Words and Groups

Dan Segal

June 25, 2009

A word is an expression

$$
\begin{gathered}
w=w(\mathbf{x})=\prod_{j=1}^{s} x_{i(j)}^{\varepsilon(j)} \\
i(1), \ldots, i(s)
\end{gathered}
$$

(think of k as fixed and large)

The verbal mapping on a group G :

$$
\begin{gathered}
f_{w}: G^{(k)} \rightarrow G \\
\mathbf{g} f_{w}=w(\mathbf{g})=\prod_{j=1}^{s} g_{i(j)}^{\varepsilon(j)}
\end{gathered}
$$

where $\mathbf{g}=\left(g_{1}, \ldots, g_{k}\right)$.

Obviously f_{w} only depends on the equivalence class of w, i.e. the element represented by w in the free group F on x_{1}, \ldots, x_{k} :

$$
\mathrm{g} f_{w}=w \pi_{\mathrm{g}}
$$

where $\pi_{\mathrm{g}}: F \rightarrow G$ sends x_{i} to $g_{i}(i=1, \ldots, k)$.

Given a group G, a generalized word over G is an expression

$$
\begin{equation*}
w=w(\mathbf{x})=\prod_{l=1}^{t} x_{i_{l}}^{\varepsilon(l) \alpha(l)} \tag{1}
\end{equation*}
$$

$i_{1}, \ldots, i_{t} \in\{1, \ldots, k\}, \varepsilon(l)= \pm 1, \alpha(l) \in \operatorname{Aut}(G)$

In this case

$$
f_{w}(\mathbf{g})=w(\mathbf{g})=\prod_{l=1}^{t} g_{i_{l}}^{\varepsilon(l) \alpha(l)}
$$

Given a finite group G and a word w, there is a positive word w^{*} such that $f_{w}=f_{w^{*}}$ on $G^{(k)}$: supposing G has order m, we obtain w^{*} from w by replacing each occurrence of x^{-1} in w by x^{m-1}, for each variable x.

So when studying the map f_{w} on a given finite group, we may w.l.o.g. assume that w is positive.

Topics

1. Fibres over finite groups
2. Ellipticity in profinite groups
3. Ellipticity in finite groups
4. Algebraic groups
5. Finite simple groups

Notation

For a subset S of a group G and $m \in \mathbb{N}$,

$$
S^{* m}=\left\{s_{1} s_{2} \ldots s_{m} \mid s_{i} \in S\right\} .
$$

For a word w in k variables,

$$
\begin{gathered}
G_{w}=\left\{w(\mathbf{g})^{ \pm 1} \mid \mathbf{g} \in G^{(k)}\right\}, \\
w(G)=\left\langle G_{w}\right\rangle \\
G_{+w}=G^{(k)} f_{w}=\left\{w(\mathbf{g}) \mid \mathbf{g} \in G^{(k)}\right\} .
\end{gathered}
$$

The word w has width m in G if $w(G)=G_{w}^{* m}$, and positive width m if $w(G)=G_{+w}^{* m}$.
F denotes a free group on sufficiently many variables, sometimes infinitely many.
$\delta_{l}(G)$ denotes the l th term of the derived series of G

Fibres over finite groups

G abelian $\Rightarrow f_{w}$ a homomorphism \Rightarrow

$$
\begin{aligned}
& \left|f_{w}^{-1}(g)\right|=\left|f_{w}^{-1}(1)\right|=\frac{|G|^{k}}{|w(G)|} \geq|G|^{k-1} \\
& \quad\left(g \in G_{+w}\right)
\end{aligned}
$$

Definition.

$$
P(G, w=g)=\frac{\left|f_{w}^{-1}(g)\right|}{|G|^{k}} \quad(k \gg 0)
$$

this is the probability that w represents g.

$$
P(G, w)=P(G, w=1):
$$

the probability that w represents 1 . Thus
G abelian \Rightarrow

$$
\begin{align*}
& P(G, w=g)=P(G, w) \geq|G|^{-1} \tag{2}\\
& \left(\forall w, \forall g \in G_{+w}\right) .
\end{align*}
$$

Suppose that G is not nilpotent. Let

$$
w_{n}=\left[x_{1}, \ldots, x_{n}\right] .
$$

Then $w_{n}(G) \neq 1$ for each n, so for each n there exists $h_{n} \in G$ with $1 \neq h_{n} \in G_{+w_{n}}$. Then

$$
\begin{aligned}
\frac{1}{|G|^{n}} & \leq P\left(G, w_{n}=h_{n}\right) \\
& \leq \frac{(|G|-1)^{n}}{|G|^{n}} \longrightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

Thus $P(G, w=h)$ takes arbitrarily small positive values as w varies over all words, and the outer inequality in (2) is violated.

Now suppose that G is not soluble. Then G has a just-non-soluble quotient Q; that is, Q contains a unique minimal normal subgroup

$$
\delta_{l}(Q)=M=S_{1} \times \cdots \times S_{r},
$$

S_{1}, \ldots, S_{r} isomorphic non-abelian simple groups.

Lemma 1 For each $n \in \mathbb{N}$ there is a word w_{n} in n variables such that for
$\mathrm{g}=\left(g_{1}, \ldots, g_{n}\right) \in Q^{(n)}$,

$$
\begin{equation*}
w_{n}(\mathbf{g})=1 \Rightarrow\left\langle g_{1}, \ldots, g_{n}\right\rangle \neq Q \tag{3}
\end{equation*}
$$

Proof to come.

Now, Let $P(Q, n)$ denote the probability that a random n-tuple in Q generates Q. Then:

$$
\begin{equation*}
P(Q, n) \geq 1-m 2^{-n} \tag{4}
\end{equation*}
$$

where m is the number of maximal subgroups of Q. To see this, put

$$
Y=\left\{\mathbf{g} \in Q^{(n)} \mid\left\langle g_{1}, \ldots, g_{n}\right\rangle \neq Q\right\}
$$

and observe that

$$
|Y|=\left|\bigcup_{L<\max Q} L^{(n)}\right| \leq m\left(\frac{|Q|}{2}\right)^{n}
$$

Recall now that Q is a quotient of our group G; combining (3) and (4) we see that for $w=w_{n}$,

$$
P(G, w) \leq P(Q, w) \leq 1-P(Q, n) \leq m 2^{-n} .
$$

Thus if G is not soluble, $P(G, w)$ takes arbitrarily small values, and (2) is violated.

Proof of Lemma 1. W.I.o.g. $n \geq \mathrm{d}(G)$. Let F be the free group on $\left\{x_{1}, \ldots, x_{n}\right\}$, let K be the intersection of the kernels of all epimorphisms from F onto Q, and set $E=K \delta_{l}(F)$. If $\pi: F \rightarrow Q$ is an epimorphism then $E \pi=\delta_{l}(Q)=M$; it follows that $E / K:=H$ is a subdirect product in a direct product P of copies of $M=S_{1} \times \cdots \times S_{r}$.

Such a subdirect product takes the form

$$
H=\Delta_{1} \times \cdots \times \Delta_{r},
$$

where each Δ_{j} is a diagonal subgroup in some sub-product of the simple factors of P. It follows that H contains an element whose projection to each simple factor in P is non-trivial, and hence lies in no proper normal subgroup of H.

Thus there exists $w \in E$ such that $\left\langle w^{E}\right\rangle K=E$. Now suppose that $Q=\left\langle g_{1}, \ldots, g_{n}\right\rangle$. Define $\pi: F \rightarrow Q$ by $x_{i} \pi=g_{i}(i=1, \ldots, n)$. Then $w(\mathbf{g})=w \pi$, and so

$$
\left\langle w(\mathbf{g})^{M}\right\rangle=\left\langle w^{E}\right\rangle \pi=E \pi=M .
$$

Hence $w(\mathrm{~g}) \neq 1$ and the lemma follows.

Theorem 1 (Abért, Nikolov/Segal) Let G be a finite group, and put $\varepsilon(G)=p^{-|G|}$ where p is the largest prime divisor of $|G|$.
(i) The following are equivalent:
(a) G is soluble,
(b) $\inf _{w} P(G, w)>0$,
(c) $\inf _{w} P(G, w)>\varepsilon(G)$.
(ii) The following are equivalent:
(a) G is nilpotent,
(b) $\inf _{w, g}\left\{P(G, w=g) \mid g \in G_{+w}\right\}>0$,
(c) $\inf _{w, g}\left\{P(G, w=g) \mid g \in G_{+w}\right\}>\varepsilon(G)$.

It remains to prove $(\mathrm{a}) \Rightarrow(\mathrm{c})$ in both cases.

Case 1: Where $|G|=p^{h}=m$.
Fix a 'basis' $\mathbf{b}=\left(b_{1}, \ldots, b_{h}\right)$ for G, so that

$$
1<\left\langle b_{1}\right\rangle<\left\langle b_{1}, b_{2}\right\rangle<\ldots<\left\langle b_{1}, b_{2}, \ldots, b_{h}\right\rangle=G
$$

is a central series with cyclic factors of order p. Then each element of G is uniquely of the form

$$
g=b_{1}^{x_{1}} \cdots b_{h}^{x_{h}}=\mathbf{b}^{\mathbf{x}}
$$

with $x_{1}, \ldots, x_{h} \in \mathbf{P}=\{0,1,2, \ldots, p-1\}$.

Identify G with a subgroup of $\mathrm{GL}_{m}\left(\mathbb{F}_{p}\right)$ by taking the regular representation.

Set $V_{s}=$ linear span of $(G-1)^{s}$ in $\mathrm{M}_{m}\left(\mathbb{F}_{p}\right)$ ($s \geq 1$)
$V_{0}=\{1\}$.
G unipotent $\Rightarrow V_{n}=0$ for all $n \geq m$.
For $\mathbf{j}=\left(j_{1}, j_{2}, \ldots\right)$ we set $|\mathbf{j}|=j_{1}+j_{2}+\ldots$.

Lemma 2 There exist matrices $B_{\mathbf{j}}=B_{\mathbf{j}}(\mathbf{b}) \in$ $V_{\mathbf{j} \mid}$ and polynomials $F_{\mathbf{j}} \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{h}\right]$ such that

$$
\mathbf{b}^{\mathbf{x}}=\sum_{\mathbf{j} \in \mathbf{P}^{(h)}} F_{\mathbf{j}}\left(x_{1}, \ldots, x_{h}\right) B_{\mathbf{j}} \quad\left(\mathbf{x} \in \mathbf{P}^{(h)}\right) ;
$$

each $F_{\mathbf{j}}$ has total degree at most $|\mathbf{j}|$.
Proof. Put $a_{i}=b_{i}-1$ for each i. Then for $0 \leq x \leq p-1$ we have

$$
\begin{aligned}
b_{i}^{x}=\sum_{j=0}^{x}\binom{x}{j} a_{i}^{j}=1 & +\sum_{j=1}^{x} c(j) x(x-1) \ldots(x-j+1) a_{i}^{j} \\
= & \sum_{j=0}^{p-1} F_{j}(x) a_{i}^{j}
\end{aligned}
$$

where

$$
\begin{aligned}
& F_{0}(X)=1 \\
& F_{j}(X)=c(j) X(X-1) \ldots(X-j+1) \quad(j>1)
\end{aligned}
$$

The lemma follows on setting

$$
\begin{aligned}
F_{\mathbf{j}}\left(X_{1}, \ldots, X_{h}\right) & =F_{j_{1}}\left(X_{1}\right) \ldots F_{j_{h}}\left(X_{h}\right), \\
B_{\mathbf{j}} & =a_{1}^{j_{1}} a_{2}^{j_{2}} \ldots a_{h}^{j_{h}} .
\end{aligned}
$$

Next, let w be a positive generalized word over G.

Lemma 3 There exist matrices $B(w)_{\mathbf{j}} \in V_{|\mathbf{j}|}$ and polynomials $F(w)_{\mathbf{j}} \in \mathbb{F}_{p}\left[X_{11}, \ldots, X_{n h}\right]$ for $\mathbf{j} \in \mathbf{P}^{(h t)}$ such that for $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k} \in \mathbf{P}^{(h)}$ we have

$$
w\left(\mathbf{b}^{\mathbf{x}_{1}}, \ldots, \mathbf{b}^{\mathbf{x}_{k}}\right)=\sum_{\mathbf{j} \in \mathbf{P}^{(h t)}} F(w)_{\mathbf{j}}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right) B(w)_{\mathbf{j}}
$$

each $F(w)_{\mathbf{j}}$ has total degree at most $|\mathbf{j}|$.
Proof. For each l, the tuple $\mathbf{b}^{\alpha(l)}=\left(b_{1}^{\alpha(l)}, \ldots, b_{h}^{a(l)}\right)$ is again a basis for G, and for $\mathbf{j} \in \mathbf{P}^{(h)}$ we put $B(l)_{\mathbf{j}}=B_{\mathbf{j}}\left(\mathbf{b}^{\alpha(l)}\right)$. Then for $\mathbf{x}_{1}, \ldots, \mathbf{x}_{k} \in \mathbf{P}^{(h)}$ we have

$$
\begin{aligned}
w\left(\mathbf{b}^{\mathbf{x}_{1}}, \ldots, \mathbf{b}^{\mathbf{x}_{k}}\right) & =\prod_{l=1}^{t} \sum_{\mathbf{j} \in \mathbf{P}^{(h)}} F_{\mathbf{j}}\left(\mathbf{x}_{i_{l}}\right) B(l)_{\mathbf{j}} \\
& =\sum_{\mathbf{j}_{1}, \ldots, \mathbf{j}_{t}} F(w)_{\mathbf{j}}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right) B(w)_{\mathbf{j}}
\end{aligned}
$$

where for $\mathbf{j}=\left(\mathbf{j}_{1}, \ldots, \mathbf{j}_{t}\right)$

$$
\begin{gathered}
F(w)_{\mathbf{j}}\left(\mathbf{X}_{1}, \ldots, \mathbf{X}_{k}\right)=F_{\mathbf{j}_{1}}\left(\mathbf{X}_{i_{1}}\right) \ldots F_{\mathbf{j}_{t}}\left(\mathbf{X}_{i_{t}}\right), \\
B(w)_{\mathbf{j}}=B(1)_{\mathbf{j}_{1}} \ldots B(t)_{\mathbf{j}_{t}}
\end{gathered}
$$

Proposition 1 Let $c \in G$ and suppose that $c=w(\mathbf{h})$ for some $\mathbf{h} \in G^{(k)}$. Then

$$
\left|f_{w}^{-1}(c)\right| \geq p|G|^{k} \varepsilon(G)
$$

Proof. Let's take the elements of G as basis for the regular representation. Then for $g \in G$ we have

$$
g=c \Longleftrightarrow g_{1 c}=1,
$$

where $g_{1 c}$ denotes the $(1, c)$-entry of the matrix g.

Define a map $\psi: \mathbf{P}^{h k} \rightarrow \mathbb{F}_{p}$ by

$$
\psi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}\right)=1-w\left(\mathbf{b}^{\mathbf{x}_{1}}, \ldots, \mathbf{b}^{\mathbf{x}_{k}}\right)_{{ }_{c}} .
$$

Lemma 3 shows that ψ is equal to a polynomial of total degree at most $m-1$, since for $|\mathbf{j}| \geq m$ we have

$$
B(w)_{\mathbf{j}} \in V_{|\mathbf{j}|}=0
$$

Also $\psi\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{k}\right)=0$ where $\left(\mathbf{b}^{\mathbf{z}_{1}}, \ldots, \mathbf{b}^{\mathbf{z}_{k}}\right)=\mathbf{h}$. Identifying \mathbf{P} with \mathbb{F}_{p}, we can now apply the Chevalley-Warning theorem to infer that ψ has at least $p^{h k-m+1}$ zeros in $\mathbf{P}^{h k}$. Each one corresponds to a solution of $w\left(\mathbf{b}^{\mathbf{x}_{1}}, \ldots, \mathbf{b}^{\mathbf{x}_{k}}\right)=$ c, giving the result since $\varepsilon(G)=p^{-m}$.

Lemma 4 If $G=A B$ is finite where A and B are proper subgroups of G then

$$
\begin{equation*}
\varepsilon(G) \leq \varepsilon(A) \varepsilon(B) \tag{5}
\end{equation*}
$$

Proof. Say p is the largest prime factor of both $|G|$ and $|A|$, and q is the largest prime factor of $|B|$. Then $q \leq p$ so

$$
p^{|G|} \geq p^{|A|+|B|} \geq p^{|A|} q^{|B|}
$$

Case 2. Suppose $G=P_{1} \times \cdots \times P_{r}$ is nilpotent, where P_{i} is a p_{i}-group, p_{1}, \ldots, p_{r} distinct primes. Let w be a positive generalized word over G.

If $c_{i} \in P_{i}$ and $c=c_{1} \ldots c_{r} \in G f_{w}$ then $c_{i} \in P_{i} f_{w}$ for each i. So Proposition 1 gives

$$
\begin{align*}
\left|f_{w}^{-1}(c)\right| & =\prod\left|f_{w}^{-1}\left(c_{i}\right)\right| \geq \prod p_{i}\left|P_{i}\right|^{k} \varepsilon\left(P_{i}\right) \\
& \geq \prod p_{i} \cdot|G|^{k} \varepsilon(G) . \tag{6}
\end{align*}
$$

In particular, taking w to be an ordinary word (which we may assume to be positive), we see that

$$
P(G, w=c)=\frac{\left|f_{w}^{-1}(c)\right|}{|G|^{k}}>\varepsilon(G),
$$

which completes the proof of Theorem 1(ii).

Case 3. Fix a positive word w. Suppose that G is soluble, but not nilpotent. Put

$$
\begin{gathered}
N=\operatorname{Fit}(G) \\
K / N \triangleleft \min G / N \\
P \in S y l_{p}(K) \\
H=\mathrm{N}_{G}(P)
\end{gathered}
$$

where K / N is a p-group. Then $H<G$ because K is not nilpotent, and by the Frattini argument

$$
\begin{aligned}
K & =N P \\
G & =K H=N H .
\end{aligned}
$$

Arguing by induction on the group order, we may suppose that

$$
\left|f_{w}^{-1}(1)\right|>|H|^{k} \varepsilon(H) .
$$

Now fix $\mathbf{h} \in H^{(k)}$ such that $w(\mathbf{h})=1$. There is a generalized word w_{h}^{\prime} over N such that

$$
w(\mathbf{a} \cdot \mathbf{h})=w_{\mathbf{h}}^{\prime}(\mathbf{a}) w(\mathbf{h})
$$

for all $\mathbf{a} \in N^{(k)}$, where

$$
\mathbf{a} \cdot \mathbf{h}=\left(a_{1} h_{1}, \ldots, a_{k} h_{k}\right)
$$

Apply (6) to the group N :

$$
\left|f_{w_{\mathrm{h}}^{\prime}}^{-1}(1)\right|>|N|^{k} \varepsilon(N) .
$$

So: the number of pairs $(\mathbf{a}, \mathbf{h}) \in N^{(k)} \times H^{(k)}$ for which $w(\mathbf{a} \cdot \mathbf{h})=1$ exceeds

$$
\begin{aligned}
|H|^{k} \varepsilon(H) \cdot|N|^{k} \varepsilon(N) & =|H \cap N|^{k}|G|^{k} \varepsilon(H) \varepsilon(N) \\
& \geq|H \cap N|^{k}|G|^{k} \varepsilon(G) .
\end{aligned}
$$

The fibres of the map $(\mathbf{a}, \mathbf{h}) \mapsto \mathbf{a} \cdot \mathbf{h}$ each have size $|H \cap N|^{k}$. Therefore: $w(\mathbf{g})=1$ for more than $|G|^{k} \varepsilon(G)$ elements $\mathrm{g} \in G^{(k)}$. So

$$
P(G, w)>\varepsilon(G)
$$

Corollary 1 Let G be a finite group. Then G is soluble if and only if for every sufficiently large n, every n-generator one-relator group maps onto G.

Proof. 1. If G is not soluble.
Let Q be a just-non-soluble quotient of G, and let $n \in \mathbb{N}$. By Lemma 1, there exists a word w in n variables such that

$$
w(\mathbf{g})=1 \Longrightarrow\left\langle g_{1}, \ldots, g_{n}\right\rangle \neq Q .
$$

The one-relator group $\left\langle x_{1}, \ldots, x_{n} ; w\right\rangle$ then does not map onto Q, and a fortiori it doesn't map onto G.
2. If G is soluble.
w a word in n variables. Then the probability that $\mathrm{g} \in G^{(n)}$ satisfies both $w(\mathrm{~g})=1$ and $\left\langle g_{1}, \ldots, g_{n}\right\rangle=G$ is

$$
\pi_{n}(w):=P(G, w)+P(G, n)-1 .
$$

Now:

$$
P(G, n) \geq 1-m 2^{-n}
$$

where m denotes the number of maximal subgroups of G and

$$
P(G, w)>\varepsilon(G) .
$$

So as long as $m 2^{-n} \leq \varepsilon(G)$ we have

$$
\pi_{n}(w)>1-m 2^{-n}+\varepsilon(G)-1 \geq 0 .
$$

Thus $w(\mathbf{g})=1$ for at least one generating set $\left\{g_{1}, \ldots, g_{n}\right\}$ for G, and $\left\langle x_{1}, \ldots, x_{n} ; w\right\rangle$ maps onto G by $x_{i} \mapsto g_{i}(i=1, \ldots, n)$.

Conjecture. (A. Amit) If G is a finite nilpotent group and w is any word then

$$
P(G, w) \geq\left|G^{-1}\right| .
$$

