Finite simple groups

To establish uniform bounds that hold over
all fnite simple groups, one usually breaks the
problem into parts:

1) The sporadic groups, and maybe finitely
many more small groups: these can be ignored.

2) Groups of Lie type and small Lie rank.
Algebraic geometry:

Proposition 1 (Larsen) Let w be a non-trivial
word. Then for each r there exists c = c(w,r) >
O such that for every finite simple group G of
Lie type of Lie rank r we have

Gy > |Gl



3a, 3b) Groups of Lie type and large Lie rank;
large alternating groups.

Can often be dealt with by finding matrices, or
permutations, of a nice form inside them.

Proposition 2 (Larsen) Let w be a non-trivial
word and let € > 0. Then there exists N such
that

Gy > |G

whenever n > N and G is either Alt(n) or a
simple group of Lie type of Lie rank n.

With CFSG, the two propositions imply

Theorem 1 (Larsen) Let w be a non-trivial
word and let € > 0. Then )G+w‘ > |G|1_8 for
all sufficiently large finite simple groups G.



A useful reduction:

Theorem 2 (Nikolov) Let k be a perfect field
and let G = G(k) be a classical quasisimple
group over k. Then G has a subgroup H iso-
morphic to SLy, (k1) or PSLy(ky), for some n
and a subfield k1 of k, such that G is the prod-
uct of 200 conjugates of H.

It follows that if a word w has width m in
SLn(k1), then it has width 200m in G.



The most general theorem about verbal width
in finite simple groups is due to Aner Shalev:

Theorem 3 (Shalev) Every word has positive
width 3 in every sufficiently large finite simple
group.

Ore’s conjecture:

Theorem 4 (LOST) The commutator word
[z, y] has width one in every finite simple group.

Proof involves character theory, algebraic ge-
ometry, number theory, computation (3 years
CPU time)



A model-theoretic method

Consider simple groups of a fixed Lie type X.

Theorem 5 (F. Point) Let (F, | n € N) be a
family of finite fields, let U be a non-principal
ultrafilter on N and let E = [[,,Fn/U be the cor-
responding ultraproduct. Then E is an infinite
field and the ultraproduct of groups

is isomorphic to X(F).

Now let w be a non-trivial word.
Suppose w does not have bounded width in
X (F) as F ranges over all finite fields.

Then there is an infinite sequence of finite
fields (Fy) and for each n € N an element

gn € w(X (Fn)) N X(Fn)y'"-



Let g be the image of (gn),en iN G.

Suppose g € w(G). Then g € G;™ for some
finite m; this implies that some subset of
{1,...,m — 1} is a member of U: FALSE! (a
non-principal ultrafilter can’t contain finite sets).

Therefore w(G) < G.

But G = X(F) is simple! So w(G) = 1. Thus
the first-order statement

w(zxy,...,x) =1 Vaq,...,o) (1)
holds in ], X (Fn)/U.

Los’s theorem: (1) holds in X(Fy) for each n
in some member of U.

So gn, = 1 for infinitely many n: contradiction!



Conclusion: w has bounded width in X (F)
as F ranges over all finite fields.

Theorem 6 Letw be a non-trivial word. Then
for each r there exists m = m(w,r) such that
w has width m in every finite simple group of
Lie type and Lie rank at most r.



A combinatorial method

k(G) denotes the minimal dimension of a non-
trivial R-linear representation of G.

Theorem 7 (Gowers, Babai/Nikolov/Pyber) Let

S1,...,5¢ be subsets of a finite group G, where
t>3. If
t |G|t
S5 >
2'1;11 ‘ k(G)t_z

then S1-5>-... St =G.

Note: this applies to any finite group! Typical
applications use:

If G is simple of Lie type over [F,, of Lie rank
r and dimension d, then
k(G) > cq',
G| ~ ¢°

(c is an absolute constant).



Proposition 3 (Larsen/Shalev, Nikolov/Pyber)
Let w be a non-trivial word. Then

G| 2 Gl /R(G)H3

for every simple group GG of Lie type and suffi-
ciently large order.

Taking S5, = G+wi in theorem 7 now gives

Theorem 8 (Shalev) Let wi,ws and ws be
non trivial words. Then

G+w1G+w2G+w3 =G
for every sufficiently large finite simple group
G of Lie type.



Character theory

G denotes a finite group. x ranges over all
irreducible (complex) characters of G.

Given conjugacy classes C'q,...,Cs of G,

N(C;g)
denotes the number of solutions to the equa-
tion

L1 2 ...-Tg—4(gg
(x1 € Cq,...,25s € Cs)

Theorem 9 Leta; € C;, fori=1,...,s. Then
for g € G we have

G x(a1) - - - x(as)x(9)
MOD=Ter T et

General idea: to prove that N(C;g) #= O it
suffices to show that x(a) is very small for a €

C; and x # x1-
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Theorem 10 (Liebeck/Shalev) There is an ab-
solute constant c such that if G is any finite
simple group and S is a normal subset of G
with |S|t > |G| then

m > ct = S = G.

Now let w be a non-trivial word, and let N be
the number provided by Theorem 1 such that
‘G+w| > |G|1/2 for all finite simple groups G
with |G| > N.

Suppose that G is a finite simple group with
w(G) # 1, and set S = G4,

Then |S|' > |G| where t = max{2, logo N};
take m(w) = [ct]:

Theorem 11 (Li/Sh) For each word w there
exists m(w) € N such that w has positive width
m(w) in every finite simple group.
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Original proof: show that if G is sufficiently

large then G4, contains a relatively large con-
jugacy class of G.

Case 1. G is of Lie type and bounded Lie rank
r. In this case, we have

B > |G

for every non-central conjugacy class C.

So done provided G4, # {1}, this holds for all
but finitely many simple groups G.
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Case 2. G = Alt(n), where n is large.
There exists s = s(w) such that w(Alt(s)) # 1.

Write
n=ds+r (0<r<s).

Let 1 # o € Alt(s)4+,. Then G4, contains the
permutation

T—=0cXoX- ---XoX1

which has support of size at least 3d.

Lemma 1 (Li/Sh) Let § > 0. Then for all
sufficiently large n, if T € Alt(n) has support of
Ssize m, the conjugacy class C of T satisfies

|C| > n(1/3—5)m.

Taking § = <5 and n sufficiently large we find
that G, contains a conjugacy class C' with

|C| > nn/QS > |G|1/28.
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Case 3. Groups of Lie type and large Lie rank.
Suppose for example that G = SL,(F,).

There exists s such that w(SLs(Fq)) = 1; again
write n = ds +r where 0 < r < s, and let

Then G4, contains a block-diagonal matrix =
having d identical blocks o;

let C' be the conjugacy class of 7, let p be a
power of o with prime order, and denote the
conjugacy class of p by (.

Obviously |C] > |C1|. And

C1| > ¢|G|Y/03,

¢ > 0 an absolute constant.

The same technique is applied to the other
classical groups. Alternatively: quote Theo-
rem 2.
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Sharper results due to Larsen and Shalev

1) Let G = G,r(q) be a finite simple group of
Lie type, of Lie rank r over Iy, and let Cy, C
and C'3 be conjugacy classes in G.

Proposition 4 (Shalev) (i) If |G| is sufficiently
large and Cy, Co and (3 consist of regular
semisimple elements, or

(ii) if r is sufficiently large and

C1||ColC3] > 71574 |G,
then C1C>C3 = G.
Proposition 5 (Shalev) Let w be a non-trivial

word. If r is sufficiently large then G_,, con-
tains a conjugacy class C' with |C| > ¢~ 57/4|G].
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Proposition 6 (Guralnick/Liibeck) The num-
ber of regular semisimple elements in GG is at
least (1—aq~1) |G|, where a is an absolute con-
stant.

Now let wi,wo and w3z be non trivial words,
and put 5; = G4, for each .

If r is large and G is sufficiently large, Propo-
sition 5 together with Proposition 4(ii) shows
that $15553 = G.

If » is small and G is sufficiently large, Propo-
sition 6 and Proposition 1 together imply that
each §; contains a regular semisimple element,
and then Proposition 4(i) shows again that
S15-53 = G.

— QOriginal proof of Theorem 8
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2) Alternating groups.

For o € Alt(n) denote by cyc(o) the number
of orbits of (o) in {1,...,n}.

Proposition 7 (Larsen/Shalev) Letk € N. For
all sufficiently largen, ifo € Alt(n) and cyc(o) <
k then the conjugacy class C' of o satisfies
C*2 = Alt(n).

The application to verbal mappings is made via

Proposition 8 (LaSh) There exists a sequence
(on) of permutations with on € Alt(n) such
that

(i) cyc(opn) < 23 for each n, and

(ii) ifw is a non-trivial word then on € Alt(n)4,,
for all sufficiently large n.
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Let (), denote the conjugacy class of o, in
Alt(n), let wy and w, be non trivial words and
set S§; = G_|_,wl. for each 2. The two last propo-
sitions together imply that for all sufficiently
large n we have

5155 D C*° = Alt(n).
Hence:

Theorem 12 (LaSh) Letu and w be non triv-
ial words. Then for all sufficiently large n,

Alt(n) 4, ,Alt(n) 4, = Alt(n).

Thm. 3 follows from Thms. 8 and 12, with
CFSG.
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Conjecture (LaSh) Let uw and w be non trivial
words. Then

GiyGiy =G

for all sufficiently large finite simple groups G.

Larsen and Shalev prove this for the case of
Lie-type groups of bounded Lie rank, so only
the case of classical groups of large rank re-
mains open.
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