Algebraic groups

Fix an algebraically closed field K; by a variety I will mean a Zariski-closed subset of $K^{(n)}$ for some n (an ‘affine algebraic set’).

Topological terms will refer to the Zariski topology.

A morphism is a map $f: X \rightarrow Y$ between varieties defined by polynomials in the coordinates.

If X is irreducible and $X f$ is dense in Y one says that f is dominant. In this case, Y is also irreducible and $X f$ contains a dense open subset of Y.

A linear algebraic group is a Zariski-closed subgroup of $S L_{n}(K)$, for some n

If w is a word and $g_{1}, \ldots, g_{k} \in \mathrm{SL}_{n}(K)$, the entries of the matrix $w(\mathbf{g})$ are given by polynomials in the entries of the matrices g_{i}; so $f_{w}: G^{(k)} \rightarrow G$ is a morphism.

Theorem 1 (Merzlyakov) Let G be a linear algebraic group over an algebraically closed field. Then

- w has finite width in G,
- $w(G)$ is a Zariski-closed subgroup of G;
- if G is connected then so is $w(G)$.

Proof. Assume G connected (hence an irreducible variety).

For $j \in \mathbb{N}$ set

$$
P_{j}=\left(G_{+w} \cdot G_{+w}^{-1}\right)^{* j}=\operatorname{Im} f(j),
$$

where

$$
\begin{gathered}
f(j): G^{(2 k j)} \rightarrow G \\
\left(\mathbf{g}_{1}, \ldots, \mathbf{g}_{2 j}\right) \mapsto \prod_{i=1}^{j} w\left(\mathbf{g}_{2 i-1}\right) w\left(\mathbf{g}_{2 i}\right)^{-1} .
\end{gathered}
$$

Now $f(j)$ is dominant as a morphism from $G^{(2 k j)}$ into $\overline{P_{j}}$, so $\overline{P_{j}}$ is irreducible. Since

$$
\begin{equation*}
\overline{P_{1}} \subseteq \overline{P_{2}} \subseteq \ldots \subseteq \overline{P_{j}} \subseteq \overline{P_{j+1}} \subseteq \ldots \tag{1}
\end{equation*}
$$

and $\operatorname{dim} \overline{P_{j}} \leq \operatorname{dim} G$ for each j, there exists m such that

$$
\operatorname{dim} \overline{P_{j}}=\operatorname{dim} \overline{P_{m}} \quad \forall j \geq m
$$

But an irreducible variety can't contain a proper subvariety of the same dimension, so (1) becomes stationary at $\overline{P_{m}}=T$, say.

Since $f(m): G^{(2 k m)} \rightarrow T$ is dominant as a map into T, we have $P_{m} \supseteq U$ for some dense open subset U of T. Now

$$
U \subseteq P_{m} \subseteq w(G)=\bigcup_{j=1}^{\infty} P_{j} \subseteq T=\bar{U}
$$

It follows that $T=\overline{w(G)}$ is a closed subgroup of G.

Let $y \in T$. Then $y U$ is non-empty and open in T, so $y U \cap U \neq \varnothing$ and hence

$$
y \in U \cdot U^{-1} \subseteq P_{2 m} \subseteq w(G)
$$

Thus

$$
T \subseteq P_{2 m} \subseteq w(G) \subseteq T
$$

Hence

$$
w(G)=\overline{w(G)}=P_{2 m} \subseteq G_{w}^{* 4 m} .
$$

Theorem 2 (Borel) Let G be a connected semisimple algebraic group over an algebraically closed field, and w a non-trivial word. Then
$f_{w}: G^{(k)} \rightarrow G$ is dominant.
Hence G_{+w} contains a dense open subset of G.

Corollary 1 Let u, w be non-trivial words. Then $G=G_{+u} \cdot G_{+w}$.
Every word has positive width 2 in G.

Proof. Let $U \subseteq G_{+u}$ and $W \subseteq G_{+w^{-1}}$ be dense open subsets of G. Let $g \in G$. Then $g W$ is dense so $g W \cap U \neq \varnothing$. Thus

$$
g \in U \cdot W^{-1} \subseteq G_{+u} \cdot G_{+w}
$$

W.I.o.g. K is as large as we like. Until further notice: fix $n \geq 2$,

$$
G=\mathrm{S}_{n}(K)
$$

$\chi_{g}=$ characteristic polynomial of g.
Define $\chi: G \rightarrow K^{n-1}$ by

$$
g \chi=\left(a_{1}, \ldots, a_{n-1}\right)
$$

where
$\chi_{g}(T)=T^{n}-a_{1} T^{n-1}+\cdots+(-1)^{n-1} a_{n-1} T+(-1)^{n}$.

Define

$$
G_{r e g}=\left\{g \in G \mid \operatorname{disc}\left(\chi_{g}\right) \neq 0\right\}=\chi^{-1}(W)
$$

where W is the dense open subset of K^{n-1} corresponding to polynomials with non-zero discriminant.

Jordan normal form shows that for each $v \in W$, the fibre $\chi^{-1}(v)$ is exactly one conjugacy class in G.

Lemma 1 Put $G_{1}=\operatorname{diag}\left(\mathrm{SL}_{n-1}(K), 1\right)<G$. Then $G_{1} \chi$ is a vector space of codimension 1 in K^{n-1}.

(Easy)

Lemma $2 G$ has a dense subgroup H such that $\chi_{h}(1) \neq 0$ for $1 \neq h \in H$.
(Proof to come)
Lemma 3 If H is any dense subgroup of G then $H_{+w} \neq\{1\}$.

Proof. We may assume that K contains two algebraically independent elements x and y. Then
$G=\mathrm{S}_{n}(K) \geq \mathrm{SL}_{2}(K) \geq F$ where

$$
F=\left\langle\left(\begin{array}{cc}
y & x \\
0 & y^{-1}
\end{array}\right),\left(\begin{array}{cc}
y & 0 \\
x & y^{-1}
\end{array}\right)\right\rangle
$$

a non-abelian free group. So $G_{+w} \supseteq F_{+w} \neq$ $\{1\}$. Result follows since H is dense in G.

Proof of Theorem 2 for $G=\mathrm{SL}_{n}(K)$: by induction on n.

Recall: $G_{1}=\mathrm{SL}_{n-1}(K)<G$.

Let $X=\overline{G_{+w}}$ be the closure of G_{+w} in G. We have to show that $X=G$.

If $n=2$ then $G_{1}=\{1\} \subseteq X$.

If $n>2$, inductive hypothesis gives

$$
G_{1}=\overline{G_{1,+w}} \subseteq \overline{G_{+w}}=X
$$

Set $Y=\overline{X \chi} \subseteq K^{n-1}$, let H be the subgroup given in Lemma 2, and take $h \in H_{+w} \backslash\{1\}$.

Then $h \in X$ but $h \chi \notin G_{1} \chi$. Hence

$$
K^{n-1} \supseteq Y \supsetneqq G_{1} \chi .
$$

As Y is an irreducible variety and $\operatorname{dim}\left(G_{1} \chi\right)=n-2$ it follows that $Y=K^{n-1}$.

Thus $\chi_{\mid X}: X \rightarrow K^{n-1}$ is dominant, and so $X \chi$ contains a dense open subset U of K^{n-1}.

Claim: $\chi^{-1}(U \cap W) \subseteq X$.
Suppose $g \in G$ and $g \chi \in U \cap W$. Then $g \in G_{\text {reg }}$ and $g \chi=x \chi$ for some $x \in X$.

Therefore g is conjugate to x, hence $g \in X$.

Finally:
both U and W open and dense in K^{n-1}
$\Rightarrow \chi^{-1}(U \cap W)$ is non-empty and open in G
$\Rightarrow \chi^{-1}(U \cap W)$ dense in G
$\Rightarrow X=G$.
rk (G) : dimension of maximal torus in G. Isogeny: epimorphism with finite kernel.

Theorem 3 Let G be a connected simple algebraic group over K. If G is not isogenous to $\mathrm{SL}_{n}(K)$ for any n then G has a closed connected semisimple subgroup H such that $\operatorname{dim}(H)<\operatorname{dim}(G)$ and $\operatorname{rk}(H)=\operatorname{rk}(G)$.

Proof (sketch) The root system Φ of G is not of type A_{n}. Say $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ is a basis and

$$
d=\sum_{i=1}^{l} d_{i} \alpha_{i}
$$

is the dominant root. Then, for a suitable ordering,

$$
-d, \alpha_{2}, \ldots, \alpha_{l}
$$

is the basis of a closed subsystem ψ of Φ.
H is the subgroup of G corresponding to Ψ (Borel's argument).

Larsen's argument:

$$
\mathrm{SL}_{2}^{(n)}<\mathrm{Sp}_{2 n}
$$

$\operatorname{SL}_{2}^{(2 n)}=\operatorname{Spin}_{4}^{(n)}<\operatorname{Spin}_{4 n}<\operatorname{Spin}_{4 n+1}$,
$\begin{aligned} \mathrm{SL}_{2}^{(2 n-2)} \times \mathrm{SL}_{4}=\operatorname{Spin}_{4}^{(n-1)} \times \operatorname{Spin}_{6} & <\operatorname{Spin}_{4 n+2} \\ & <\operatorname{Spin}_{4 n+3},\end{aligned}$

$$
\begin{aligned}
& E_{6}>A_{2}^{(3)} \\
& E_{7}>A_{1} \times A_{3}^{(2)} \\
& E_{8}>A_{4}^{(2)} \\
& F_{4}>A_{2}^{(2)} \\
& G_{2}>A_{2}
\end{aligned}
$$

Proof of Theorem 2

W.I.o.g. G connected and simple, not isogenous to $\mathrm{SL}_{n}(K)$.

Let H be a semisimple subgroup as given in Theorem 3.

Arguing by induction on $\operatorname{dim}(G)$ we may suppose that H_{+w} is dense in H.

Now let T be a maximal torus in H. Then T is also a maximal torus of G, and

$$
T \subseteq H=\overline{H_{+w}} \subseteq \overline{G_{+w}} .
$$

Fact: the union of all conjugates of T is a dense subset of G (it contains the regular semisimple elements).

So

$$
\overline{G_{+w}} \supseteq \overline{\bigcup_{g \in G} T^{g}}=G
$$

Proof of Lemma 2. We may assume that K contains either $L=\mathbb{Q}_{p}$ for some prime p (when $\operatorname{char}(K)=0$) or $L=\mathbb{F}_{p}((t))$ (when $\operatorname{char}(K)=$ $0)$.

There exists a central division algebra Δ over L of index n.
K is algebraically closed:

$$
\Delta \otimes_{L} K \cong \mathrm{M}_{n}(K)
$$

Identify Δ with an L-subalgebra of $\mathrm{M}_{n}(K)$, and put

$$
H=\Delta \cap \mathrm{SL}_{n}(K) .
$$

Then

$$
\begin{aligned}
1 \neq h \in H & \Rightarrow h-1 \text { invertible } \\
& \Rightarrow \chi_{h}(1) \neq 0 .
\end{aligned}
$$

H is dense in $\mathrm{SL}_{n}(K)$: indeed $H=\mathcal{H}(L)$ where \mathcal{H} is an L-form of S_{n}, i.e. $\mathcal{H}(K)=\mathrm{S}_{n}(K)$.

This concludes our discussion of algebraic groups over an algebraically closed field K. We have seen that if G is simple then every word has width 2 in $G(K)$. What about other fields? The question of verbal width in groups such as $\mathrm{S}_{n}(F)$ when F is an algebraic number field seems not to have been explored, and should be interesting. The following is deduced by Borel and Larsen from Theorem 2:

Corollary 2 If G is a simple algebraic group defined over \mathbb{R} and w is a non-trivial word then $G(\mathbb{R})_{+w}$ contains a non-empty set that is open in the real topology of $G(\mathbb{R})$.

I expect that this also holds with \mathbb{Q}_{p} (and the p-adic topology) in place of \mathbb{R}.

Finite fields: next lecture!

