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A word is an expression
T ()
_ — J
w=w(x) = jl |1xz.(j)

i(1),...,i(s) € {1,...,k}, e(j)==%1Vj
(think of k as fixed and large)

The verbal mapping on a group G-

fu G @

gfw = w(g) = jglgjgf

where g = (91,...,9%).

Obviously fyw only depends on the equivalence
class of w, i.e. the element represented by w
in the free group F' on zq,...,x:

gfw = wrg
where ng : F'— G sends z; to g; (1 =1,...,k).
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Given a group G, a generalized word over G is
an expression

t
w = w(x) = H x;?l(l)oz(l) (1)
[=1

11,...,0 € {1,...,k}, e(l) = £1, a(l) € Aut(G)

In this case
t

fu(g) =w(g) = J[ ;"""
=1

Given a finite group G and a word w, there is
a positive word w* such that f, = f,,» on G):
supposing G has order m, we obtain w* from
w by replacing each occurrence of =1 in w by
™1 for each variable z.

So when studying the map fy, on a given fi-
nite group, we may w.l.0.g. assume that w is
positive.



Topics

. Fibres over finite groups

. Ellipticity in profinite groups

. Ellipticity in finite groups

. Algebraic groups

. Finite simple groups



Notation

For a subset S of a group G and m € N,

S = {s155...5m | s; € S}.

For a word w in k variables,
Guw = {w(g)™ |ge G},
w(G) = (Guw)
G =GP fy = {w(g) | g € GW}.

The word w has width m in G if w(G) = G},
and positive width m if w(G) = N

F' denotes a free group on sufficiently many
variables, sometimes infinitely many.

0;(G) denotes the Ith term of the derived series
of G



Fibres over finite groups

G abelian = f, a homomorphism =

il
@) = [t @] = s > e
(g € G—I—w)
Definition.
~1
P(G,w=g) = fTGrkg)‘ (k>>0)

this is the probability that w represents g.

P(G,w) =P(G,w=1):
the probability that w represents 1. Thus
G abelian =

P(G,w=g) = P(G,w) > |G|”1 (2)
(‘v’w, Vg € G—I—w)



Suppose that G is not nilpotent. Let

wp = [z1,...,2n].

Then wp(G) #= 1 for each n, so for each n
there exists hp € G with 1 # hp € G4, . Then

1
G| —1)"
S(l ||G|”) 0O as n — oo.

Thus P(G,w = h) takes arbitrarily small posi-
tive values as w varies over all words, and the
outer inequality in (2) is violated.

Now suppose that G is not soluble. Then G
has a just-non-soluble quotient @; that is, @
contains a uniqgue minimal normal subgroup

0(Q) =M =51 x--- xS,

S1,...,Sr isomorphic non-abelian simple groups.
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Lemma 1 For each n € N there is a word wq,
in n variables such that for

g=(g1,---,9n) € Q,

wn(g) =1=(g91,--,9n) 7 Q. (3)

Proof to come.

Now, Let P(Q,n) denote the probability that
a random n-tuple in Q generates (). Then:

P(Q,n)>1—-—m2™" (4)

where m is the number of maximal subgroups
of ). To see this, put

Y ={g€Q™ |(g1,...,9n) # Q]

and observe that
mn
— 2

U 7,(n)

L<max@

Y| =




Recall now that @ is a quotient of our group G,
combining (3) and (4) we see that for w = wy,

P(G,w) < P(Q,w) <1-P(Q,n) <m27".

Thus if G is not soluble, P(G,w) takes arbi-
trarily small values, and (2) is violated.

Proof of Lemma 1. W.l.o.g. n > d(G). Let
F' be the free group on {x1,...,zn}, let K be
the intersection of the kernels of all epimor-
phisms from F onto Q, and set £ = K¢§;(F). If
™ . F — @ is an epimorphism then
Enr = 6;(Q) = M, it follows that E/K (= H
is a subdirect product in a direct product P of
copies of M = S1 X --- X Sr.



Such a subdirect product takes the form

H:A]_X“‘XAr,

where each Aj IS a diagonal subgroup in some
sub-product of the simple factors of P. It fol-
lows that H contains an element whose projec-
tion to each simple factor in P is non-trivial,
and hence lies in no proper normal subgroup
of H.

Thus there exists w € E such that <wE> K=E.

Now suppose that Q@ = (g1,...,9n). Define
. F — Qbyxrmr=g9 (1=1,...,n). Then
w(g) = wm, and so

(@) = (wF)x = Br =t

Hence w(g) = 1 and the lemma follows.
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Theorem 1 (Abért, Nikolov/Segal) Let G be
a finite group, and put (G) = p~|Gl where p is
the largest prime divisor of |G].

(i) The following are equivalent:

(a) G is soluble,

(b) infy P(G,w) > 0,

(c) infy P(G,w) > e(G).
(ii) The following are equivalent:

(a) G is nilpotent,

(b) infug {P(G,w=g)|g€Giy,} >0,

(c) infuq {P(G,w =g)|g€ G_|_w} > e(@).

It remains to prove (a)=-(c) in both cases.
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Case 1: Where |G| = p" =m.
Fix a ‘basis’ b= (b1,...,b) for GG, so that

1 <(b1) <(b1,bo) <...<(b1,bp,...,bp) =G

IS a central series with cyclic factors of order
p. Then each element of G is uniquely of the
form

g=>bjt-b" =Db*
with :nl,...,a:hEPz{0,1,2,,...,p—1}.

Identify G with a subgroup of GL,(Fy) by tak-
ing the regular representation.

Set Vs = linear span of (G — 1)% in My, (IFp)
(s > 1)

Vo ={1}.
G unipotent = V;, = 0 for all n > m.

For j = (j1,J2,...) weset |[jl=j41+7jo+....
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Lemma 2 There exist matrices By = Bj(b) €
Vj;| and polynomials Fj € FplX1,...,Xp] such
that
b*= Y Fj(z1,....en)Bj  (x€ PM);
jeP(h)
each Fj has total degree at most |j|.

Proof. Put a; = b; — 1 for each . Then for
O0<zx<p-—1we have

=3 (Nal =1+ Y c(Da(z—1)...(z —j + 1)a]
| Py

j=0 "/
p—1 .
= 2 Fj(@)a;,
J=0
where
Fo(X)=1

Fi(X)=c(HDX(X-1)...(X—-35+1) (G>1)
The lemma follows on setting
Fi(Xq,...,Xp) = Fjl(Xl) . --th(Xh),
Bj = a%laJQQ...a%h.
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Next, let w be a positive generalized word over
G.

Lemma 3 There exist matrices B(w); € Vil
and polynomials F(w); € Fp[X11,...,Xpy] for
] € Pt such that for X1,...,XE € PR we
have

w1, ... b)) = " F(w)j(x1,...,%x,)Bw)j;
jeP(ht)
each F'(w); has total degree at most [j|.

Proof. For each [, the tuple be() = (b‘fm, . .,bz(l))
is again a basis for G, and for j € P we put
B(l); = Bj(ba(l)). Then for x1,...,x; € P

we have

t
’w(bxl,...,bxk) — H Z E](XZZ)B(Z)J

l::].jel?(h)

— Z F(w)j(xl, ce ,Xk)B(’w)J

jla“'dt
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where for j = (j1,...,Jjt)
F(w);(X1,..., Xg) = Fj, (X)) - - F5,(X3,),

Proposition 1 Let ¢ € G and suppose that
c = w(h) for some h € G*). Then

ful (@] = p|GFe(G).

Proof. Let's take the elements of G as basis
for the regular representation. Then for g € G
we have

g=c<=g9g1c=1,
where g1. denotes the (1, ¢)-entry of the matrix
g.
Define a map ¢ : P"* — F,, by
w(Xl, . o 7Xk) =1 - w(bxl, . o ,bxk)lc.
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Lemma 3 shows that v is equal to a polynomial
of total degree at most m — 1, since for |j| > m
we have

B(w)j c Vm = 0.

Also ¢(z1,...,2z;) = 0 where (b%1,...,b%) = h.
Identifying P with Iy, we can now apply the
Chevalley-Warning theorem to infer that
has at least p"—™m+1 zeros in P*". Each one
corresponds to a solution of w(b*1,... b*k) =
c, giving the result since ¢(G) = p~ ™.

Lemma 4 If G = AB is finite where A and B
are proper subgroups of G then

e(G) < e(A)e(B). (5)

Proof. Say p is the largest prime factor of
both |G| and |A|, and ¢ is the largest prime
factor of |B|. Then ¢ <p so

A|+|B A| _|B
PGl > pIAIHIBl > Al Bl
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Case 2. Suppose G = Py X --- X Py is nilpo-
tent, where P, is a p;-group, p1,...,pr distinct
primes. Let w be a positive generalized word
over G.

Ifc,e Pband c=cy...cr € Gfy then ¢; € P;fw
for each 7. So Proposition 1 gives

fut @ =TI|fut )| = TIp:i |1B:* e(P)
> [Ipi- 1GI" (@), (6)

In particular, taking w to be an ordinary word
(which we may assume to be positive), we see
that

|2t
leli
which completes the proof of Theorem 1(ii).

> e(@G),

P(G,w = ¢)
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Case 3. Fix a positive word w. Suppose that
(G is soluble, but not nilpotent. Put

N = Fit(G)
P e Sylp(K)
H = Ng(P)
where K/N is a p-group. Then H < G be-
cause K is not nilpotent, and by the Frattini
argument
K=NP
G =KH = NH.

Arguing by induction on the group order, we
may suppose that

ot D| > [HIFe(H).
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Now fix h € H*) such that w(h) = 1. There
IS a generalized word wil over N such that

w(a-h) = wy(a)w(h)
for all a € N(¥) where
a-h=(arhy,...,ahy).
Apply (6) to the group N:
S| > I,
So: the number of pairs (a,h) € N&) x (k)
for which w(a-h) = 1 exceeds

|H|Fe(H) - [N|[Fe(N) = [HN N |GFe(H)e(N)
> |HNNF |G (G).

The fibres of the map (a,h) — a-h each have
Size |HﬂN|k. Therefore: w(g) = 1 for more
than |G|*e(G) elements g € G(F). So

P(G,w) > e(G).
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Corollary 1 Let GG be a finite group. Then G is
soluble if and only if for every sufficiently large
n, every n-generator one-relator group maps
onto G.

Proof. 1. If G is not soluble.

Let Q be a just-non-soluble quotient of &, and
let n € N. By Lemma 1, there exists a word w
in n variables such that

w(g) =1=(g91,.-.,9n) = Q.

The one-relator group {(x1,...,xn; w) then does
not map onto @, and a fortiori it doesn’t map
onto G.

2. If GG is soluble.

w a word in n variables. Then the probabil-
ity that g € G(™ satisfies both w(g) = 1 and

<gl,...,gn> =G is
m™m(w) := P(G,w) + P(G,n) — 1.
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Now:
P(G,n)>1—-—m2™"

where m denotes the number of maximal sub-
groups of G and

P(G,w) > e(G).
So as long as m2™ "™ < e(G) we have
m(w) >1—-—m2 "+ (G)—-1>0.

Thus w(g) = 1 for at least one generating set
{91,---,9n} for G, and (xq,...,xn; w) Maps onto
Gbyx;—g (1=1,...,n).

Conjecture. (A. Amit) If G is a finite nilpo-
tent group and w is any word then

P(G,w) > |G_1‘.
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