
Algebraic groups

Fix an algebraically closed field K; by a variety

I will mean a Zariski-closed subset of K(n) for

some n (an ‘affine algebraic set’).

Topological terms will refer to the Zariski topol-

ogy.

A morphism is a map f : X → Y between vari-

eties defined by polynomials in the coordinates.

If X is irreducible and Xf is dense in Y one

says that f is dominant. In this case, Y is

also irreducible and Xf contains a dense open

subset of Y .

A linear algebraic group is a Zariski-closed sub-

group of SLn(K), for some n
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If w is a word and g1, . . . , gk ∈ SLn(K), the

entries of the matrix w(g) are given by poly-

nomials in the entries of the matrices gi; so

fw : G(k) → G is a morphism.

Theorem 1 (Merzlyakov) Let G be a linear al-

gebraic group over an algebraically closed field.

Then

• w has finite width in G,

• w(G) is a Zariski-closed subgroup of G;

• if G is connected then so is w(G).
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Proof. Assume G connected (hence an irre-
ducible variety).

For j ∈ N set

Pj = (G+w ·G−1
+w)∗j = Im f(j),

where

f(j) : G(2kj) → G

(g1, . . . , g2j) 7→
j∏

i=1

w(g2i−1)w(g2i)
−1.

Now f(j) is dominant as a morphism from
G(2kj) into Pj, so Pj is irreducible. Since

P1 ⊆ P2 ⊆ . . . ⊆ Pj ⊆ Pj+1 ⊆ . . . (1)

and dimPj ≤ dimG for each j, there exists m

such that

dimPj = dimPm ∀j ≥ m.

But an irreducible variety can’t contain a proper
subvariety of the same dimension, so (1) be-
comes stationary at Pm = T , say.
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Since f(m) : G(2km) → T is dominant as a map

into T , we have Pm ⊇ U for some dense open

subset U of T . Now

U ⊆ Pm ⊆ w(G) =
∞⋃

j=1

Pj ⊆ T = U.

It follows that T = w(G) is a closed subgroup

of G.

Let y ∈ T . Then yU is non-empty and open in

T , so yU ∩ U 6= ∅ and hence

y ∈ U · U−1 ⊆ P2m ⊆ w(G).

Thus

T ⊆ P2m ⊆ w(G) ⊆ T.

Hence

w(G) = w(G) = P2m ⊆ G∗4m
w .
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Theorem 2 (Borel) Let G be a connected semisim-

ple algebraic group over an algebraically closed

field, and w a non-trivial word. Then

fw : G(k) → G is dominant.

Hence G+w contains a dense open subset of

G.

Corollary 1 Let u, w be non-trivial words. Then

G = G+u ·G+w.

Every word has positive width 2 in G.

Proof. Let U ⊆ G+u and W ⊆ G+w−1 be dense

open subsets of G. Let g ∈ G. Then gW is

dense so gW ∩ U 6= ∅. Thus

g ∈ U ·W−1 ⊆ G+u ·G+w.

5



W.l.o.g. K is as large as we like.
Until further notice: fix n ≥ 2,

G = SLn(K)

χg = characteristic polynomial of g.
Define χ : G → Kn−1 by

gχ = (a1, . . . , an−1)

where

χg(T ) = Tn−a1Tn−1+· · ·+(−1)n−1an−1T+(−1)n.

Define

Greg = {g ∈ G | disc(χg) 6= 0} = χ−1(W )

where W is the dense open subset of Kn−1 cor-
responding to polynomials with non-zero dis-
criminant.

Jordan normal form shows that for each v ∈ W ,
the fibre χ−1(v) is exactly one conjugacy class
in G.
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Lemma 1 Put G1 = diag(SLn−1(K),1) < G.
Then G1χ is a vector space of codimension 1
in Kn−1.

(Easy)

Lemma 2 G has a dense subgroup H such
that χh(1) 6= 0 for 1 6= h ∈ H.

(Proof to come)

Lemma 3 If H is any dense subgroup of G

then H+w 6= {1}.

Proof. We may assume that K contains
two algebraically independent elements x and
y. Then
G = SLn(K) ≥ SL2(K) ≥ F where

F =

〈(
y x

0 y−1

)
,

(
y 0
x y−1

)〉
a non-abelian free group. So G+w ⊇ F+w 6=
{1}. Result follows since H is dense in G.
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Proof of Theorem 2 for G = SLn(K): by

induction on n.

Recall: G1 = SLn−1(K) < G.

Let X = G+w be the closure of G+w in G. We

have to show that X = G.

If n = 2 then G1 = {1} ⊆ X.

If n > 2, inductive hypothesis gives

G1 = G1,+w ⊆ G+w = X.

Set Y = Xχ ⊆ Kn−1, let H be the subgroup

given in Lemma 2, and take h ∈ H+w r {1}.

Then h ∈ X but hχ /∈ G1χ. Hence

Kn−1 ⊇ Y % G1χ.
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As Y is an irreducible variety and

dim(G1χ) = n− 2 it follows that Y = Kn−1.

Thus χ|X : X → Kn−1 is dominant, and so Xχ

contains a dense open subset U of Kn−1.

Claim: χ−1(U ∩W ) ⊆ X.

Suppose g ∈ G and gχ ∈ U ∩W . Then g ∈ Greg

and gχ = xχ for some x ∈ X.

Therefore g is conjugate to x, hence g ∈ X.

Finally:

both U and W open and dense in Kn−1

⇒ χ−1(U ∩W ) is non-empty and open in G

⇒ χ−1(U ∩W ) dense in G

⇒ X = G.
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rk(G): dimension of maximal torus in G.

Isogeny : epimorphism with finite kernel.

Theorem 3 Let G be a connected simple

algebraic group over K. If G is not isogenous

to SLn(K) for any n then G has a closed con-

nected semisimple subgroup H such that

dim(H) < dim(G) and rk(H) = rk(G).

Proof (sketch) The root system Φ of G is not

of type An. Say {α1, . . . , αl} is a basis and

d =
l∑

i=1

diαi

is the dominant root. Then, for a suitable

ordering,

−d, α2, . . . , αl

is the basis of a closed subsystem Ψ of Φ.

H is the subgroup of G corresponding to Ψ

(Borel’s argument).
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Larsen’s argument:

SL(n)
2 < Sp2n,

SL(2n)
2 = Spin(n)

4 < Spin4n < Spin4n+1,

SL(2n−2)
2 × SL4 = Spin(n−1)

4 × Spin6 < Spin4n+2

< Spin4n+3,

E6 > A
(3)
2

E7 > A1 ×A
(2)
3

E8 > A
(2)
4

F4 > A
(2)
2

G2 > A2
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Proof of Theorem 2

W.l.o.g. G connected and simple, not
isogenous to SLn(K).

Let H be a semisimple subgroup as given in
Theorem 3.

Arguing by induction on dim(G) we may
suppose that H+w is dense in H.

Now let T be a maximal torus in H. Then T

is also a maximal torus of G, and

T ⊆ H = H+w ⊆ G+w.

Fact: the union of all conjugates of T is a
dense subset of G (it contains the regular
semisimple elements).

So

G+w ⊇
⋃

g∈G

T g = G.
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Proof of Lemma 2. We may assume that K

contains either L = Qp for some prime p (when

char(K) = 0) or L = Fp((t)) (when char(K) =

0).

There exists a central division algebra ∆ over

L of index n.

K is algebraically closed:

∆⊗L K ∼= Mn(K).

Identify ∆ with an L-subalgebra of Mn(K), and

put

H = ∆ ∩ SLn(K).

Then

1 6= h ∈ H ⇒ h− 1 invertible

⇒ χh(1) 6= 0.

H is dense in SLn(K): indeed H = H(L) where

H is an L-form of SLn, i.e. H(K) = SLn(K).
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This concludes our discussion of algebraic groups

over an algebraically closed field K. We have

seen that if G is simple then every word has

width 2 in G(K). What about other fields?

The question of verbal width in groups such

as SLn(F ) when F is an algebraic number field

seems not to have been explored, and should

be interesting. The following is deduced by

Borel and Larsen from Theorem 2:

Corollary 2 If G is a simple algebraic group

defined over R and w is a non-trivial word then

G(R)+w contains a non-empty set that is open

in the real topology of G(R).

I expect that this also holds with Qp (and the

p-adic topology) in place of R.

Finite fields: next lecture!
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