k) × H(k)

for which w(a · h) = 1 exceeds

|H|k ε(H) · |N |k ε(N) = |H ∩N |k |G|k ε(H)ε(N)

≥ |H ∩N |k |G|k ε(G).

The fibres of the map (a,h) 7→ a · h each have

size |H ∩N |k. Therefore: w(g) = 1 for more

than |G|k ε(G) elements g ∈ G(k). So

P (G,w) > ε(G).

19



Corollary 1 Let G be a finite group. Then G is
soluble if and only if for every sufficiently large
n, every n-generator one-relator group maps
onto G.

Proof. 1. If G is not soluble.

Let Q be a just-non-soluble quotient of G, and
let n ∈ N. By Lemma 1, there exists a word w

in n variables such that

w(g) = 1 =⇒ 〈g1, . . . , gn〉 6= Q.

The one-relator group 〈x1, . . . , xn;w〉 then does
not map onto Q, and a fortiori it doesn’t map
onto G.

2. If G is soluble.

w a word in n variables. Then the probabil-
ity that g ∈ G(n) satisfies both w(g) = 1 and
〈g1, . . . , gn〉 = G is

πn(w) := P (G,w) + P (G,n)− 1.
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Now:

P (G,n) ≥ 1−m2−n

where m denotes the number of maximal sub-

groups of G and

P (G,w) > ε(G).

So as long as m2−n ≤ ε(G) we have

πn(w) > 1−m2−n + ε(G)− 1 ≥ 0.

Thus w(g) = 1 for at least one generating set

{g1, . . . , gn} for G, and 〈x1, . . . , xn;w〉 maps onto

G by xi 7→ gi (i = 1, . . . , n).

Conjecture. (A. Amit) If G is a finite nilpo-

tent group and w is any word then

P (G,w) ≥
∣∣∣G−1

∣∣∣ .
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