Finite simple groups

To establish uniform bounds that hold over all fnite simple groups, one usually breaks the problem into parts:

1) The *sporadic groups*, and maybe finitely many more small groups: these can be ignored.

2) Groups of Lie type and small Lie rank.

Algebraic geometry:

Proposition 1 (Larsen) Let w be a non-trivial word. Then for each r there exists c = c(w, r) > 0 such that for every finite simple group G of Lie type of Lie rank r we have

 $\left|G_{+w}\right| > c \left|G\right|.$

1

3a, 3b) Groups of Lie type and large Lie rank; large alternating groups.

Can often be dealt with by finding matrices, or permutations, of a nice form inside them.

Proposition 2 (Larsen) Let w be a non-trivial word and let $\varepsilon > 0$. Then there exists N such that

$$\left|G_{+w}\right| > |G|^{1-\varepsilon}$$

whenever n > N and G is either Alt(n) or a simple group of Lie type of Lie rank n.

With CFSG, the two propositions imply

Theorem 1 (Larsen) Let w be a non-trivial word and let $\varepsilon > 0$. Then $|G_{+w}| > |G|^{1-\varepsilon}$ for all sufficiently large finite simple groups G. A useful reduction:

Theorem 2 (Nikolov) Let k be a perfect field and let G = G(k) be a classical quasisimple group over k. Then G has a subgroup H isomorphic to $SL_n(k_1)$ or $PSL_n(k_1)$, for some nand a subfield k_1 of k, such that G is the product of 200 conjugates of H.

It follows that if a word w has width m in $SL_n(k_1)$, then it has width 200m in G.

The most general theorem about verbal width in finite simple groups is due to Aner Shalev:

Theorem 3 (Shalev) Every word has positive width 3 in every sufficiently large finite simple group.

Ore's conjecture:

Theorem 4 (LOST) The commutator word [x, y] has width one in every finite simple group.

Proof involves character theory, algebraic geometry, number theory, computation (3 years CPU time)

A model-theoretic method

Consider simple groups of a fixed Lie type X.

Theorem 5 (F. Point) Let $(F_n | n \in \mathbb{N})$ be a family of finite fields, let \mathcal{U} be a non-principal ultrafilter on \mathbb{N} and let $E = \prod_n F_n / \mathcal{U}$ be the corresponding ultraproduct. Then E is an infinite field and the ultraproduct of groups

$$G = \prod_n X(F_n) / \mathcal{U}$$

is isomorphic to X(E).

Now let w be a non-trivial word. Suppose w does not have bounded width in X(F) as F ranges over all finite fields.

Then there is an infinite sequence of finite fields (F_n) and for each $n \in \mathbb{N}$ an element

$$g_n \in w(X(F_n)) \smallsetminus X(F_n)_w^{*n}.$$

Let \tilde{g} be the image of $(g_n)_{n \in \mathbb{N}}$ in G.

Suppose $\tilde{g} \in w(G)$. Then $\tilde{g} \in G_w^{*m}$ for some finite m; this implies that some subset of $\{1, \ldots, m-1\}$ is a member of \mathcal{U} : FALSE! (a non-principal ultrafilter can't contain finite sets).

Therefore w(G) < G.

But $G \cong X(E)$ is simple! So w(G) = 1. Thus the first-order statement

$$w(x_1, \dots, x_k) = 1 \ \forall x_1, \dots, x_k \tag{1}$$

holds in $\prod_n X(F_n)/\mathcal{U}$.

Loś's theorem: (1) holds in $X(F_n)$ for each n in some member of \mathcal{U} .

So $g_n = 1$ for infinitely many n: contradiction!

Conclusion: w has bounded width in X(F) as F ranges over all finite fields.

Theorem 6 Let w be a non-trivial word. Then for each r there exists m = m(w,r) such that w has width m in every finite simple group of Lie type and Lie rank at most r.

A combinatorial method

k(G) denotes the minimal dimension of a nontrivial \mathbb{R} -linear representation of G.

Theorem 7 (Gowers, Babai/Nikolov/Pyber) Let S_1, \ldots, S_t be subsets of a finite group G, where $t \geq 3$. If

$$\prod_{i=1}^{t} |S_i| \ge \frac{|G|^t}{k(G)^{t-2}}$$

then $S_1 \cdot S_2 \cdot \ldots \cdot S_t = G$.

Note: this applies to *any* finite group! Typical applications use:

If G is simple of Lie type over \mathbb{F}_q , of Lie rank r and dimension d, then

$$k(G) \ge cq^r,$$
$$|G| \sim q^d$$

(c is an absolute constant).

Proposition 3 (Larsen/Shalev, Nikolov/Pyber) Let w be a non-trivial word. Then

$$\left|G_{+w}\right| \ge \left|G\right| / k(G)^{1/3}$$

for every simple group G of Lie type and sufficiently large order.

Taking $S_i = G_{+w_i}$ in theorem 7 now gives

Theorem 8 (Shalev) Let w_1, w_2 and w_3 be non trivial words. Then

$$G_{+w_1}G_{+w_2}G_{+w_3} = G$$

for every sufficiently large finite simple group G of Lie type.

Character theory

G denotes a finite group. χ ranges over all irreducible (complex) characters of G.

Given conjugacy classes C_1, \ldots, C_s of G_s ,

 $N(\mathbf{C};g)$

denotes the number of solutions to the equation

$$x_1 \cdot x_2 \cdot \ldots \cdot x_s = g$$
$$(x_1 \in C_1, \ldots, x_s \in C_s)$$

Theorem 9 Let $a_i \in C_i$ for i = 1, ..., s. Then for $g \in G$ we have

$$N(\mathbf{C};g) = \frac{\prod |C_i|}{|G|} \sum_{\chi} \frac{\chi(a_1) \dots \chi(a_s) \overline{\chi(g)}}{\chi(1)^{s-1}}$$

General idea: to prove that $N(\mathbf{C}; g) \neq 0$ it suffices to show that $\chi(a)$ is very small for $a \in C_i$ and $\chi \neq \chi_1$. **Theorem 10** (Liebeck/Shalev) There is an absolute constant c such that if G is any finite simple group and S is a normal subset of Gwith $|S|^t \ge |G|$ then

$$m \ge ct \Longrightarrow S^{*m} = G.$$

Now let w be a non-trivial word, and let N be the number provided by Theorem 1 such that $|G_{+w}| > |G|^{1/2}$ for all finite simple groups Gwith |G| > N.

Suppose that G is a finite simple group with $w(G) \neq 1$, and set $S = G_{+w}$. Then $|S|^t \geq |G|$ where $t = \max\{2, \log_2 N\}$; take $m(w) = \lceil ct \rceil$:

Theorem 11 (Li/Sh) For each word w there exists $m(w) \in \mathbb{N}$ such that w has positive width m(w) in every finite simple group.

Original proof: show that if G is sufficiently large then G_{+w} contains a relatively large conjugacy class of G.

Case 1. G is of Lie type and bounded Lie rank r. In this case, we have

 $|C|^{\aleph r} \ge |G|$

for *every* non-central conjugacy class C.

So done provided $G_{+w} \neq \{1\}$; this holds for all but finitely many simple groups G.

Case 2. G = Alt(n), where n is large.

There exists s = s(w) such that $w(Alt(s)) \neq 1$.

Write

$$n = ds + r \quad (0 \le r < s).$$

Let $1 \neq \sigma \in Alt(s)_{+w}$. Then G_{+w} contains the permutation

$$\tau = \sigma \times \sigma \times \cdots \times \sigma \times 1$$

which has support of size at least 3d.

Lemma 1 (Li/Sh) Let $\delta > 0$. Then for all sufficiently large n, if $\tau \in Alt(n)$ has support of size m, the conjugacy class C of τ satisfies

$$|C| \ge n^{(1/3-\delta)m}.$$

Taking $\delta = \frac{1}{12}$ and *n* sufficiently large we find that G_{+w} contains a conjugacy class *C* with

$$|C| \ge n^{n/2s} > |G|^{1/2s}$$
.

Case 3. Groups of Lie type and large Lie rank. Suppose for example that $G = SL_n(\mathbb{F}_q)$.

There exists s such that $w(SL_s(\mathbb{F}_q)) \neq 1$; again write n = ds + r where $0 \leq r < s$, and let $1 \neq \sigma \in SL_s(\mathbb{F}_q)_{+w}$.

Then G_{+w} contains a block-diagonal matrix τ having d identical blocks σ ; let C be the conjugacy class of τ , let ρ be a power of σ with prime order, and denote the conjugacy class of ρ by C_1 . Obviously $|C| \ge |C_1|$. And

 $|C_1| \ge c \, |G|^{1/6s} \,,$

c > 0 an absolute constant.

The same technique is applied to the other classical groups. Alternatively: quote Theorem 2.

Sharper results due to Larsen and Shalev

1) Let $G = G_r(q)$ be a finite simple group of Lie type, of Lie rank r over \mathbb{F}_q , and let C_1 , C_2 and C_3 be conjugacy classes in G.

Proposition 4 (Shalev) (i) If |G| is sufficiently large and C_1 , C_2 and C_3 consist of regular semisimple elements, or

(ii) if r is sufficiently large and $|C_1| |C_2| |C_3| \ge q^{-15/4} |G|^3$,

then $C_1 C_2 C_3 = G$.

Proposition 5 (Shalev) Let w be a non-trivial word. If r is sufficiently large then G_{+w} contains a conjugacy class C with $|C| > q^{-5r/4} |G|$.

Proposition 6 (Guralnick/Lübeck) The number of regular semisimple elements in G is at least $(1-aq^{-1})|G|$, where a is an absolute constant.

Now let w_1, w_2 and w_3 be non trivial words, and put $S_i = G_{+w_i}$ for each *i*.

If r is large and G is sufficiently large, Proposition 5 together with Proposition 4(ii) shows that $S_1S_2S_3 = G$.

If r is small and G is sufficiently large, Proposition 6 and Proposition 1 together imply that each S_i contains a regular semisimple element, and then Proposition 4(i) shows again that $S_1S_2S_3 = G$.

- Original proof of Theorem 8

2) Alternating groups.

For $\sigma \in Alt(n)$ denote by $cyc(\sigma)$ the number of orbits of $\langle \sigma \rangle$ in $\{1, \ldots, n\}$.

Proposition 7 (Larsen/Shalev) Let $k \in \mathbb{N}$. For all sufficiently large n, if $\sigma \in Alt(n)$ and $cyc(\sigma) \leq k$ then the conjugacy class C of σ satisfies $C^{*2} = Alt(n)$.

The application to verbal mappings is made via

Proposition 8 (LaSh) There exists a sequence (σ_n) of permutations with $\sigma_n \in Alt(n)$ such that

(i) $cyc(\sigma_n) \leq 23$ for each n, and

(ii) if w is a non-trivial word then $\sigma_n \in Alt(n)_{+w}$ for all sufficiently large n. Let C_n denote the conjugacy class of σ_n in Alt(n), let w_1 and w_2 be non trivial words and set $S_i = G_{+w_i}$ for each *i*. The two last propositions together imply that for all sufficiently large *n* we have

$$S_1S_2 \supseteq C_n^{*2} = \operatorname{Alt}(n).$$

Hence:

Theorem 12 (LaSh) Let u and w be non trivial words. Then for all sufficiently large n,

$$\operatorname{Alt}(n)_{+u}\operatorname{Alt}(n)_{+w} = \operatorname{Alt}(n).$$

Thm. 3 follows from Thms. 8 and 12, with CFSG.

Conjecture (LaSh) Let u and w be non trivial words. Then

$$G_{+u}G_{+w} = G$$

for all sufficiently large finite simple groups G.

Larsen and Shalev prove this for the case of Lie-type groups of bounded Lie rank, so only the case of classical groups of large rank remains open.