Words and Groups

Dan Segal

June 25, 2009

A word is an expression

$$w = w(\mathbf{x}) = \prod_{j=1}^{s} x_{i(j)}^{\varepsilon(j)}$$

 $i(1), \ldots, i(s) \in \{1, \ldots, k\}, \quad \varepsilon(j) = \pm 1 \, \forall j$ (think of k as fixed and large)

The verbal mapping on a group G:

$$f_w: G^{(k)} \to G$$

$$\mathbf{g}f_w = w(\mathbf{g}) = \prod_{j=1}^{s} g_{i(j)}^{\varepsilon(j)}$$

where $g = (g_1, ..., g_k)$.

Obviously f_w only depends on the equivalence class of w, i.e. the element represented by win the free group F on x_1, \ldots, x_k :

$$\mathbf{g}f_w = w\pi_\mathbf{g}$$

where $\pi_{\mathbf{g}}: F \to G$ sends x_i to g_i $(i = 1, \ldots, k)$.

Given a group G, a generalized word over G is an expression

$$w = w(\mathbf{x}) = \prod_{l=1}^{t} x_{i_l}^{\varepsilon(l)\alpha(l)}$$
(1)

 $i_1,\ldots,i_t \in \{1,\ldots,k\}, \ \varepsilon(l) = \pm 1, \ \alpha(l) \in \operatorname{Aut}(G)$

In this case

$$f_w(\mathbf{g}) = w(\mathbf{g}) = \prod_{l=1}^t g_{i_l}^{\varepsilon(l)\alpha(l)}.$$

Given a *finite* group G and a word w, there is a *positive* word w^* such that $f_w = f_{w^*}$ on $G^{(k)}$: supposing G has order m, we obtain w^* from w by replacing each occurrence of x^{-1} in w by x^{m-1} , for each variable x.

So when studying the map f_w on a given finite group, we may w.l.o.g. assume that w is positive.

Topics

- 1. Fibres over finite groups
- 2. Ellipticity in profinite groups
- 3. Ellipticity in finite groups
- 4. Algebraic groups
- 5. Finite simple groups

Notation

For a subset S of a group G and $m \in \mathbb{N}$,

$$S^{*m} = \{s_1 s_2 \dots s_m \mid s_i \in S\}.$$

For a word w in k variables,

$$G_w = \left\{ w(\mathbf{g})^{\pm 1} \mid \mathbf{g} \in G^{(k)} \right\},$$
$$w(G) = \langle G_w \rangle$$
$$G_{+w} = G^{(k)} f_w = \left\{ w(\mathbf{g}) \mid \mathbf{g} \in G^{(k)} \right\}.$$

The word w has width m in G if $w(G) = G_w^{*m}$, and positive width m if $w(G) = G_{+w}^{*m}$.

F denotes a free group on sufficiently many variables, sometimes infinitely many.

 $\delta_l(G)$ denotes the $l{\rm th}$ term of the derived series of G

Fibres over finite groups

 $G \text{ abelian} \Rightarrow f_w \text{ a homomorphism} \Rightarrow$

$$|f_w^{-1}(g)| = |f_w^{-1}(1)| = \frac{|G|^k}{|w(G)|} \ge |G|^{k-1}$$

(g \in G_{+w})

Definition.

$$P(G, w = g) = \frac{\left| f_w^{-1}(g) \right|}{|G|^k} \quad (k >> 0)$$

this is the probability that w represents g.

$$P(G, w) = P(G, w = 1) :$$

the probability that w represents 1. Thus

$$G \text{ abelian} \Rightarrow$$

$$P(G, w = g) = P(G, w) \ge |G|^{-1} \quad (2)$$

$$(\forall w, \forall g \in G_{+w}).$$

6

Suppose that G is not nilpotent. Let

$$w_n = [x_1, \ldots, x_n].$$

Then $w_n(G) \neq 1$ for each n, so for each nthere exists $h_n \in G$ with $1 \neq h_n \in G_{+w_n}$. Then

$$\frac{1}{|G|^n} \le P(G, w_n = h_n)$$
$$\le \frac{(|G| - 1)^n}{|G|^n} \longrightarrow 0 \text{ as } n \to \infty.$$

Thus P(G, w = h) takes arbitrarily small positive values as w varies over all words, and the outer inequality in (2) is violated.

Now suppose that G is not *soluble*. Then G has a just-non-soluble quotient Q; that is, Q contains a unique minimal normal subgroup

$$\delta_l(Q) = M = S_1 \times \cdots \times S_r,$$

 S_1, \ldots, S_r isomorphic non-abelian simple groups.

Lemma 1 For each $n \in \mathbb{N}$ there is a word w_n in n variables such that for $\mathbf{g} = (g_1, \dots, g_n) \in Q^{(n)}$,

$$w_n(\mathbf{g}) = 1 \Rightarrow \langle g_1, \dots, g_n \rangle \neq Q.$$
 (3)

Proof to come.

Now, Let P(Q, n) denote the probability that a random *n*-tuple in Q generates Q. Then:

$$P(Q,n) \ge 1 - m2^{-n} \tag{4}$$

where m is the number of maximal subgroups of Q. To see this, put

$$Y = \left\{ \mathbf{g} \in Q^{(n)} \mid \langle g_1, \dots, g_n \rangle \neq Q \right\}$$

and observe that

$$|Y| = \left| \bigcup_{L < \max Q} L^{(n)} \right| \le m \left(\frac{|Q|}{2} \right)^n$$

8

Recall now that Q is a quotient of our group G; combining (3) and (4) we see that for $w = w_n$,

 $P(G,w) \leq P(Q,w) \leq 1 - P(Q,n) \leq m2^{-n}.$

Thus if G is not soluble, P(G, w) takes arbitrarily small values, and (2) is violated.

Proof of Lemma 1. W.I.o.g. $n \ge d(G)$. Let F be the free group on $\{x_1, \ldots, x_n\}$, let K be the intersection of the kernels of all epimorphisms from F onto Q, and set $E = K\delta_l(F)$. If $\pi : F \rightarrow Q$ is an epimorphism then $E\pi = \delta_l(Q) = M$; it follows that E/K := H is a subdirect product in a direct product P of copies of $M = S_1 \times \cdots \times S_r$.

Such a subdirect product takes the form

$$H = \Delta_1 \times \cdots \times \Delta_r,$$

where each Δ_j is a diagonal subgroup in some sub-product of the simple factors of P. It follows that H contains an element whose projection to each simple factor in P is non-trivial, and hence lies in no proper normal subgroup of H.

Thus there exists $w \in E$ such that $\langle w^E \rangle K = E$.

Now suppose that $Q = \langle g_1, \ldots, g_n \rangle$. Define $\pi : F \to Q$ by $x_i \pi = g_i$ $(i = 1, \ldots, n)$. Then $w(\mathbf{g}) = w\pi$, and so

$$\left\langle w(\mathbf{g})^M \right\rangle = \left\langle w^E \right\rangle \pi = E\pi = M.$$

Hence $w(\mathbf{g}) \neq 1$ and the lemma follows.

Theorem 1 (Abért, Nikolov/Segal) Let G be a finite group, and put $\varepsilon(G) = p^{-|G|}$ where p is the largest prime divisor of |G|.

- (i) The following are equivalent:
 - (a) G is soluble,
 - (b) $\inf_{w} P(G, w) > 0$,
 - (c) $\inf_{w} P(G, w) > \varepsilon(G).$
- (ii) The following are equivalent:
 - (a) G is nilpotent,
 - (b) $\inf_{w,g} \left\{ P(G, w = g) \mid g \in G_{+w} \right\} > 0$,

(c) $\inf_{w,g} \left\{ P(G, w = g) \mid g \in G_{+w} \right\} > \varepsilon(G).$

It remains to prove $(a) \Rightarrow (c)$ in both cases.

Case 1: Where $|G| = p^h = m$. Fix a 'basis' $\mathbf{b} = (b_1, \dots, b_h)$ for G, so that

 $1 < \langle b_1 \rangle < \langle b_1, b_2 \rangle < \ldots < \langle b_1, b_2, \ldots, b_h \rangle = G$

is a central series with cyclic factors of order p. Then each element of G is uniquely of the form

$$g = b_1^{x_1} \cdots b_h^{x_h} = \mathbf{b}^{\mathbf{x}}$$

with $x_1, \ldots, x_h \in \mathbf{P} = \{0, 1, 2, \ldots, p-1\}.$

Identify G with a subgroup of $GL_m(\mathbb{F}_p)$ by taking the regular representation.

Set V_s = linear span of $(G-1)^s$ in $M_m(\mathbb{F}_p)$ $(s \ge 1)$

 $V_0 = \{1\}.$

G unipotent $\Rightarrow V_n = 0$ for all $n \ge m$.

For $\mathbf{j} = (j_1, j_2, ...)$ we set $|\mathbf{j}| = j_1 + j_2 + ...$

Lemma 2 There exist matrices $B_j = B_j(b) \in V_{|j|}$ and polynomials $F_j \in \mathbb{F}_p[X_1, \dots, X_h]$ such that

$$\mathbf{b}^{\mathbf{x}} = \sum_{\mathbf{j}\in\mathbf{P}^{(h)}} F_{\mathbf{j}}(x_1,\ldots,x_h) B_{\mathbf{j}} \qquad (\mathbf{x}\in\mathbf{P}^{(h)});$$

each $F_{\mathbf{j}}$ has total degree at most $|\mathbf{j}|$.

Proof. Put $a_i = b_i - 1$ for each *i*. Then for $0 \le x \le p - 1$ we have

$$b_i^x = \sum_{j=0}^x {\binom{x}{j}} a_i^j = 1 + \sum_{j=1}^x c(j)x(x-1)\dots(x-j+1)a_i^j$$
$$= \sum_{j=0}^{p-1} F_j(x)a_i^j,$$

where

$$F_0(X) = 1$$

$$F_j(X) = c(j)X(X-1)\dots(X-j+1) \quad (j > 1)$$

The lemma follows on setting

$$F_{j}(X_{1},...,X_{h}) = F_{j_{1}}(X_{1})...F_{j_{h}}(X_{h}),$$

 $B_{j} = a_{1}^{j_{1}}a_{2}^{j_{2}}...a_{h}^{j_{h}}.$

13

Next, let w be a positive generalized word over G.

Lemma 3 There exist matrices $B(w)_{\mathbf{j}} \in V_{|\mathbf{j}|}$ and polynomials $F(w)_{\mathbf{j}} \in \mathbb{F}_p[X_{11}, \dots, X_{nh}]$ for $\mathbf{j} \in \mathbf{P}^{(ht)}$ such that for $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbf{P}^{(h)}$ we have

$$w(\mathbf{b}^{\mathbf{x}_1},\ldots,\mathbf{b}^{\mathbf{x}_k}) = \sum_{\mathbf{j}\in\mathbf{P}^{(ht)}} F(w)_{\mathbf{j}}(\mathbf{x}_1,\ldots,\mathbf{x}_k)B(w)_{\mathbf{j}};$$

each $F(w)_{j}$ has total degree at most |j|.

Proof. For each *l*, the tuple $\mathbf{b}^{\alpha(l)} = (b_1^{\alpha(l)}, \dots, b_h^{\alpha(l)})$ is again a basis for *G*, and for $\mathbf{j} \in \mathbf{P}^{(h)}$ we put $B(l)_{\mathbf{j}} = B_{\mathbf{j}}(\mathbf{b}^{\alpha(l)})$. Then for $\mathbf{x}_1, \dots, \mathbf{x}_k \in \mathbf{P}^{(h)}$ we have

$$w(\mathbf{b}^{\mathbf{x}_1},\ldots,\mathbf{b}^{\mathbf{x}_k}) = \prod_{l=1}^t \sum_{\mathbf{j}\in\mathbf{P}^{(h)}} F_{\mathbf{j}}(\mathbf{x}_{i_l})B(l)_{\mathbf{j}}$$
$$= \sum_{\mathbf{j}_1,\ldots,\mathbf{j}_t} F(w)_{\mathbf{j}}(\mathbf{x}_1,\ldots,\mathbf{x}_k)B(w)_{\mathbf{j}}$$

where for
$$\mathbf{j} = (\mathbf{j}_1, \dots, \mathbf{j}_t)$$

 $F(w)_{\mathbf{j}}(\mathbf{X}_1, \dots, \mathbf{X}_k) = F_{\mathbf{j}_1}(\mathbf{X}_{i_1}) \dots F_{\mathbf{j}_t}(\mathbf{X}_{i_t}),$
 $B(w)_{\mathbf{j}} = B(1)_{\mathbf{j}_1} \dots B(t)_{\mathbf{j}_t}.$

Proposition 1 Let $c \in G$ and suppose that $c = w(\mathbf{h})$ for some $\mathbf{h} \in G^{(k)}$. Then

$$\left|f_w^{-1}(c)\right| \ge p |G|^k \varepsilon(G).$$

Proof. Let's take the elements of G as basis for the regular representation. Then for $g \in G$ we have

$$g = c \Longleftrightarrow g_{1c} = 1,$$

where g_{1c} denotes the (1, c)-entry of the matrix g.

Define a map $\psi: \mathbf{P}^{hk} \to \mathbb{F}_p$ by

$$\psi(\mathbf{x}_1,\ldots,\mathbf{x}_k)=1-w(\mathbf{b}^{\mathbf{x}_1},\ldots,\mathbf{b}^{\mathbf{x}_k})_{1c}.$$

Lemma 3 shows that ψ is equal to a polynomial of total degree at most m-1, since for $|\mathbf{j}| \ge m$ we have

$$B(w)_{\mathbf{j}} \in V_{|\mathbf{j}|} = \mathbf{0}.$$

Also $\psi(\mathbf{z}_1, \ldots, \mathbf{z}_k) = 0$ where $(\mathbf{b}^{\mathbf{z}_1}, \ldots, \mathbf{b}^{\mathbf{z}_k}) = \mathbf{h}$. Identifying P with \mathbb{F}_p , we can now apply the **Chevalley-Warning theorem** to infer that ψ has at least p^{hk-m+1} zeros in \mathbf{P}^{hk} . Each one corresponds to a solution of $w(\mathbf{b}^{\mathbf{x}_1}, \ldots, \mathbf{b}^{\mathbf{x}_k}) = c$, giving the result since $\varepsilon(G) = p^{-m}$.

Lemma 4 If G = AB is finite where A and B are proper subgroups of G then

$$\varepsilon(G) \le \varepsilon(A)\varepsilon(B).$$
 (5)

Proof. Say p is the largest prime factor of both |G| and |A|, and q is the largest prime factor of |B|. Then $q \leq p$ so

$$p^{|G|} \ge p^{|A|+|B|} \ge p^{|A|}q^{|B|}.$$

Case 2. Suppose $G = P_1 \times \cdots \times P_r$ is nilpotent, where P_i is a p_i -group, p_1, \ldots, p_r distinct primes. Let w be a positive generalized word over G.

If $c_i \in P_i$ and $c = c_1 \dots c_r \in Gf_w$ then $c_i \in P_i f_w$ for each *i*. So Proposition 1 gives

$$\left| f_w^{-1}(c) \right| = \prod \left| f_w^{-1}(c_i) \right| \ge \prod p_i \left| P_i \right|^k \varepsilon(P_i)$$

$$\ge \prod p_i \cdot |G|^k \varepsilon(G).$$
(6)

In particular, taking w to be an ordinary word (which we may assume to be positive), we see that

$$P(G, w = c) = \frac{\left|f_w^{-1}(c)\right|}{|G|^k} > \varepsilon(G),$$

which completes the proof of Theorem 1(ii).

Case 3. Fix a positive word w. Suppose that G is *soluble, but not nilpotent*. Put

$$N = \operatorname{Fit}(G)$$
$$K/N \triangleleft_{\min} G/N$$
$$P \in Syl_p(K)$$
$$H = \operatorname{N}_G(P)$$

where K/N is a p-group. Then H < G because K is not nilpotent, and by the Frattini argument

$$K = NP$$
$$G = KH = NH.$$

Arguing by induction on the group order, we may suppose that

$$\left|f_w^{-1}(1)\right| > |H|^k \varepsilon(H).$$

Now fix $\mathbf{h} \in H^{(k)}$ such that $w(\mathbf{h}) = 1$. There is a generalized word $w'_{\mathbf{h}}$ over N such that

$$w(\mathbf{a} \cdot \mathbf{h}) = w'_{\mathbf{h}}(\mathbf{a})w(\mathbf{h})$$

for all $\mathbf{a} \in N^{(k)}$, where

$$\mathbf{a} \cdot \mathbf{h} = (a_1 h_1, \dots, a_k h_k).$$

Apply (6) to the group N:

$$\left|f_{w_{\mathbf{h}}'}^{-1}(1)\right| > |N|^k \varepsilon(N).$$

So: the number of pairs $(\mathbf{a}, \mathbf{h}) \in N^{(k)} \times H^{(k)}$ for which $w(\mathbf{a} \cdot \mathbf{h}) = 1$ exceeds

$$|H|^{k} \varepsilon(H) \cdot |N|^{k} \varepsilon(N) = |H \cap N|^{k} |G|^{k} \varepsilon(H) \varepsilon(N)$$

$$\geq |H \cap N|^{k} |G|^{k} \varepsilon(G).$$

The fibres of the map $(\mathbf{a}, \mathbf{h}) \mapsto \mathbf{a} \cdot \mathbf{h}$ each have size $|H \cap N|^k$. Therefore: $w(\mathbf{g}) = 1$ for more than $|G|^k \varepsilon(G)$ elements $\mathbf{g} \in G^{(k)}$. So

$$P(G,w) > \varepsilon(G).$$

Corollary 1 Let G be a finite group. Then G is soluble if and only if for every sufficiently large n, every n-generator one-relator group maps onto G.

Proof. 1. If G is not soluble.

Let Q be a just-non-soluble quotient of G, and let $n \in \mathbb{N}$. By Lemma 1, there exists a word w in n variables such that

$$w(\mathbf{g}) = \mathbf{1} \Longrightarrow \langle g_1, \dots, g_n \rangle \neq Q.$$

The one-relator group $\langle x_1, \ldots, x_n; w \rangle$ then does *not* map onto Q, and a fortiori it doesn't map onto G.

2. If G is soluble.

w a word in n variables. Then the probability that $\mathbf{g} \in G^{(n)}$ satisfies both $w(\mathbf{g}) = 1$ and $\langle g_1, \ldots, g_n \rangle = G$ is

$$\pi_n(w) := P(G, w) + P(G, n) - 1.$$

Now:

$$P(G,n) \ge 1 - m2^{-n}$$

where m denotes the number of maximal subgroups of G and

$$P(G,w) > \varepsilon(G).$$

So as long as $m2^{-n} \leq \varepsilon(G)$ we have

$$\pi_n(w) > 1 - m2^{-n} + \varepsilon(G) - 1 \ge 0.$$

Thus $w(\mathbf{g}) = 1$ for at least one generating set $\{g_1, \ldots, g_n\}$ for G, and $\langle x_1, \ldots, x_n; w \rangle$ maps onto G by $x_i \mapsto g_i$ $(i = 1, \ldots, n)$.

Conjecture. (A. Amit) If G is a finite nilpotent group and w is any word then

$$P(G,w) \ge \left| G^{-1} \right|.$$