
Finite simple groups

To establish uniform bounds that hold over

all fnite simple groups, one usually breaks the

problem into parts:

1) The sporadic groups, and maybe finitely

many more small groups: these can be ignored.

2) Groups of Lie type and small Lie rank.

Algebraic geometry:

Proposition 1 (Larsen) Let w be a non-trivial

word. Then for each r there exists c = c(w, r) >

0 such that for every finite simple group G of

Lie type of Lie rank r we have∣∣∣G+w

∣∣∣ > c |G| .
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3a, 3b) Groups of Lie type and large Lie rank;

large alternating groups.

Can often be dealt with by finding matrices, or

permutations, of a nice form inside them.

Proposition 2 (Larsen) Let w be a non-trivial

word and let ε > 0. Then there exists N such

that ∣∣∣G+w

∣∣∣ > |G|1−ε

whenever n > N and G is either Alt(n) or a

simple group of Lie type of Lie rank n.

With CFSG, the two propositions imply

Theorem 1 (Larsen) Let w be a non-trivial

word and let ε > 0. Then
∣∣∣G+w

∣∣∣ > |G|1−ε for

all sufficiently large finite simple groups G.
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A useful reduction:

Theorem 2 (Nikolov) Let k be a perfect field

and let G = G(k) be a classical quasisimple

group over k. Then G has a subgroup H iso-

morphic to SLn(k1)̇ or PSLn(k1), for some n

and a subfield k1 of k, such that G is the prod-

uct of 200 conjugates of H.

It follows that if a word w has width m in

SLn(k1)̇, then it has width 200m in G.
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The most general theorem about verbal width

in finite simple groups is due to Aner Shalev:

Theorem 3 (Shalev) Every word has positive

width 3 in every sufficiently large finite simple

group.

Ore’s conjecture:

Theorem 4 (LOST) The commutator word

[x, y] has width one in every finite simple group.

Proof involves character theory, algebraic ge-

ometry, number theory, computation (3 years

CPU time)
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A model-theoretic method

Consider simple groups of a fixed Lie type X.

Theorem 5 (F. Point) Let (Fn | n ∈ N) be a

family of finite fields, let U be a non-principal

ultrafilter on N and let E =
∏

nFn/U be the cor-

responding ultraproduct. Then E is an infinite

field and the ultraproduct of groups

G =
∏
n

X(Fn)/U

is isomorphic to X(E).

Now let w be a non-trivial word.

Suppose w does not have bounded width in

X(F ) as F ranges over all finite fields.

Then there is an infinite sequence of finite

fields (Fn) and for each n ∈ N an element

gn ∈ w(X(Fn)) r X(Fn)
∗n
w .
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Let g̃ be the image of (gn)n∈N in G.

Suppose g̃ ∈ w(G). Then g̃ ∈ G∗m
w for some

finite m; this implies that some subset of

{1, . . . , m − 1} is a member of U: FALSE! (a

non-principal ultrafilter can’t contain finite sets).

Therefore w(G) < G.

But G ∼= X(E) is simple! So w(G) = 1. Thus

the first-order statement

w(x1, . . . , xk) = 1 ∀x1, . . . , xk (1)

holds in
∏

nX(Fn)/U.

Loś’s theorem: (1) holds in X(Fn) for each n

in some member of U.

So gn = 1 for infinitely many n: contradiction!
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Conclusion: w has bounded width in X(F )

as F ranges over all finite fields.

Theorem 6 Let w be a non-trivial word. Then

for each r there exists m = m(w, r) such that

w has width m in every finite simple group of

Lie type and Lie rank at most r.
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A combinatorial method

k(G) denotes the minimal dimension of a non-
trivial R-linear representation of G.

Theorem 7 (Gowers, Babai/Nikolov/Pyber) Let
S1, . . . , St be subsets of a finite group G, where
t ≥ 3. If

t∏
i=1

|Si| ≥
|G|t

k(G)t−2

then S1 · S2 · . . . ·St = G.

Note: this applies to any finite group! Typical
applications use:

If G is simple of Lie type over Fq, of Lie rank
r and dimension d, then

k(G) ≥ cqr,

|G| ∼ qd

(c is an absolute constant).
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Proposition 3 (Larsen/Shalev, Nikolov/Pyber)

Let w be a non-trivial word. Then∣∣∣G+w

∣∣∣ ≥ |G| /k(G)1/3

for every simple group G of Lie type and suffi-

ciently large order.

Taking Si = G+wi
in theorem 7 now gives

Theorem 8 (Shalev) Let w1, w2 and w3 be

non trivial words. Then

G+w1
G+w2

G+w3
= G

for every sufficiently large finite simple group

G of Lie type.
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Character theory

G denotes a finite group. χ ranges over all
irreducible (complex) characters of G.

Given conjugacy classes C1, . . . , Cs of G,

N(C; g)

denotes the number of solutions to the equa-
tion

x1 · x2 · . . . · xs = g

(x1 ∈ C1, . . . , xs ∈ Cs)

Theorem 9 Let ai ∈ Ci for i = 1, . . . , s. Then
for g ∈ G we have

N(C; g) =

∏
|Ci|
|G|

∑
χ

χ(a1) . . . χ(as)χ(g)

χ(1)s−1
.

General idea: to prove that N(C; g) 6= 0 it
suffices to show that χ(a) is very small for a ∈
Ci and χ 6= χ1.
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Theorem 10 (Liebeck/Shalev) There is an ab-

solute constant c such that if G is any finite

simple group and S is a normal subset of G

with |S|t ≥ |G| then

m ≥ ct =⇒ S∗m = G.

Now let w be a non-trivial word, and let N be

the number provided by Theorem 1 such that∣∣∣G+w

∣∣∣ > |G|1/2 for all finite simple groups G

with |G| > N .

Suppose that G is a finite simple group with

w(G) 6= 1, and set S = G+w.

Then |S|t ≥ |G| where t = max{2, log2 N};
take m(w) = dcte:

Theorem 11 (Li/Sh) For each word w there

exists m(w) ∈ N such that w has positive width

m(w) in every finite simple group.
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Original proof : show that if G is sufficiently

large then G+w contains a relatively large con-

jugacy class of G.

Case 1. G is of Lie type and bounded Lie rank

r. In this case, we have

|C|8r ≥ |G|

for every non-central conjugacy class C.

So done provided G+w 6= {1}; this holds for all

but finitely many simple groups G.
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Case 2. G = Alt(n), where n is large.

There exists s = s(w) such that w(Alt(s)) 6= 1.

Write

n = ds + r (0 ≤ r < s).

Let 1 6= σ ∈ Alt(s)+w. Then G+w contains the
permutation

τ = σ × σ × · · · × σ × 1

which has support of size at least 3d.

Lemma 1 (Li/Sh) Let δ > 0. Then for all
sufficiently large n, if τ ∈ Alt(n) has support of
size m, the conjugacy class C of τ satisfies

|C| ≥ n(1/3−δ)m.

Taking δ = 1
12 and n sufficiently large we find

that G+w contains a conjugacy class C with

|C| ≥ nn/2s > |G|1/2s .
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Case 3. Groups of Lie type and large Lie rank.

Suppose for example that G = SLn(Fq)̇.

There exists s such that w(SLs(Fq)) 6= 1; again

write n = ds + r where 0 ≤ r < s, and let

1 6= σ ∈ SLs(Fq)+w.

Then G+w contains a block-diagonal matrix τ

having d identical blocks σ;

let C be the conjugacy class of τ , let ρ be a

power of σ with prime order, and denote the

conjugacy class of ρ by C1.

Obviously |C| ≥ |C1|. And

|C1| ≥ c |G|1/6s ,

c > 0 an absolute constant.

The same technique is applied to the other

classical groups. Alternatively: quote Theo-

rem 2.
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Sharper results due to Larsen and Shalev

1) Let G = Gr(q) be a finite simple group of

Lie type, of Lie rank r over Fq, and let C1, C2

and C3 be conjugacy classes in G.

Proposition 4 (Shalev) (i) If |G| is sufficiently

large and C1, C2 and C3 consist of regular

semisimple elements, or

(ii) if r is sufficiently large and

|C1| |C2| |C3| ≥ q−15/4 |G|3 ,

then C1C2C3 = G.

Proposition 5 (Shalev) Let w be a non-trivial

word. If r is sufficiently large then G+w con-

tains a conjugacy class C with |C| > q−5r/4 |G|.
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Proposition 6 (Guralnick/Lübeck) The num-

ber of regular semisimple elements in G is at

least (1−aq−1) |G|, where a is an absolute con-

stant.

Now let w1, w2 and w3 be non trivial words,

and put Si = G+wi
for each i.

If r is large and G is sufficiently large, Propo-

sition 5 together with Proposition 4(ii) shows

that S1S2S3 = G.

If r is small and G is sufficiently large, Propo-

sition 6 and Proposition 1 together imply that

each Si contains a regular semisimple element,

and then Proposition 4(i) shows again that

S1S2S3 = G.

– Original proof of Theorem 8
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2) Alternating groups.

For σ ∈ Alt(n) denote by cyc(σ) the number

of orbits of 〈σ〉 in {1, . . . , n}.

Proposition 7 (Larsen/Shalev) Let k ∈ N. For

all sufficiently large n, if σ ∈ Alt(n) and cyc(σ) ≤
k then the conjugacy class C of σ satisfies

C∗2 = Alt(n).

The application to verbal mappings is made via

Proposition 8 (LaSh) There exists a sequence

(σn) of permutations with σn ∈ Alt(n) such

that

(i) cyc(σn) ≤ 23 for each n, and

(ii) if w is a non-trivial word then σn ∈ Alt(n)+w

for all sufficiently large n.
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Let Cn denote the conjugacy class of σn in

Alt(n), let w1 and w2 be non trivial words and

set Si = G+wi
for each i. The two last propo-

sitions together imply that for all sufficiently

large n we have

S1S2 ⊇ C∗2
n = Alt(n).

Hence:

Theorem 12 (LaSh) Let u and w be non triv-

ial words. Then for all sufficiently large n,

Alt(n)+uAlt(n)+w = Alt(n).

Thm. 3 follows from Thms. 8 and 12, with

CFSG.
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Conjecture (LaSh) Let u and w be non trivial

words. Then

G+uG+w = G

for all sufficiently large finite simple groups G.

Larsen and Shalev prove this for the case of

Lie-type groups of bounded Lie rank, so only

the case of classical groups of large rank re-

mains open.

19


