Finite simple groups

To establish uniform bounds that hold over all fnite simple groups, one usually breaks the problem into parts:

1) The sporadic groups, and maybe finitely many more small groups: these can be ignored.
2) Groups of Lie type and small Lie rank.

Algebraic geometry:

Proposition 1 (Larsen) Let w be a non-trivial word. Then for each r there exists $c=c(w, r)>$ 0 such that for every finite simple group G of Lie type of Lie rank r we have

$$
\left|G_{+w}\right|>c|G| .
$$

3a, 3b) Groups of Lie type and large Lie rank; large alternating groups.

Can often be dealt with by finding matrices, or permutations, of a nice form inside them.

Proposition 2 (Larsen) Let w be a non-trivial word and let $\varepsilon>0$. Then there exists N such that

$$
\left|G_{+w}\right|>|G|^{1-\varepsilon}
$$

whenever $n>N$ and G is either $\operatorname{Alt}(n)$ or a simple group of Lie type of Lie rank n.

With CFSG, the two propositions imply

Theorem 1 (Larsen) Let w be a non-trivial word and let $\varepsilon>0$. Then $\left|G_{+w}\right|>|G|^{1-\varepsilon}$ for all sufficiently large finite simple groups G.

A useful reduction:

Theorem 2 (Nikolov) Let k be a perfect field and let $G=G(k)$ be a classical quasisimple group over k. Then G has a subgroup H isomorphic to $\mathrm{SL}_{n}\left(k_{1}\right)$ or $\mathrm{PSL}_{n}\left(k_{1}\right)$, for some n and a subfield k_{1} of k, such that G is the product of 200 conjugates of H.

It follows that if a word w has width m in $\mathrm{SL}_{n}\left(k_{1}\right)$, then it has width 200 m in G.

The most general theorem about verbal width in finite simple groups is due to Aner Shalev:

Theorem 3 (Shalev) Every word has positive width 3 in every sufficiently large finite simple group.

Ore's conjecture:

Theorem 4 (LOST) The commutator word $[x, y]$ has width one in every finite simple group.

Proof involves character theory, algebraic geometry, number theory, computation (3 years CPU time)

A model-theoretic method

Consider simple groups of a fixed Lie type X.
Theorem 5 (F. Point) Let ($F_{n} \mid n \in \mathbb{N}$) be a family of finite fields, let \mathcal{U} be a non-principal ultrafilter on \mathbb{N} and let $E=\Pi_{n} F_{n} / \mathcal{U}$ be the corresponding ultraproduct. Then E is an infinite field and the ultraproduct of groups

$$
G=\prod_{n} X\left(F_{n}\right) / \mathcal{U}
$$

is isomorphic to $X(E)$.

Now let w be a non-trivial word.
Suppose w does not have bounded width in $X(F)$ as F ranges over all finite fields.

Then there is an infinite sequence of finite fields $\left(F_{n}\right)$ and for each $n \in \mathbb{N}$ an element

$$
g_{n} \in w\left(X\left(F_{n}\right)\right) \backslash X\left(F_{n}\right)_{w}^{* n} .
$$

Let \widetilde{g} be the image of $\left(g_{n}\right)_{n \in \mathbb{N}}$ in G.
Suppose $\tilde{g} \in w(G)$. Then $\tilde{g} \in G_{w}^{* m}$ for some finite m; this implies that some subset of $\{1, \ldots, m-1\}$ is a member of \mathcal{U} : FALSE! (a non-principal ultrafilter can't contain finite sets).

Therefore $w(G)<G$.
But $G \cong X(E)$ is simple! So $w(G)=1$. Thus the first-order statement

$$
\begin{equation*}
w\left(x_{1}, \ldots, x_{k}\right)=1 \forall x_{1}, \ldots, x_{k} \tag{1}
\end{equation*}
$$

holds in $\prod_{n} X\left(F_{n}\right) / \mathcal{U}$.

Los's theorem: (1) holds in $X\left(F_{n}\right)$ for each n in some member of \mathcal{U}.

So $g_{n}=1$ for infinitely many n : contradiction!

Conclusion: w has bounded width in $X(F)$ as F ranges over all finite fields.

Theorem 6 Let w be a non-trivial word. Then for each r there exists $m=m(w, r)$ such that w has width m in every finite simple group of Lie type and Lie rank at most r.

A combinatorial method

$k(G)$ denotes the minimal dimension of a nontrivial \mathbb{R}-linear representation of G.

Theorem 7 (Gowers, Babai/Nikolov/Pyber) Let S_{1}, \ldots, S_{t} be subsets of a finite group G, where $t \geq 3$. If

$$
\prod_{i=1}^{t}\left|S_{i}\right| \geq \frac{|G|^{t}}{k(G)^{t-2}}
$$

then $S_{1} \cdot S_{2} \cdot \ldots \cdot S_{t}=G$.

Note: this applies to any finite group! Typical applications use:

If G is simple of Lie type over \mathbb{F}_{q}, of Lie rank r and dimension d, then

$$
\begin{aligned}
k(G) & \geq c q^{r}, \\
|G| & \sim q^{d}
\end{aligned}
$$

(c is an absolute constant).

Proposition 3 (Larsen/Shalev, Nikolov/Pyber) Let w be a non-trivial word. Then

$$
\left|G_{+w}\right| \geq|G| / k(G)^{1 / 3}
$$

for every simple group G of Lie type and sufficiently large order.

Taking $S_{i}=G_{+w_{i}}$ in theorem 7 now gives
Theorem 8 (Shalev) Let w_{1}, w_{2} and w_{3} be non trivial words. Then

$$
G_{+w_{1}} G_{+w_{2}} G_{+w_{3}}=G
$$

for every sufficiently large finite simple group G of Lie type.

Character theory

G denotes a finite group. χ ranges over all irreducible (complex) characters of G.

Given conjugacy classes C_{1}, \ldots, C_{s} of G,

$$
N(\mathbf{C} ; g)
$$

denotes the number of solutions to the equation

$$
\begin{gathered}
x_{1} \cdot x_{2} \cdot \ldots \cdot x_{s}=g \\
\left(x_{1} \in C_{1}, \ldots, x_{s} \in C_{s}\right)
\end{gathered}
$$

Theorem 9 Let $a_{i} \in C_{i}$ for $i=1, \ldots, s$. Then for $g \in G$ we have

$$
N(\mathbf{C} ; g)=\frac{\Pi\left|C_{i}\right|}{|G|} \sum_{\chi} \frac{\chi\left(a_{1}\right) \ldots \chi\left(a_{s}\right) \overline{\chi(g)}}{\chi(1)^{s-1}} .
$$

General idea: to prove that $N(\mathbf{C} ; g) \neq 0$ it suffices to show that $\chi(a)$ is very small for $a \in$ C_{i} and $\chi \neq \chi_{1}$.

Theorem 10 (Liebeck/Shalev) There is an absolute constant c such that if G is any finite simple group and S is a normal subset of G with $|S|^{t} \geq|G|$ then

$$
m \geq c t \Longrightarrow S^{* m}=G
$$

Now let w be a non-trivial word, and let N be the number provided by Theorem 1 such that $\left|G_{+w}\right|>|G|^{1 / 2}$ for all finite simple groups G with $|G|>N$.

Suppose that G is a finite simple group with $w(G) \neq 1$, and set $S=G_{+w}$.
Then $|S|^{t} \geq|G|$ where $t=\max \left\{2, \log _{2} N\right\}$; take $m(w)=\lceil c t\rceil$:

Theorem 11 (Li/Sh) For each word w there exists $m(w) \in \mathbb{N}$ such that w has positive width $m(w)$ in every finite simple group.

Original proof: show that if G is sufficiently large then G_{+w} contains a relatively large conjugacy class of G.

Case 1. G is of Lie type and bounded Lie rank r. In this case, we have

$$
|C|^{8 r} \geq|G|
$$

for every non-central conjugacy class C.

So done provided $G_{+w} \neq\{1\}$; this holds for all but finitely many simple groups G.

Case 2. $G=\operatorname{Alt}(n)$, where n is large.
There exists $s=s(w)$ such that $w(\operatorname{Alt}(s)) \neq 1$.
Write

$$
n=d s+r \quad(0 \leq r<s)
$$

Let $1 \neq \sigma \in \operatorname{Alt}(s)_{+w}$. Then G_{+w} contains the permutation

$$
\tau=\sigma \times \sigma \times \cdots \times \sigma \times 1
$$

which has support of size at least $3 d$.
Lemma 1 (Li/Sh) Let $\delta>0$. Then for all sufficiently large n, if $\tau \in \operatorname{Alt}(n)$ has support of size m, the conjugacy class C of τ satisfies

$$
|C| \geq n^{(1 / 3-\delta) m}
$$

Taking $\delta=\frac{1}{12}$ and n sufficiently large we find that G_{+w} contains a conjugacy class C with

$$
|C| \geq n^{n / 2 s}>|G|^{1 / 2 s}
$$

Case 3. Groups of Lie type and large Lie rank. Suppose for example that $G=\mathrm{SL}_{n}\left(\mathbb{F}_{q}\right)$.

There exists s such that $w\left(\mathrm{SL}_{s}\left(\mathbb{F}_{q}\right)\right) \neq 1$; again write $n=d s+r$ where $0 \leq r<s$, and let $1 \neq \sigma \in \mathrm{SL}_{s}\left(\mathbb{F}_{q}\right)_{+w}$.

Then G_{+w} contains a block-diagonal matrix τ having d identical blocks σ; let C be the conjugacy class of τ, let ρ be a power of σ with prime order, and denote the conjugacy class of ρ by C_{1}. Obviously $|C| \geq\left|C_{1}\right|$. And

$$
\left|C_{1}\right| \geq c|G|^{1 / 6 s}
$$

$c>0$ an absolute constant.

The same technique is applied to the other classical groups. Alternatively: quote Theorem 2.

Sharper results due to Larsen and Shalev

1) Let $G=G_{r}(q)$ be a finite simple group of Lie type, of Lie rank r over \mathbb{F}_{q}, and let C_{1}, C_{2} and C_{3} be conjugacy classes in G.

Proposition 4 (Shalev) (i) If $|G|$ is sufficiently large and C_{1}, C_{2} and C_{3} consist of regular semisimple elements, or
(ii) if r is sufficiently large and

$$
\left|C_{1}\right|\left|C_{2}\right|\left|C_{3}\right| \geq q^{-15 / 4}|G|^{3},
$$

then $C_{1} C_{2} C_{3}=G$.

Proposition 5 (Shalev) Let w be a non-trivial word. If r is sufficiently large then G_{+w} contains a conjugacy class C with $|C|>q^{-5 r / 4}|G|$.

Proposition 6 (Guralnick/Lübeck) The number of regular semisimple elements in G is at least $\left(1-a q^{-1}\right)|G|$, where a is an absolute constant.

Now let w_{1}, w_{2} and w_{3} be non trivial words, and put $S_{i}=G_{+w_{i}}$ for each i.

If r is large and G is sufficiently large, Proposition 5 together with Proposition 4(ii) shows that $S_{1} S_{2} S_{3}=G$.

If r is small and G is sufficiently large, Proposition 6 and Proposition 1 together imply that each S_{i} contains a regular semisimple element, and then Proposition 4(i) shows again that $S_{1} S_{2} S_{3}=G$.

- Original proof of Theorem 8

2) Alternating groups.

For $\sigma \in \operatorname{Alt}(n)$ denote by $\operatorname{cyc}(\sigma)$ the number of orbits of $\langle\sigma\rangle$ in $\{1, \ldots, n\}$.

Proposition 7 (Larsen/Shalev) Let $k \in \mathbb{N}$. For all sufficiently large n, if $\sigma \in \operatorname{Alt}(n)$ and $\operatorname{cyc}(\sigma) \leq$ k then the conjugacy class C of σ satisfies $C^{* 2}=\operatorname{Alt}(n)$.

The application to verbal mappings is made via Proposition 8 (LaSh) There exists a sequence (σ_{n}) of permutations with $\sigma_{n} \in \operatorname{Alt}(n)$ such that
(i) $\operatorname{cyc}\left(\sigma_{n}\right) \leq 23$ for each n, and
(ii) if w is a non-trivial word then $\sigma_{n} \in \operatorname{Alt}(n)_{+w}$ for all sufficiently large n.

Let C_{n} denote the conjugacy class of σ_{n} in Alt (n), let w_{1} and w_{2} be non trivial words and set $S_{i}=G_{+w_{i}}$ for each i. The two last propositions together imply that for all sufficiently large n we have

$$
S_{1} S_{2} \supseteq C_{n}^{* 2}=\operatorname{Alt}(n)
$$

Hence:

Theorem 12 (LaSh) Let u and w be non trivial words. Then for all sufficiently large n,

$$
\operatorname{Alt}(n)_{+u} \operatorname{Alt}(n)_{+w}=\operatorname{Alt}(n)
$$

Thm. 3 follows from Thms. 8 and 12, with CFSG.

Conjecture (LaSh) Let u and w be non trivial words. Then

$$
G_{+u} G_{+w}=G
$$

for all sufficiently large finite simple groups G.

Larsen and Shalev prove this for the case of Lie-type groups of bounded Lie rank, so only the case of classical groups of large rank remains open.

