
Ellipticity in finite groups

Joint work with Nikolay Nikolov.

Given a word w and a finite d-generator group

G, we want to prove that

mG(w) ≤ f = f(w, d).

How does this work for w = [x, y] when G =

〈g1, . . . , gd〉 is nilpotent? Recall Lemma 1 of

Lecture 2:

G′ = [G, g1] . . . [G, gd].

Induction on the nilpotency class c.

Let h ∈ G′. Inductively, assume that

h = b · [g1, x1] . . . [gd, xd],

x1, . . . , xd ∈ G

b ∈ γc(G) := K.
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To kill b: seek yi ∈ G such that

[g1, y1x1] . . . [gd, ydxd] = b[g1, x1] . . . [gd, xd]. (1)

Assume yi ∈ γc−1(G) = N . Then the equation
reduces to

[g1, y1] . . . [gd, yd] = b. (2)

This can be solved because the mapping

[g,−] : N(d) → K

y 7→ [g,y] = [g1, y1] . . . [gd, yd]

is surjective.

Note: [g,x] := v(x) is a generalized word over
G. Solve v(x) = h by successive approxima-
tion.
Key ingredient (cf. Hensel’s Lemma): the ‘de-
rived mapping’, in this case

fv : N(k) → K

is surjective.
The hypothesis that ensures this: {g1, . . . , gd}
generates G.
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In general? Issues:

1. How does the induction start?

2. If G is not nilpotent, what should K and N

be?

3. If w is some complicated word, the derived

mapping may be arbitrarily horrible.

Issue 3. Suppose

w(G) = 〈r1, . . . , rδ〉 with r1, . . . , rδ ∈ Gw. (3)

Let H be a normal subgroup of w(G) such that

w(G)/H is nilpotent. Then

w(G)′ = [w(G), r1] . . . [w(G), rδ]H

⊆ G∗2δ
w H
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Suppose also that w is not a commutator word.

Then

q = q(w) := |Z/w(Z)| < ∞, (4)

which implies that

gq ∈ Gw ∀g ∈ G.

Then for each r ∈ Gw we have 〈r〉 ⊆ G
∗q
w ,

whence

w(G) = 〈r1〉 · · · 〈rδ〉w(G)′

⊆ G
∗(δq+2δ)
w H. (5)

Definition. The word w is d-restricted if both

(4) and (3) hold for every finite d-generator

group G, where δ depends only on w and d.
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Parenthesis. Let F = Fd = 〈x1, . . . , xd〉. Sup-

pose that B(d, q) = F/F q is finite.

Then F q is finitely generated, say

F q = 〈u1(x)q, . . . , uδ(x)q〉 .

Now if G = 〈g1, . . . , gd〉 is any finite group and

π : F → G sends xi to gi then

Gq = F qπ = 〈u1(g)
q, . . . , uδ(g)

q〉 .

Conclusion: if for each δ ∈ N there exists a

finite d-generator group G such that Gq is not

generated by δ qth powers then B(d, q) is infi-

nite.

i.e. if xq is not d-restricted – detectable in

finite groups – then B(d, q) is infinite.

This won’t lead to an alternative to Novikov-

Adian: because xq is in fact d-restricted, for

every d.
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Theorem 1 Every d-restricted word is elliptic

in d-generator finite groups.

d-locally finite ⇒ d-restricted; hence Theorem

7 of lecture 2.

It is not strong enough to show that the Burn-

side words are uniformly elliptic.

Now fix a d-restricted word w and let G be a

finite d-generator group. Then

W = w(G) = 〈r1, . . . , rδ〉

where r1, . . . , rδ ∈ Gw. Let

H = γc(W ) = [H, W ]

be the nilpotent residual of W .
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Henceforth: forget about G and w, and con-

centrate on W and H: need only prove:

• every element of H is a product of bound-

edly many commutators [h, rj] with h ∈ H,

together with boundedly many qth powers.

Issue 1: Starting the induction. What if G

happens to be a simple group?

Theorem 2 (Martinez/Zelmanov, Saxl/Wilson)

There exists m = m(q) such that xq has width

m in every finite simple group.

Using Theorem 2 and the ideas discussed above,

we can reduce Theorem 1 to
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Theorem 3 Let W = 〈r1, . . . , rδ〉 be a finite
group and H = [H, W ] an acceptable normal
subgroup of W . Let q ∈ N. Then

H =

 δ∏
i=1

[H, ri]

∗f1(δ,q)

·H∗f2(q)
q (6)

Acceptable is a small technical condition we’lI
ignore. Hq = {hq | h ∈ H}.

Both for the reduction argument mention above,
and for the special application to Burnside words,
we also need a variant:

Theorem 4 Let W be a finite group and H =
[H, W ] an acceptable normal subgroup of W .
Suppose that d(W ) = δ and that Alt(n) is not
involved in W . If W = H 〈s1, . . . , st〉 then

H =

 t∏
i=1

[H, si]

∗f3(n,δ)

.
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The difference in the hypothesis is that we are
not given generators for W , only generators for
W modulo H. In applications, the si will be w-
values where w is a word that isn’t known to
be d-restricted, so that we can’t a priori find a
bounded set of w-values that generate W .

The difference this makes in the proof: W acts
on a minimal normal (non-central) subgroup A.
When W = 〈r1, . . . , rδ〉 it follows that at least
one of the the sets [A, rj] must be quite big.
In the other case, we need to know that one of
the sets [A, sj] is quite big; this is proved us-
ing special representation-theoretic properties
of groups that don’t involve Alt(n).

In particular, we can use this for a Burnside
word, and deduce

Proposition 1 For each n ∈ N, the word xq is
uniformly elliptic in the class of finite groups
that do not involve Alt(n).
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Issue 2. The proof of Theorem 3 is by induc-

tion on |H|. Since H = [H, W ], we can choose

a normal subgroup N of W minimal subject to

H ≥ N = [N, W ].

Case 1: N is nilpotent of class at most 2 and

exponent prime or 4;

Case 2: N is quasi-semisimple: N = N ′ and

N/Z(N) is a direct product of non-abelian sim-

ple groups.

Assume for simplicity that Z(W ) = 1.

Set K = N unless N > N ′ > 1 in which case

set K = N ′.
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To prove (6), let h ∈ H. Assume inductively

that

h = b ·
f1∏

i=1

δ∏
j=1

[gij, rj] ·
f2∏

j=1

h
q
j (7)

where hj, gij ∈ H, b ∈ K is the ‘error term’, and

the gij satisfy an extra condition〈
r
τ1(r,g)
1 , . . . , r

τδ(r,g)
δ

〉
K = W ; (8)

here the τj are certain words.

Inductive step: seek a1, . . . , aδ ∈ N(f1) and

b ∈ N(f2) such that

h =
f1∏

i=1

δ∏
j=1

[aijgij, rj] ·
f2∏

j=1

(bjhj)
q (9)

and 〈
r
τ1(r,a.g)
1 , . . . , r

τδ(r,a.g)
δ

〉
= W. (10)
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This can be done provided a certain mapping

Φ : N(f1δ+f2) → K

is surjective.

Here Φ is a generalized word over N , got by

expanding the commutators and powers in (9)

and then cancelling out (7).

The hypothesis (8) is designed precisely to make

this happen.

In fact we have to show that (9) has very many

solutions, so many that some of them are sure

to satisfy (10). i.e. the fibres of Φ are suffi-

ciently large.
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The analysis of Φ needs different methods.

Case 1: N nilpotent. This comes down to

the study of certain quadratic maps over finite

fields.

Case 2: N quasi-semisimple. Here we study

certain equations over a direct product of qua-

sisimple groups.

These are eventually reduced to an equation

over one quasisimple group:

Theorem 5 Let q ∈ N. Suppose that m ∈ N
and the quasisimple finite group S are suffi-

ciently large. Let q1, . . . , qm be divisors of q and

β1, . . . , βm automorphisms of S. Then there ex-

ist inner automorphisms αi of S such that

S = [S, (α1β1)
q1] . . . [S, (αmβm)qm].
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Proof depends on CFSG. When S is of Lie

type, it again comes down ultimately to solving

equations over finite fields.

One application:

Proposition 2 Let q ∈ N. Let N be a quasi-

semisimple normal subgroup of a finite group

H, and suppose that the simple factors of N

are sufficiently large. Then

N ·H∗f
q = H∗f

q

where f depends only on q.

As well as being an essential part of the main

proof, this can be combined with Proposition

1 to establish
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Theorem 6 The Burnside word xq is d-restricted

for every d.

Corollary 1 Every non-commutator word is uni-

formly elliptic in finite groups.
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